煤灰熔融性那些事儿

合集下载

煤灰熔融性(一)

煤灰熔融性(一)
煤灰熔融性(一)
定义
煤灰熔融性:煤中矿物质在高温下的熔融性能。 常用的测定方法是将煤灰与糊精混合,做成灰锥,
在高温炉弱还原气氛中加热,分别测定灰熔融性 变形温度、软化温度、半球温度和流动温度。一 般用软化温度作为煤灰熔融性的主要指标:小于 或等于1100℃为易熔灰分,大于1100~1250℃为 低熔灰分,大于1250~1500℃为高熔灰分,大于 1500℃为难熔灰分
煤灰是多种矿物质组成的混合物,这种混合物并
没有一个固定的溶点,而仅有一个熔化温度的范 围。开始熔化的温度远比其中任一组分纯净矿物 质熔点为低。这些组分在一定温度下还会形成一 种共熔体,这种共熔体在熔化状态时,有熔解煤 灰中其他高熔点物质的性能,从而改变了熔体的 成及其熔化温度。煤灰的熔融性和煤灰的利用取 决于煤灰的组成。煤灰成分十分复杂,主要有: SiO2,A12O3,Fe2O3,CaO,MgO,SO3
获得方法:通气法及封碳法(炉内封入碳
物质)
氧化性气氛:炉内不放任何含碳物质,并
使空气自由流通
谢谢
基本概念
四个特征温度 变形温度 DT 灰锥尖端或棱开始变园或弯
曲时的温度 软化温度 ST 灰锥弯曲至锥尖触及托板或灰 锥变成球形时的温度 半球温度 HT 灰锥形变至似半球形,即高约 等于底长的一半时的温度 流动温度 FT 灰锥融化展开高度在1.5mm以 下的薄层时的温度
基本概念
检测仪器
பைடு நூலகம்
高温炉 能加热到1500℃以上 有足够的恒温带 能按规定的程序加热 炉内气氛可控制为弱还原性和氧化性 能在试验过程中观察试样形态变化
常用管式硅碳管高温炉
检测气氛
弱还原气氛定义:含有50±10%(体积比)的

测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素煤灰熔融性是指一定量的煤灰在一定温度下熔化的能力。

它是评价煤质的一项重要指标之一,因为它直接关系到煤的利用价值和燃烧过程中产生的废气、废渣的特性。

对于煤的应用领域,如发电、铁路、冶金等,测定煤灰熔融性可以从多个方面影响其使用效果。

首先,煤灰熔融性对燃烧过程中产生的废气的影响尤为重要。

煤中含有的各种元素在燃烧时会产生气体或者颗粒物,并且这些物质的比例和性质与煤的成分有关。

如果煤中的某些元素在燃烧过程中无法完全燃烧,会发生部分氧化或者分解反应,最终产生大量的有害气体,例如二氧化碳、硫化物、氧化物等。

此时,煤灰熔融性过高或过低都会加剧这种现象,进而增加环境的污染和健康的损害。

所以,减少燃烧过程中有害气体的生成是保障环境和健康的必要手段。

测定煤灰熔融性可以帮助煤的使用者选择更加适合的燃烧条件,从而减少有害气体的产生,保护环境和健康。

其次,煤灰熔融性还会对产生的废渣的性质产生影响。

烧煤时,生成的煤灰会在炉膛内逐渐积累,如果煤灰的熔融性太高,就会导致煤灰在炉内结块或者凝固成大块,降低炉子的效率,甚至会在废渣中形成一些酸性物质,对设备的损耗更大。

同时,过高的煤灰熔融性也会导致废渣的含水量降低,给处置废渣带来困难。

也就是说,测定煤灰熔融性可以帮助用户选择不同的设备、燃烧条件和处理方法,从而有效地减少废渣的产生和处理难度。

最后,煤灰熔融性的大小还会对煤的利用价值产生影响。

在某些领域,如冶金和耐火材料等,需要使用煤中的部分矿物质进行合成或者改性,而这些矿物质通常都集中在煤灰中。

如果煤灰的熔融性太高或太低,不仅会影响是否能有效地提取这些矿物质,还会影响合成或改性所需的温度和条件。

这也就意味着测定煤灰熔融性是保证煤的利用宽度和效率的一项重要工作。

总之,测定煤灰熔融性是一项对于维护环境、健康、设备、废渣处理和煤的利用价值等多个方面都有着重要意义的任务。

煤灰熔融性的影响因素主要包括煤的成分、燃烧过程中的温度和压力、反应性物质的存在和化学作用等等。

浅谈煤灰熔融性(知识产权归于作者所有,非上传者)

浅谈煤灰熔融性(知识产权归于作者所有,非上传者)

浅谈煤灰熔融性2007-11-27 11:47:06国际煤炭网网友评论煤灰的熔融性是指煤灰受热时由固态向液态逐渐转化的特性,煤灰的熔融性是动力用煤高温特性的重要测定项目之一。

由于煤灰不是一个纯净物,它没有严格意义的熔点,衡量其熔融过程的温度变化,通常用三个特征温度:即变形温度(DT),软化温度(ST)、流动温度(FT)。

这三个温度代表了煤灰在熔融过程中固相减少,液相渐多的三点,在工业上多用软化温度作为熔融性指标,称为灰熔点。

一、煤灰的熔融性对于煤粉固态排渣炉的炉膛结渣有密切关系:如灰熔融性温度低,在炉膛高温下熔融粘在炉膛受热面上,冷却后形成结渣。

根据运行经验,煤灰软化温度小于1350℃就有可能造成炉膛结渣。

故煤粉固态排渣炉要求灰熔融性温度高。

煤灰熔融过程中DT-ST之间的温度为软化区间温度,根据其范围把灰分为长渣和短渣,一般认为软化区温度大于200℃为长渣,小于100℃为短渣。

通常短渣的煤易于结焦,燃用长渣的煤较为安全。

二、影响煤灰熔融性的因素:影响煤灰熔融性的因素主要是煤灰的化学组成和煤灰受热时所处的环境介质的性质:一、煤灰的化学组成比较复杂,通常以各种氧化物的百分含量来表示。

其组成百分含量可按下列顺序排列:SiO2,Al2O3,(Fe2O3+FeO),CaO,MgO,(Na2O+K2O)。

这些氧化物在纯净状态时熔点大都较高(Na2O和K2O除外)。

在高温下,由于各种氧化物相互作用,生成了有较低熔点的共熔体。

熔化的共熔体还有溶解灰中其他高熔点矿物质的性能,从而改变共熔体的成分,使其熔化温度更低。

上列氧化物分为三类,此三类氧化物对煤灰的熔融性的影响如下:Al2O3 能提高灰熔点,煤灰中三氧化二铝含量自15%开始,煤灰熔融性温度随其含量增加而有规律的增加,煤灰中Al2O3含量大于40%时,ST一般都超过1500℃;大于30%时,ST也多在1300℃以上。

当三氧化二铝含量高于25%时,DT与ST 的温差,随其含量增加而变小。

测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素煤灰是燃烧煤炭时产生的固体残渣,其性质对环境和燃烧设备的运行都有重要影响。

煤灰的熔融性是研究煤灰性质的重要指标之一,不仅与环境污染、燃烧设备腐蚀等有关,还对燃煤产生的渣化问题有着重要的意义。

本文将从煤灰熔融性的意义和影响因素进行详细的探讨。

一、煤灰熔融性的意义1. 影响环境污染煤灰中的熔融性物质在锅炉内被释放到烟道中,一旦达到一定温度,就会形成烟道渣,这些高温下形成的渣化物质被称为高渣,其熔融温度较低,具有粘结性,易引起渣铁、输灰管、电除灰设备的堵塞,造成设备损坏,甚至爆管、泄露等严重事故。

在低温下煤灰中的硫元素也会发生化学反应,形成渣化硫酸盐,容易造成喷灰器、叉车等燃烧设备的严重腐蚀,影响燃烧设备的正常运行。

2. 影响燃煤环保处理燃煤排放是导致大气和水质污染的重要原因之一,当前我国煤炭消耗量较大,煤灰的排放量也是非常可观的。

如果煤灰熔融性较大,煤灰在燃烧过程中释放出的气体中的细颗粒物、重金属、二噁英等有毒有害物质也会增加,对环境造成较大的危害,而对煤灰进行环保处理也将大大增加处理成本。

3. 影响渣化特性燃烧产生的煤灰通过渣化处理,可以生产多种建筑材料和水泥等混凝土原料。

煤灰的熔融性直接影响其渣化特性,渣化特性好的煤灰更易于利用,可以减少矿产资源的开采,同时还可以减少环境污染。

煤灰熔融性对环境污染、渣化处理及燃煤设备的安全运行都具有重要意义。

1. 煤质影响煤炭中的灰分成分、数量对煤灰熔融性有很大影响。

灰分中的SiO2、Fe2O3、Al2O3等含量高,可以提高煤灰的熔融温度,而且灰分的特性也有影响。

2. 煤炭燃烧条件燃烧条件对煤灰的熔融性也有重要影响。

煤炭燃烧的温度、压力、氧气流速以及氧气浓度都会对熔融性产生影响。

3. 煤粉粒度煤粉的细度对熔融性有重要影响。

煤粉越细,其比表面积越大,燃烧速度越快,而且能更好地与氧气接触,煤灰的熔融性也随之增加。

通过了解煤灰熔融性的意义和影响因素,我们可以更好地控制煤灰的形成和燃烧过程,保护环境、减少设备损耗,提高渣化利用率。

测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素测定煤灰熔融性是指通过实验方法来确定煤灰在高温下的熔化性能。

煤灰熔融性的意义在于评估煤燃烧过程中产生的灰渣的熔化特性,从而影响炉内温度控制、灰渣排放和炉膛结渣情况。

测定煤灰的熔融性可以评估煤燃烧过程中的灰渣排放情况。

煤燃烧过程中产生的灰渣中含有大量的有害物质和微小颗粒。

灰渣的熔化特性将直接影响到其排放情况。

如果煤灰的熔点较高且熔化较完全,可以减少灰渣中的颗粒物质的排放,降低对空气质量的影响。

当灰渣的熔点较低时,熔渣的流动性会增加,灰渣会更容易粘附在锅炉管道上,导致管道堵塞,并且常常会产生比较有害的气态物质的排放。

测定煤灰的熔融性可以评估炉膛结渣情况。

煤燃烧过程中,煤灰的熔点会直接决定炉膛内的结渣情况。

如果煤灰的熔点较高且熔化完全,可以减少炉膛内的结渣情况,降低对锅炉的损坏和维护成本。

当煤灰的熔点较低时,熔渣容易粘附在炉膛内壁和燃烧器中,形成结渣并降低热交换效率,增加燃料消耗。

煤灰熔融性的影响因素主要包括煤的种类、矿物组成、挥发分含量、灰分含量以及燃烧条件等。

不同种类的煤矿中,煤灰的熔化性能会有很大的差异。

煤矿中含有的不同矿物质对煤灰的熔化特性有直接影响,高硅酸盐矿物和铝酸盐矿物会提高煤灰的熔化温度,而铁酸盐矿物和碱金属盐矿物会降低煤灰的熔化温度。

煤中的挥发分含量和灰分含量也会影响煤灰的熔点。

燃烧条件也会对煤灰的熔点产生影响,例如炉温、燃烧速率和氧化剂的氧化能力等都会影响煤灰的熔化性能。

测定煤灰的熔融性对于合理控制煤燃烧系统的温度、减少灰渣排放和结渣情况具有重要的意义。

合理选择煤种、调整煤质和优化燃烧条件等措施也可以有效降低煤灰的熔化温度,减少对环境和设备的危害。

测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素
煤灰熔融性是指煤在高温下产生的物质流动和化学反应,导致煤灰在一定温度下开始
熔化并流动。

测定煤灰熔融性的意义在于了解煤的燃烧特性和烟气的排放情况。

具体而言,煤灰熔融性的测定可以影响以下方面:
1. 燃烧效率和效果:煤灰是煤燃烧后剩余物质,其能够流动并聚集成块,堵塞烟道,导致热效率降低。

因此,对于煤的燃烧效率和效果的评估,煤灰熔融性的测定是必要的。

2. 烟气排放:煤的燃烧不仅会产生二氧化碳和水等普通物质,还会产生氮氧化物、
二氧化硫等污染物。

煤灰熔融性的测定可以预测出烟气中的污染物浓度,从而制定有效的
控制方案。

3. 热电工业:煤灰熔融性对热电工业的影响也很显著。

煤灰熔融性高的煤,其灰渣
流动性好,易于清除,减少电站的停机时间和维护成本。

除了以上三点,煤灰熔融性还会受到以下因素的影响:
1. 煤的成分:煤的成分是确定其灰渣熔融性的关键因素,碳含量升高,冷渣的熔融
性也会增强。

2. 温度:温度对煤灰熔融性有着巨大的影响,随着温度的升高,灰渣的熔融性也会
升高。

3. 矿物组成:煤中含有的矿物可能会影响灰渣的熔融性,其中高含量的镁铁质矿物(如辉石)会提高灰渣的熔点。

4. 物理形态:不同的形态(颗粒、粉末、块状等)的煤灰熔融性可能会不同。

常规
测试使用的灰粉末形态,对于评估煤的熔融性影响相对较小。

总之,煤灰熔融性的测定是一项十分重要的检测工作,可以为煤的燃烧和烟气排放控
制提供依据,也有利于煤电行业的发展和维护。

测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素煤灰熔融性是指煤灰在高温条件下熔化的倾向和温度范围。

测定煤灰熔融性对煤燃烧技术和环境保护具有重要意义,并且受到多种因素的影响。

本文将从煤灰熔融性的意义以及影响因素进行详细阐述。

一、测定煤灰熔融性的意义1. 了解煤灰在高温条件下的熔化温度和倾向,对煤燃烧技术具有重要意义。

燃料的燃烧过程中,煤灰在锅炉内会产生熔融现象,形成渣滓。

如果煤灰的熔融温度过高,会导致炉渣粘结在炉膛壁面,影响燃烧设备的正常运行。

煤灰的熔融温度与炉膛内温度直接相关,了解煤灰的熔融性能,有助于合理控制炉膛内温度,减少炉渣对设备的侵蚀。

2. 通过测定煤灰熔融性能,可以评估煤的燃烧特性。

不同煤种的煤灰熔融性能存在差异,通过研究不同煤种的煤灰熔融性能,可以为选择燃烧设备和优化燃烧工艺提供参考依据。

对于高熔点的煤灰,可以采用降低燃烧温度、增加炉膛出口气体的过冷度等措施来减少炉渣的产生。

3. 煤灰的成分和熔融性能与环境污染有关。

煤灰中的一些有害元素如砷、镉等在高温条件下易与熔融渣结合形成气、溶体及固相矿物,进而影响煤灰的处理方式和对环境的影响。

了解煤灰的熔融性能,可以为煤灰的资源化利用和环境保护提供科学依据。

二、影响煤灰熔融性的因素1. 煤种的性质。

不同种类的煤灰熔融性能存在差异,比如褐煤的熔融性能一般较差,石煤的熔融性能较好。

主要是由于不同的煤种在形成过程中受到地质条件、压力温度等因素的影响,导致其煤灰成分和物相的差异。

2. 煤中矿物组分的含量。

矿物组分是直接影响煤灰熔融性的因素之一。

硅酸盐矿物在煤灰中的含量越高,煤灰的熔融性能越好;反之,铁铝矿物的含量越高,煤灰的熔融性能越差。

3. 煤的燃烧温度和氧化条件。

煤的燃烧温度对煤灰的熔融性能有明显影响,一般情况下,煤的燃烧温度越高,煤灰的熔融温度越高,熔融性能越差。

氧化条件也会影响煤灰的熔融性能,充足的氧化条件有助于降低煤灰的熔融性能。

4. 煤灰中的碱性成分含量。

煤灰熔融性的因素

煤灰熔融性的因素

煤灰熔融性的因素煤的灰熔融性俗称灰熔点(由三个温度点 DT:变形温度; ST:软化温度; FT:流动温度)是液态排渣⽓化炉和锅炉操作的⼀个重要⼯艺指标,也是德⼠古⽓化炉操作的⼀个重要⼯艺参数。

德⼠古⽓化炉的操作温度⼀般⽐FT⾼50℃,因此,准确分析煤灰熔融性的影响因素,有利于德⼠古⽓化进⾏煤种选择和多煤种复配,改善靠添加助熔剂来调节灰熔点的做法,使煤种应⽤更加⼴泛。

影响煤灰熔融性的因素主要是煤灰的化学组成和煤灰受热时所处的环境介质的性质。

前者是内因,后者是外因。

由于德⼠古⽓化炉是弱还原⽓氛,即煤灰受热时所处还原性环境介质的性质是稳定的,因此本⽂将重点讨论煤灰化学组成对煤灰熔融性的影响。

1. 煤灰化学成分对灰熔点的影响煤灰的化学组成是复杂的,且不同煤种煤灰成分相差很⼤,通常以各种氧化物在煤灰中的百分含量来表⽰化学组成。

按其组成的百分含量各组分的排列顺序为:SiO2,Al2O3,(Fe2O3+FeO),CaO,MgO,Na2O+K2O,其中〔CaO+MgO+(Fe2O3+FeO)+K2O+Na2O〕⼜称为b类氧化物,即碱性氧化物。

这些物质纯净状态时,其熔点都较⾼(Na2O和K2O除外)。

在⾼温条件下,由于各种物质相互作⽤,⽣成了有较低熔点的共熔体,熔化的共熔体还有溶解灰中其它⾼熔点矿物质的性能,从⽽改变共熔体的成分,使熔化温度更低。

由于煤灰化学组成的变化,煤灰熔点的变化也极为显著。

鲁南化肥⼚德⼠古⽓化炉由于采⽤多煤种,煤灰化学成分各不相同,各煤种的灰熔点也相差很⼤,最低的FT温度点不⾜1100℃,⽽最⾼的超过1400℃,⽽德⼠古⽓化炉要求的操作温度为1200~1250℃,因此准确了解煤灰化学成分对灰熔点的影响,将有助于今后⽓化煤种的选择和⽣产的管理。

1.1 SiO2的影响SiO2在煤灰中含量最多,⼀般约为30%~70%,鲁南煤灰中SiO2含量在25%~50%之间,其对灰熔点的影响较为复杂。

⼀般认为,SiO2在煤灰中起熔剂的作⽤,SiO2和其它矿物共熔。

浅谈煤灰熔融性(煤灰熔点)(

浅谈煤灰熔融性(煤灰熔点)(

浅谈煤灰熔融性(煤灰熔点)(1.煤灰熔融性(煤的灰熔点)-- 煤灰的熔融性是指煤灰受热时由固态向液态逐渐转化的特性,煤的灰熔融性是动力用煤高温特性的重要测定项目之一。

由于煤灰不是一个纯净物,它没有严格意义的熔点,衡量其熔融过程的温度变化,通常用三个特征温度:即变形温度(DT),软化温度(ST)、流动温度(FT)。

这三个温度代表了煤灰在熔融过程中固相减少,液相渐多的三点,在工业上多用软化温度作为熔融性指标,称为灰熔点。

因此煤灰熔融性和煤灰粘度是动力用煤的重重要指标,煤灰熔融性习惯上称作煤灰熔点,但严格来讲,这是不确切的。

因为煤灰是多种矿物质组成的混合物,这种混合物并没有一个固定的溶点,而仅有一个熔化温度的范围。

开始熔化的温度远比其中任一组分纯净矿物质熔点为低。

这些组分在一定温度下还会形成一种共熔体,这种共熔体在熔化状态时,有熔解煤灰中其他高熔点物质的性能,从而改变了熔体的成及其熔化温度。

煤灰的熔融性和煤灰的利用取决于煤灰的组成。

煤灰成分十分复杂,主要有:SiO2,A12O3,Fe2,CaO,MgO,SO3等,如下表所示:我国煤灰成分的分析灰分成分含量(%)SiO2 15-60Al2O3 15-40Fe2O3 1-35CaO 1-20MgO 1-5K20+Na20 1-5煤灰成分及其含量与层聚积环境有关。

我国很多煤层的矿物质以粘土为主,煤灰成分则为SiO2,Al2O3为主,两者总和一般可达50─80%。

在滨海沼泽中形成的煤层,如华北晚石纪煤层黄铁矿含量高,煤灰中Fe2O3及SO3含量亦较高;在内陆湖盆地中形成的某些第三纪褐煤的煤灰中CaO含量较高。

大量试验资料表明,SiO2含量在45─60%时,煤质灰熔点随SiO2含量增加而降低;SiO2在其含量〈45%或〉60%时,与灰熔点的关系不够明显。

Al2O3在煤灰中始终起增高灰熔点的作用。

煤灰中Al2O3的含量超过期30%时,灰熔点1500灰成分中Fe2O3,CaO,MaO均为较易熔组分,这些组分含量越高,煤炭灰熔点就越低。

测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素煤炭作为世界上使用最为广泛的能源资源之一,其燃烧产生的灰烬是不可避免的。

煤灰中的矿物质成分和熔融性对环境和燃料的利用有着重要的影响。

对煤灰的熔融性进行测定,可以有效地评估煤炭的燃烧特性,预测灰渣对环境和设备的影响,为煤炭开发利用提供重要的技术支撑。

本文将从测定煤灰熔融性的意义和影响因素两个方面展开探讨。

一、测定煤灰熔融性的意义1. 评估煤炭的燃烧特性测定煤灰的熔融性可以反映出燃煤过程中煤灰的熔化特性和行为,这对于评估煤炭的燃烧特性具有重要意义。

煤灰在燃烧时会发生部分熔化,形成熔渣,如果煤灰的熔融性较好,熔渣生成时容易排出炉膛,有利于保护炉膛和延长设备的使用寿命;相反,如果煤灰的熔融性较差,熔渣生成时容易粘在炉膛内壁上,影响炉内的流动,增加了设备的维护成本。

测定煤灰的熔融性可以为燃煤工业提供有益的指导和依据。

2. 预测灰渣对环境的影响燃煤过程中产生的灰渣会对环境造成一定的影响,如粉尘排放、土壤污染等。

通过测定煤灰的熔融性,可以了解灰渣的物理和化学性质,从而预测其对环境的影响。

一般来说,煤灰的熔融性越高,生成的灰渣颗粒越大,密度越大,粘附力越强,对于环境的污染程度也越大。

测定煤灰熔融性对于环境保护具有一定的重要性。

3. 为煤炭利用提供技术支持测定煤灰的熔融性可以为煤炭的开发利用提供重要的技术支持。

通过研究煤灰的熔融性,可以为煤灰的资源化利用提供依据,如制备水泥、填料等材料,为煤炭的燃烧工艺提供技术指导,提高燃煤发电的效率,减少环境污染等。

二、影响煤灰熔融性的因素1. 煤质煤质是影响煤灰熔融性的重要因素之一。

不同种类、不同地区的煤炭其煤灰的熔融性也会有所差异。

一般来说,焦化煤的灰渣熔融性较好,烟煤的灰渣熔融性较差。

煤炭中的灰分含量、灰渣中的硅酸盐的含量等也会影响煤灰的熔融性。

2. 燃烧工艺燃烧工艺是影响煤灰熔融性的另一个重要因素。

不同的燃烧温度、气氛、时间等都会对煤灰的熔融性产生影响。

测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素
煤灰熔融性是指煤在燃烧过程中,煤灰在高温下形成的熔融物质的特性和行为。

测定
煤灰熔融性的意义在于评估煤灰在燃烧过程中的融化性能,从而更好地了解燃烧过程中的
灰渣生成和燃烧设备的腐蚀和堵塞情况,为煤的选择、燃烧设备的设计和改进以及污染物
排放控制等提供科学依据。

1. 煤品质:不同品种和煤炭来源的煤灰熔融性差异较大。

一般来说,焦煤灰的熔融
性较差,而烟煤灰的熔融性较好。

硫、氧、水份、挥发分以及煤样组成等因素都会影响煤
灰的熔融性能。

2. 煤灰成分:煤灰的主要成分是无机物,主要包括氧化物、硫酸盐、碳酸盐等。


同成分的含量及比例,会对煤灰的熔融性造成影响。

特别是硫酸盐的含量,会使煤灰的熔
融点降低,增加对燃烧设备的腐蚀和堵塞的风险。

3. 加热速率:煤灰的熔融性随着加热速率的不同而变化。

在相同条件下,快速加热
会使煤灰的熔融点降低,而缓慢加热则会使熔融点升高。

煤灰的熔融性与其内部的熔融定
性有关,不同的加热速率可导致不同的熔融过程。

4. 气氛条件:煤灰的熔融性与其所处的气氛条件密切相关。

不同的气氛条件下,煤
灰的熔融点、粘度等性质会发生变化。

氧气浓度高的氧气气氛中,煤灰的熔融点会降低。

煤灰熔融性的测定可以通过热重分析、半球外延法、圆盘外延法、热滴法等方法进行。

这些方法可以定量表征煤灰的熔融特性,为燃烧过程的控制提供依据。

测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素1. 引言1.1 煤灰熔融性的定义煤灰熔融性是指煤灰在高温下熔化的性质。

煤在燃烧时会产生大量的煤灰,而煤灰的熔融性则决定了煤灰在燃烧过程中的行为。

煤灰的熔融性可以通过测定煤灰的软化温度来反映,即在一定条件下,煤灰开始软化并熔化的温度。

煤灰熔融性的好坏直接影响着煤电厂的烟气净化装置的运行效果,同时也会对锅炉和除渣器等设备的正常运行产生影响。

煤灰熔融性的差异会导致燃烧系统渣堆的形成,影响燃烧效率,同时也会对环境造成一定的污染。

煤灰熔融性的研究具有重要意义,可以为煤电厂提供科学依据,优化燃烧过程,提高能源利用效率,减少环境污染。

通过深入研究煤灰熔融性,可以为煤电厂的节能减排工作提供技术支持和指导。

1.2 煤灰熔融性的重要性煤灰熔融性是指煤灰在高温条件下熔化的特性,是煤燃烧过程中重要的燃烧特性之一。

煤灰熔融性的重要性主要体现在以下几个方面:1. 影响燃烧效率:煤灰在燃烧过程中的熔融特性直接影响燃烧过程中的煤灰融合温度和煤灰在锅炉内的分布情况。

煤灰熔融性好的煤可以有效降低燃烧过程中的温度和烟气中的固体颗粒物含量,提高燃烧效率。

2. 影响烟气处理:煤灰熔融性对烟气处理设备的运行稳定性和除尘效率有重要影响。

良好的煤灰熔融性可以减少烟气中的气溶胶含量,降低烟气对环境的污染程度,延长烟气处理设备的使用寿命。

3. 影响环境污染:燃煤烟气中的颗粒物和有害物质主要来自煤灰。

煤灰熔融性差会导致煤灰在燃烧过程中难以固化,易溢出炉外,造成大气污染,影响环境质量。

煤灰熔融性的研究和分析对指导煤燃烧过程、优化燃烧工艺、减少环境污染具有重要意义。

深入了解煤灰熔融性的影响因素以及如何优化煤灰熔融性,对于促进清洁能源的发展和环保工作具有重要意义。

2. 正文2.1 影响煤灰熔融性的因素1. 煤的成分:煤的不同成分会对煤灰熔融性产生影响,特别是灰分和挥发分的含量。

灰分的增加会使煤灰的熔点降低,而挥发分的增加会促使煤灰更快地熔化。

煤灰熔融性的研究

煤灰熔融性的研究

煤灰熔融性的研究煤灰熔融性是评价工业用煤的重要指标之一, 主要用于锅炉和气化炉的设计、选型,并指导实际操作。

一般认为,煤灰的变形温度与气化炉及锅炉轻微结渣和其受热面轻微积灰的温度相对应;软化温度与气化炉及锅炉内大量结渣和大量积灰的温度相对应;而流动温度则与炉中灰渣呈液态流动或从受热面滴下和在炉栅上严重结渣的温度相对应。

在4个特征温度中,软化温度应用较广, 一般都是根据转化温度来选择合适的燃烧或气化设备, 或根据燃烧和气化设备类型来选择合适原料煤。

1 研究的意义煤灰熔融性是煤灰在高温下达到熔融状态的温度 , 习惯上称作灰熔点。

由于 煤灰是1个多组分的混合物 , 没有1个固定的熔点 , 而只有一个熔融的温度范围。

因此,它不是用1个温度点所能表示,而一般用4个温度(变形温度DT 、软化温度 ST 、半球温度HT 、流动温度FT )才能比较确切地表示。

煤灰软化温度是衡量动 力用煤的一个重要煤质特性指标 , 对煤灰软化温度已有较多的研究 , 譬如, 有些 文献探讨了煤灰成份和煤灰软化温度关系 , 并提出了一些提高或降低煤灰软化 温度的方法。

气流床煤气化技术要求液态排渣。

为了保证气化炉内渣的流动性及 顺利排渣,一般要求气化炉操作温度高于煤灰的流动温度。

影响煤灰的熔融温度 的因素很多,研究表明,它不仅与煤灰的化学组成、煤灰的矿物形态有关,还与 相平衡性质、气氛条件等因素有关。

煤灰是一种极为复杂的无机混合物, 其熔融温度与煤灰化学组成有一定的关 系。

长期以来, 国内外学者作了大量研究工作, 提出了几种根据煤灰化学组成预 测煤灰熔融温度的方法。

一般认为,煤中碱金属矿物质特别是含Ca 和Fe 等矿物质 对煤灰的熔融特性影响较大,其中CaO 、Fe 2O 3和AI 2O 3对煤灰熔点影响的研究较 多。

姚星一等主要考虑灰组成的影响,直接回归灰熔融性温度的流动温度 (FT ) 与灰分。

SiO 2、A12O 3、Fe 2O 3、CaO 、MgO 、K 2O 、Na 2O 含量的关系,结合灰 组成根据其提供的双温度坐标图解,定量算出王泉清、何孝军认为碱金属氧化物以游离形式存在能显著降低煤灰熔融温 度,但大多数煤灰中的K 20是作为伊利石的组成部分而存在的,而伊利石受热直 到熔化仍无K 20析出,故对煤灰助熔作用大大减小,这也说明元素的矿物形态对 煤灰的熔融性有重要影响,此外,他还认为煤灰中碱性氧化物含量(即b 指数)在 40%〜50%时,由于低熔点共熔体的形成,使熔融温度最低; bv 40%时,煤灰熔 融温度随着酸性氧化物含量的增加而提高;当 b > 50%时,灰熔融温度随着碱性氧化物的含量增加而提高,但对应关系较差。

测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素一、测定煤灰熔融性的意义1. 评价煤灰融化特性煤灰熔融性是指煤灰在一定条件下融化的性能。

通过测定煤灰的熔融性,可以了解煤灰在燃烧过程中的融化特性,包括煤灰的软化温度、熔化温度、流动温度等参数,这些参数反映了煤灰的熔融特性和融化行为。

了解煤灰的熔融特性,有助于评价煤炭的燃烧特性和燃烧设备的性能。

2. 指导燃烧工艺优化煤灰在燃烧过程中的熔融行为会影响燃烧设备的稳定运行。

对于煤灰熔融性的深入了解,可以指导燃烧工艺的优化设计,减少煤灰在燃烧过程中对于燃烧设备以及环境的不利影响。

3. 促进煤灰综合利用煤灰作为煤炭的副产品,煤灰中含有大量的无机物质,具有一定的资源价值。

通过研究煤灰的熔融性,可以了解煤灰在高温下的行为,促进煤灰的综合利用,包括水泥生产、建筑材料、陶瓷制品、道路铺设等领域。

二、影响煤灰熔融性的因素煤质的不同对煤灰的熔融性有很大影响。

煤质的氧、硫、灰、水分等含量不同,导致煤灰中的无机物质组成和结构不同,进而影响煤灰的熔融性。

一般来说,高灰分、高硫分的煤炭燃烧后生成的煤灰熔融性较差。

2. 燃烧条件燃烧温度、燃烧速率等燃烧条件对煤灰的熔融性有很大影响。

燃烧温度的升高会促进煤灰的熔融,燃烧速率的提高也会使煤灰的熔融性发生变化。

煤炭的燃烧方式(如固定床燃烧、流化床燃烧、煤粉燃烧等)对煤灰的熔融性也有一定影响。

3. 燃料混燃在现实工业生产中,多种燃料的混燃现象普遍存在。

燃料混燃会改变燃烧过程中的条件,进而影响煤灰的生成和熔融性。

在煤炭与生物质混燃的情况下,燃烧生成的煤灰中富含碱金属,其熔融性会发生明显变化。

4. 燃烧设备不同的燃烧设备在燃烧过程中会产生不同的炉温和燃烧条件,这些因素对煤灰熔融性也会有较大影响。

炉膛温度和氧气浓度的变化会影响煤灰的熔融特性。

5. 煤灰中无机物组成煤灰中的无机物质组成对煤灰的熔融性有着直接的影响。

煤灰中富含硅酸盐、氧化铝等物质会提高煤灰的软化温度和熔化温度,而富含碱金属的煤灰则会降低煤灰的软化温度和熔化温度。

测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素煤灰熔融性指的是煤在燃烧过程中灰分的熔化特性,是评价煤的燃烧性能和使用价值的重要参数之一。

测定煤灰熔融性的意义在于可以了解和评估煤的燃烧特性,为合理选择燃煤设备、优化燃烧工艺、改善环境效益提供科学依据。

测定煤灰熔融性主要通过进行煤灰熔融分析实验来得出结果。

通常情况下,首先将煤样进行燃烧或烧失处理,然后将燃后残渣的样品加热至一定温度,观察灰渣的流动性和形态变化,从而确定煤灰的熔融性质。

煤灰熔融性的测定结果对于合理选择燃煤设备有重要意义。

不同的燃煤设备对煤灰熔融性有不同的要求,因为煤的熔融性与燃烧时的工作温度密切相关。

对于煤灰熔点较低、熔融特性较差的煤,可以选择高温炉膛、较长的燃烧时间和高温保持,以确保煤灰在炉膛内完全燃烧。

而对于煤灰熔点较高、熔融特性较好的煤,可以选择低温炉膛、较短的燃烧时间和低温保持,以提高燃烧效率。

煤灰熔融性的测定结果还可以为燃烧工艺的优化提供参考。

当煤灰熔点较高、熔融特性较好时,可以在燃烧过程中加入适量的矿渣等物质,以降低煤灰的熔点,减少煤灰的熔融特性,进一步提高燃烧效率和环境效益。

煤灰熔融性的测定结果还可以评估煤的使用价值。

在某些特殊的工业领域,煤灰熔融性对燃料煤的选择和使用有一定的限制。

在水泥、建材、冶金等行业,煤灰的熔融性对产品的质量和性能有很大的影响。

当煤灰熔点较低、熔融特性较差时,会导致产品的渗透性和强度下降,影响产品的质量和性能。

影响煤灰熔融性的因素主要包括煤的矿物组成、煤的碳氧化学特征和煤的热解反应。

煤的矿物组成是决定煤灰熔融性的主要因素之一。

煤中的矿物质主要包括石英、长石、石灰石、黏土矿物等,不同的矿物质对煤灰的熔融特性有不同的影响。

一般来说,石质矿物质和铝质矿物质有降低煤灰熔点的作用,而镁质矿物质和其他硫化物对煤灰的熔融特性有提高作用。

煤的碳氧化学特征也对煤灰熔融性有影响。

煤的氧含量和煤中的活性氧含量越高,煤灰熔融性越好;相反,煤的含硫量和煤中的还原性气体含量越高,煤灰熔融性越差。

测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素测定煤灰的熔融性是指在一定温度下,煤灰中的无机物质在不同温度下的熔化行为和熔化特性。

测定煤灰的熔融性对煤的利用和环境保护具有重要意义,可以用于判断煤的高温燃烧特性、脱硫效果、对锅炉设备的侵蚀性以及对环境的污染程度。

测定煤灰的熔融性可以帮助评估煤的高温燃烧特性。

煤的燃点一般在600-900摄氏度之间,高温燃烧时垂直燃烧和放射燃烧是两种主要的燃烧方式。

在煤燃烧过程中,煤中的无机物质是燃烧中的重要组成部分,其熔融行为将影响燃烧的效果。

煤灰的熔融性越大,说明煤燃烧过程中产生的熔滴和熔渣越多,容易污染锅炉设备,影响锅炉的正常运行。

测定煤灰的熔融性可以评估脱硫效果。

煤灰中的无机物质中富含硫元素,煤燃烧时会形成高温区域,使熔融的煤灰与SO2等硫化物发生反应,形成低熔点的硫酸盐。

煤灰中的硫酸盐熔融点较低,容易形成液态或半液态的熔块,堵塞烟道和沉积在锅炉表面,降低脱硫效果。

通过测定煤灰的熔融性,可以评估脱硫工艺的有效性和改进方向,提高煤燃烧的环保性。

测定煤灰的熔融性还可以评估其对锅炉设备的侵蚀性。

煤灰中的无机物质在高温下熔融成液态或半液态,随着煤燃烧废气的排放,煤灰会通过烟道和烟气净化设备进入锅炉。

熔融的煤灰具有较高的黏度和腐蚀性,容易对锅炉的烟道和炉膛内表面进行侵蚀,降低锅炉设备的使用寿命。

测定煤灰的熔融性可以帮助评估锅炉设备的抗侵蚀能力,指导锅炉运行和维护。

测定煤灰的熔融性可以评估其对环境的污染程度。

煤灰中的无机物质在高温下熔融成液态或半液态,这些熔融的煤灰颗粒会随烟气排放进入大气中。

煤灰颗粒的大小、形状和化学成分将影响它们在大气中的行为和沉降速度,进而影响其对环境的污染程度。

测定煤灰的熔融性可以帮助评估煤灰颗粒的物理属性和化学活性,为煤电厂的大气污染防治提供科学依据。

影响煤灰熔融性的因素很多,包括煤的类型、灰分含量、燃烧温度和煤灰中无机物质的化学组成等。

不同型号的煤燃烧时生成的煤灰熔点和熔化行为差异较大,硬煤的煤灰熔融性较低,易于形成熔渣,而褐煤的煤灰熔融性较高。

测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素

测定煤灰熔融性的意义及影响因素煤灰熔融性是指煤中的无机成分在高温下的熔化和凝固性能。

测定煤灰熔融性的意义及影响因素对于煤燃烧工程以及环境保护具有重要意义。

测定煤灰熔融性的意义在于确定煤的燃烧特性。

煤灰熔融性直接影响煤的燃烧过程和效率。

高熔融性的煤灰会在燃烧过程中形成熔渣,附着在炉壁和热交换器上,阻碍热传导和热交换,导致能量损失和炉内温度升高。

相反,低熔融性的煤灰不易形成熔渣,有利于燃烧过程的进行和热能利用。

测定煤灰熔融性可以为煤燃烧工程提供指导,选择燃烧炉型和煤种的时候,需要考虑煤灰的熔融性,以避免煤灰引发的燃烧问题和能量损失。

测定煤灰熔融性的意义在于评估煤的环境影响。

煤燃烧产生的烟气中存在大量的煤灰颗粒,其中含有大量的重金属元素和有机污染物,对环境和人体健康产生潜在风险。

煤灰的熔融性直接影响烟气中粒子的形态和分布。

高熔融性的煤灰会在燃烧过程中形成颗粒物和烟气中的溶解态重金属离子,易于形成细颗粒物和重金属的富集。

这些细颗粒物和重金属离子可以通过大气传输,对空气质量和生态系统造成污染。

而低熔融性的煤灰则不易形成细颗粒物和重金属离子,对环境污染的影响较小。

测定煤灰熔融性可以为环境保护提供参考,选择低熔融性的煤种和采用合适的燃烧技术,以减少煤燃烧产生的大气污染物,提高空气质量。

影响煤灰熔融性的因素有多个。

首先是煤的组成和矿物组成。

煤是一个复杂的混合物,不同煤的燃烧特性和熔融性不同。

在煤中,硫、氧、氢、氮等元素的含量和比例对煤的燃烧特性和熔融性有影响。

煤中矿物的种类和含量也会影响煤的熔融性。

含有高熔融温度的矿物会增加煤的熔化温度和熔化量。

其次是煤的灰熔融温度。

煤的灰熔融温度取决于煤中无机成分的含量和类型。

煤中的灰分含量越高,灰熔融温度越低。

灰熔融温度高的煤灰在燃烧过程中容易形成熔渣,对燃烧设备造成不利影响。

不同煤种的灰熔融温度也不同,如炼焦煤和褐煤的灰熔融温度相对较低。

最后是煤的燃烧条件。

煤的燃烧条件直接影响煤灰熔融性。

课件(煤灰熔融性的测定)

课件(煤灰熔融性的测定)

第一部分 基础知识
一、煤灰熔融性的定义 煤灰熔融性就是在规定条件下得到的随加热温度而
变 的煤灰 (试样) 变形、软化、半球和流动特征物理状态。
煤灰熔融性取决于煤灰的化学组成。 二、测定煤灰熔融性的意义
煤灰熔融性是动力用煤和气化用煤的一个重要的质 量 指标。煤灰的熔融温度可反映煤中矿物质在锅炉中的动 态,根据它可以预计锅炉中的结渣和沾污作用。因此煤灰 熔融性是指导锅炉设计和运行的一个重要参数。
900℃, (51)℃/min 4.观察锥形,记录特征温度 5.至所有样品达到流动温度,或达到1500℃时,停 止试验。
第二部分 实验 四、气氛及其控制方法 1.气氛的分类 弱还原性气氛 实验气氛 氧化性气氛
通气法 封碳法
(50±10)% H2 (50±1)% CO2 (60±5)% CO (40±5)% CO2
2.氧化镁:工业品,研细至粒度小于0.1mm。 3.碳物质:灰分低于15﹪,粒度小于1mm的无烟煤、石墨或
其他碳物质。 4.煤灰熔融性标准物质:可用来检查试验气氛性质的煤灰熔融
性标准物质。 5.气体:二氧化碳、氢气或一氧化碳。 6.刚玉舟:耐温1500℃以上,能盛足够量的碳物质。 7.灰锥托板:在1500℃下不变形,不与灰锥发生反应,不吸
第一部分 基础知识
三、测定方法 将煤灰制成一定尺寸的三角锥,在一定的气体介质
(弱还原性或氧化性)中,以一定的升温速度加热,观 察灰锥在受热过程中的形态变化,记录其四个特征熔融 温度——变形温度DT、软化温度ST、半球温度HT和流 动温度FT。
第一部分 基础知识
1、特征熔融温度的判别
变形温度(DT)——灰锥尖端或棱开始变圆或弯 曲
1
低软化温度灰 LST
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

煤灰熔融性那些事儿煤灰熔融性的测定过程不正经的讲,就是烧灰→和泥做锥→放炉子里烧。

因此,想要做好煤灰熔融性,首先您得烧得一手好灰,活得一手好泥,然后嘛,交给炉子烧去呗!正经的讲呢,煤灰熔融性就是在规定条件下得到的随加热温度而变的煤灰变形、软化、半球和流动特征的物理状态。

煤灰是一种由硅、铝、铁、钙和镁等多种元素的氧化物及它们之间的化合物构成的复杂混合物,它没有固定的熔点,当其加热到一定温度时就开始局部熔化,然后随着温度升高,熔化部分增加,到某一温度时全部熔化。

这种逐渐熔化作用,使煤灰试样产生变形、软化、半球和流动等特征物理状态。

人们就以这四种状态相应的温度来表征煤灰的熔融性。

测定煤灰熔融性有啥用呢?煤灰熔融性是动力用煤高温特性的重要测定项目之一,是动力用煤的一个重要的质量指标。

反应煤中矿物质在锅炉中的动态,根据它可以预测锅炉中的结渣和沾污作用。

煤灰熔融性是指导锅炉设计和运行的一个重要参数。

可为不同锅炉燃烧方式选择燃煤。

不同锅炉的燃烧方式和排渣方式对煤灰的熔融性温度有不同的要求。

固态排渣煤粉锅炉要求灰熔融性温度高些,以防炉膛结渣;液态排渣锅炉则要求煤灰熔融性温度越低越好,其FT的最高值也不宜超过1250度,以免排渣困难。

好吧,我懂了,接下来。

首先,测定煤灰熔融性需要准备以下试剂和材料:①糊精,化学纯,配成100g/L溶液。

②高碳物质,灰分低于15%,粒度小于Imm的石墨、无烟煤或其他高碳物质。

③标准灰,在例常测定中以它作为参比物来检定试验气氛性质,标准灰可外购。

④刚玉舟,耐热1500℃以上,能盛足够量的高碳物质。

⑤灰锥托板,在1500℃下不变形,不与灰锥作用,不吸收灰样。

灰锥托板可购置。

或按国家标准(GB/T 219)规定的方法制作灰锥托板。

当然,你还得准备要测定的煤和炉子,不然你玩啥呢?东西准备好了,请开始你的表演。

煤灰熔融性温度测定的气氛一般有两种:弱还原性气氛、氧化性气氛。

常用的气氛是弱还原性气氛。

弱还原性气氛的控制方法一般有两种:封碳法:将一定量的木碳、石墨、无烟煤等含碳物质封入炉中,这些物质在高温炉中燃烧时,产生还原气体(CO、H2、CH4),形成弱还原性气氛。

通气法:60%±5%的CO;40%±5%的CO250%±10%的H2和50%±10%的CO2对于氧化性气氛的控制,是煤灰熔融性温度测定炉内不放置任何含碳物质,并使空气在炉内自由的流通,接下来就要烧灰→和泥做锥了1、灰的制备:将粒度小于0.2mm的空干煤样按照GB/T212规定完全灰化,用玛瑙研钵研细至0.1mm一下。

2、灰锥的制作:取1~2g煤灰样放在瓷板或玻璃板上,用数滴糊精水溶液湿润并调成可塑状,然后用小尖刀铲入不锈钢灰锥模中挤压成高为20mm,底边长7mm的正三角形锥体,锥体的一个棱面垂直于底面。

用小尖刀将模内灰锥小心地推至瓷板或玻璃板上,空干或于60℃下干燥备用。

灰锥做好后,该灼烧了啊3、在弱还原性气氛中测定用10%糊精水溶液将少量氧化镁调成糊状,用它将灰锥固定在灰锥托板的三角坑内,并使灰锥的垂直棱面垂直于托板表面。

将带灰锥的托板置于刚玉舟的凹槽内,如用封碳法来产生弱还原性气氛,预先在舟内放置足够量的碳物质。

打开高温炉炉盖,将刚玉舟慢慢推入炉内,使灰锥位于高温带并紧邻热电偶热端(相距2mm左右)。

关上炉盖,开始加热并控制升温速度为:900℃以下时,(15~20℃/min),900℃以上时(5±1℃/min)。

如用通气法产生弱还原性气氛,当炉内温度为600℃时开始通入混合气体,通气速度以能避免空气渗入为准。

(如果使用了氢气,要特别注意防止发生爆炸,应在通入氢气前和停止氢气供入后用CO2吹扫炉内)在升温过程中,随时观察灰锥的形态变化(高温下观察时,需戴上墨镜。

不过,现在的煤灰熔融性测定仪都自带摄像头,可边升温,边录像拍照,试验人员翻看视频回放即可),记录灰锥的四个熔融特征温度:变形温度DT,软化温度ST,半球温度HT,流动温度FT。

待全部灰锥都达到流动温度或炉温升至1500℃时,结束试验。

待炉子冷却后,取出刚玉舟,拿下托板,仔细检查其表面,如发现试样与托板作用,则需另换一种托板重新试验。

4、在氧化性气氛下测定刚玉舟内不放任何含碳物质,并使空气在炉内自由流通,其他步骤同还原性气氛下测定。

上面提到了不同的试验气氛,但是怎么才能知道试验气氛是怎么样的呢?不是这个气愤弱还原性气氛的检查a、标准物质测定法:使用标准物质进行测定,如实际测定值与若还原气氛下的标准值相差不超过40℃,则证明炉内气氛为弱还原性;如果超过40℃,则根据测定值与强还原性或氧化性气氛下的参比值得接近程度以及刚玉舟中碳物质的氧化情况来判断炉内气氛,并加以调整。

b、取气分析法:用一根气密刚玉管从炉子高温带以一定的速度(以不改变炉内气体组成为准)取出气体并进行成分分析。

如在1000-1300℃范围内,还原性气体(CO、H2、CH4)的体积分数为10-70%,同时1100℃以下还原性气体总体积和CO2的体积比不大于1:1、氧含量低于0.5%,则为弱还原气氛。

敲黑板,划重点!!!特征温度的判定要点1、变形温度(DT)DT为灰锥尖端变圆或弯曲时的温度,在判定DT时应注意以下几点:a、对某些高熔融温度的灰(ST>1400℃),在受热过程中由于灰中某些成分的分解等反应而出现锥尖微弯或在较低温度下微弯,然后又变直,再变弯的现象,此时不应判为DT。

对高熔融温度灰而言,应主要以尖或棱变圆为判断依据。

b、锥体倾斜但尖未变圆或未明显弯曲,不应判为DT2、软化温度(ST)软化温度ST为灰锥变形至下列情况时的温度:锥体弯曲至锥尖触及托板,灰锥变成球形(高度等于底长)时的温度。

在判定ST时应注意以下几点:a、在高温等于底长的情况下,应注意样块是否成球形。

若此时样块的棱角分明,则不应将此时的温度记为ST。

b、有时由于锥体向后倾斜而倒在托板上,使得从前面看到的是一个等边三角形,此时虽然高度等于底长,但不算做ST。

遇到此类情况应重新测定此样品。

3、半球温度(HT)HT为灰锥变形至近似半球(高度约等于底长的一半)时的温度。

在测定HT时应注意以下两点:a、在高度等于底长的一半的情况下,应注意样块是否成半球形。

若此时样块的棱角分明,则不应将此时的温度记为HT。

b、当在此前灰锥倾斜而倒在托板上,则此时即使样块的高度等于底长的一半,也不应将此时的温度记为HT。

4、流动温度(FT)FT为灰锥融化成液体或展开成高度在 1.5mm以下的薄层时的温度。

测定时应注意以下几点:a、测定FT时,应以试样在托板上“展开”为主要依据。

有的煤灰在高温下会明显缩小到接近消失,但不是“展开”成高度小于1.5mm状态,此种情况不应记为FT。

b、当看到试样上表面处有一道亮线时,试样熔化成液体应判为FT。

c、在HT之后,试样展开成厚度大于1.5mm的层,但表面有明显的起伏或冒泡现象,以及试样“骤然”跃落或消失,此时试样已熔化成液体,此时应判定为FT。

那么,怎么才能将试验测定的更准确呢?5、测定结果的影响因素就一定化学组成的煤灰而言,影响其熔融性测定结果的主要因素是:试验的气氛加热速度温度测量试样尺寸托板材料观察者的主观因素5.1、试验的气氛这是因为煤灰中含有的铁在不同的气氛中将以不同的价态出现。

在氧化铁介质中它转变成Fe2O3,在弱还原性介质中,它将变成二价铁(FeO)。

在强还原介质中,将转变成金属铁(Fe),三者的熔点以FeO最低(1420℃),Fe2O3最高(1560℃),Fe 居中(1535℃),且FeO能与煤灰中SiO2生成熔点更低的硅酸盐,及其低熔混合物,所以煤在弱还原性气氛中,熔融温度最低。

煤灰中含铁量越高,气氛的影响越大,当灰中Fe2O3含量达到15%以上时,氧化性气氛下的软化温度(ST)和流动温度(FT)可能将比弱还原性气氛下的ST和FT高100~300℃。

5.2加热速度煤灰熔融过程是一个灰试样从局部熔化到全部熔化过程,而且由炉热传到灰样,以及灰样达到温度均匀都需要一定的时间。

因此,煤灰熔融性测定时升温速度不能太快,否则测定结果会偏高,但也不能太慢,否则试验周期会过长。

5.3温度测量准确度由于煤灰熔融性是用温度来表示的,因此温度测量的准确与否是灰熔点测定准确度的决定因素之一,这就必须要求实验室定期检验高温计,保证其准确度达到要求。

可使用金丝(熔点1063℃)、钯丝(1552℃)、镍丝(1452℃)来检查高温计的准确度。

5.4、试样尺寸由于传热的原因,一般尺寸小的试样,温度易达到平衡,所以其测定值一般比大尺寸的低。

为避免由此产生的测定误差,各国标准方法都对试样尺寸做了严格的规定。

5.5、托盘材料煤灰成分可分为碱性组分(Fe2O3、CaO、MgO、Na2O、K2O)和酸性组分(SiO2、Al2O3、TiO2)两类,碱性组分和酸性组分之比大于1称为碱性灰,二者之比小于1的称为酸性灰。

在煤灰熔融性测定中,煤灰会和酸碱性相反的托板作用,而造成测定误差。

因此试验中应根据煤灰成分来选择不同的托板,碱性灰应选择氧化镁制托板,酸性灰应选择氧化铝制托板。

5.6、观察者主观因素的影响目前,煤灰熔融性温度大都是目视判断,而煤灰的四个特征熔融温度主要是根据试样形态的变化来判断,尺寸变化,只是一个参考因素。

因此,人为观测有一定的误差,特别是变形温度DT,难熔灰的DT,尤其慎重。

另外,由于煤是一个混合物,不同的灰组分不同,因此受热时灰试样的形态变化也各种各样,往往还产生一些特殊形态变化,如起泡、膨胀等。

这给熔融温度的判别又增加了困难,所以在试验中尽可能缩短人为误差。

上面说了这么多,也许有人会问,同志,您是做什么的?我啊,说出来有点吓人!其实,我是。

相关文档
最新文档