反射式光纤位移传感器实验

合集下载

光纤位移传感器实验报告

光纤位移传感器实验报告

光纤位移传感器实验报告
实验报告
光纤位移传感器实验报告
一、实验目的
本次实验旨在掌握光纤位移传感器的原理和应用,通过实验了解其测量精度和稳定性。

二、实验原理
光纤位移传感器是一种基于菲涅尔衍射原理的传感器。

其基本原理是将激光光源照射到一根光纤上,光纤的端面形成一定的折射角,使得光束沿着光纤内部进行传输,当光纤存在位移时,光束经过光纤端面的折射角发生变化,从而产生了光程差。

通过检测光程差的变化,可以测量出位移的大小。

三、实验步骤
1.按照实验要求搭建实验装置,其中包括激光光源、光路系统、待测物体、光功率检测器等。

2.调节激光光源的位置和光路系统的组成,使得激光能够正常
发出。

3.将光纤位移传感器连接到待测物体上,确保其位置不变。

4.调整光纤位移传感器上的折射角,使得检测光束经过光纤后
能够与基准光束相互衍射。

5.通过光功率检测器检测检测光束的功率变化,计算出待测物
体的位移。

四、实验结果与分析
经过实验发现,光纤位移传感器在测量位移时具有较高的精度
和稳定性。

我们通过调整折射角和光纤的长度,可以进一步提高
其测量精度和稳定性。

在实验中我们还发现,光纤位移传感器对外界环境的干扰较小,可以在恶劣的环境下正常工作。

五、实验结论
通过本次实验,我们成功地掌握了光纤位移传感器的原理和应用,实验结果表明,光纤位移传感器具有较高的测量精度和稳定性,在工业生产和科学研究中具有广泛的应用前景。

实验五反射式光纤位移传感器实验

实验五反射式光纤位移传感器实验

实验五 反射式光纤位移传感器一、实验目的了解反射式光纤位移传感器的结构,学习和掌握最简单、最基本的光纤位移传感器的原理和应用。

二、基本原理反射强度调制式光纤传感器具有准确、结构简单、价格低廉等优点,广泛应用于各种位移、压力和温度传感器中。

反射式光纤位移传感器的基本结构如图5-1所示,其中发射光纤通常由一根光纤构成,接收光纤有时候由单根光纤构成,而有些时候为了提高光的接收效率也经常由多根光纤构成。

本实验采用的传光型光纤,它是由两根光纤的一端熔合后组成的Y 型光纤,一根作为发射光纤,端部与光源相接发射光束;另一根作为接收光纤,端部与光电转换器相接接收反射光。

两根光纤熔合后的端部是工作端也称传感探头,截面为半圆分布即D 型结构。

由光源发出的光传到端部出射后再经被测体反射回来,由另一束光纤接收光信号经光电转换器转换成电压信号。

图5-1 反射式光纤位移传感器示意图传光型光纤反射式位移传感器的发射调制方法,可用等效分析法来分析。

首先,画出接收光纤关于反射体的镜像,然后计算出该镜像接收光纤在发射光纤纤端光场中所接收到的光强值,最后将该光强值乘以反射体的反射率R ,作为传感器的最后输出光强。

如图5-2中的a 图所示。

接收光纤的镜像坐标即它的等效坐标位置为F (2z ,d ),这里z 为发射接收光纤的端面与反射体之间的距离,d 为发射光纤轴心到接收光纤轴心之间的距离,由此可以获得接收光纤接收到的光强为:]])/(1[exp[])/(1[)(22/30202222/3020c c tg a z a d tg a z RI z I θζσθζσ+-⋅+= 其中,0I 为光源的光强,σ为表征光纤折射率分布的相关参数,对于阶跃折射率光纤,它的值为1,0a 为光纤的纤芯半径,ζ为光源种类及光源与光纤耦合情况有关的调制参数,c θ为发射光纤的最大出射角。

此函数的曲线形状如图5-2中的b 图所示。

LED PINcouplerreflector图5-2 反射式强度调制光纤传感原理三 、实验仪器光纤传感实验仪主机,Y 型光纤传感器,三维调节架。

反射式光纤位移传感器测距原理实验

反射式光纤位移传感器测距原理实验

反射式光纤位移传感器测距原理实验一.实验目的1.了解光纤传输的基本原理2.了解反射式光纤传感器的一般原理结构、性能3.利用反射式光纤位移传感器测量出光强随位移变化的函数关系。

二.实验原理1.光导纤维与光纤传感器的一般原理图1光纤的基本结构光导纤维是利用光的完全内反射原理传输光波的一种介质。

如图1所示,它是由高折射率的纤芯和包层所组成。

包层的折射率小于纤芯的折射率,直径大致为0.1mm~0.2mm。

当光线通过端面透入纤芯,在到达与包层的交界面时,由于光线的完全内反射,光线反射回纤芯层。

这样经过不断的反射,光线就能沿着纤芯向前传播。

由于外界因素(如温度、压力、电场、磁场、振动等)对光纤的作用,引起光波特性参量(如振幅、相位、偏振态等)发生变化。

因此人们只要测出这些参量随外界因素的变化关系,就可以通过光特性参量的变化来检测外界因素的变化,这就是光纤传感器的基本工作原理。

2.反射式位移传感器的结构原理反射式光纤位移传感器是一种传输型光纤传感器。

其原理如图2所示:光纤采用Y型结构,两束多模光纤,一端合并组成光纤探头,另一端分为两支,分别作为光源光纤和接收光纤。

光从光源耦合到光源光纤,通过光纤传输,射向反射片,再被反射到接收光纤,最后由光电转换器接收,转换器接受到的光源与反射体表面性质、反射体到光纤探头距离有关。

当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。

显然,当光纤探头紧贴反射片时,接收器接收到的光强为零。

随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。

图3所示就是反射式光纤位移传感器的输出特性曲线,利用这条特性曲线可以通过对光强的检测得到位移量。

反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。

图2反射式位移传感器原理图3反射式光纤位移传感器的输出特性实验仪器:SET-QX型光纤位移传感器实验箱。

光纤位移传感器实验

光纤位移传感器实验

光纤位移传感器实验一、实验目的1、了解光纤位移传感器工作原理及其特性;2、了解并掌握光纤位移传感器测量位移的方法。

二、实验内容1、光纤位移传感器输出信号处理实验;2、光纤位移传感器输出信号误差补偿实验;3、光纤位移传感器测距原理实验;4、利用光纤位移传感器测量出光强随位移变化的函数关系;5、实验误差测量。

三、实验仪器1、光线位移传感器实验仪1台2、反射式光纤1根3、对射式光纤2根4、连接导线若干5、电源线1根四、实验原理本实验仪通过光纤位移传感器位移测量实验,熟悉光纤结构特点及光纤数值孔径的定义,掌握光纤位移的测量原理,熟悉光路调整方法。

本实验仪可以完成反射式和对射式光纤位移传感器实验,重点研究光纤位移传感器的工作原理及其应用电路设计。

通常按光纤在传感器中所起的作用不同,将光纤传感器分成功能型(或称为传感型)和非功能型(传光型、结构型)两大类。

功能型光纤传感器使用单模光纤,它在传感器中不仅起传导光的作用,而且又是传感器的敏感元件。

但这类传感器大制造上技术难度较大,结构比较复杂,且调试困难。

非功能型光纤传感器中,光纤本身只起传光作用,并不是传感器的敏感元件。

它是利用在光纤端面或在两根光纤中间放置光学材料、机械式或光学式的敏感元件感受被测物理量的变化,使透射光或反射光强度随之发生变化。

所以这种传感器也叫传输回路型光纤传感器。

它的工作原理是:光纤把测量对象辐射的光信号或测量对象反射、散射的光信号直接传导到光电元件上,实现对被测物理量的检测。

为了得到较大的受光量和传输光的功率,这种传感器所使用的光纤主要是孔径大的阶跃型多模光纤。

该光纤传感器的特点是结构简单、可靠,技术上容易实现,便于推广应用,但灵敏度较低,测量精度也不高光纤位移传感器实位移测量器件,利用光纤传输光信号的功能,根据检测到的反射光的强度来测量被测反射表面的距离。

光纤位移传感器属于非功能型光纤传感器。

相关参数:1、光源:高亮度白光LED,直径5mm2、探测器:高灵敏度光敏三极管3、反射式光纤位移传感器光纤芯直径:Φ1+ΦO.265×16长度:50mm检出距离:50mm最小检出距离:0.01mm4、对射式光纤位移传感器光纤芯直径:Φ1长度:50mm检出距离:50mm最小检出距离:0.0lmm5、二维调节支架13mm移动距离,分辨率0.01mm5、电压表(实验箱集成)200mV、2V、20V三档可调光纤位移传感器位移测量原理1.如图是反射式线性位移测量装置光从光源耦合到输入光纤射向被测物体,再被反射回另一光纤,由探测器接收。

光纤传感器的位移测量与及数值误差分析实验

光纤传感器的位移测量与及数值误差分析实验

光纤传感器的位移测量与及数值误差分析实验目录一、实验概述 (2)1.1 实验目的 (2)1.2 实验原理 (3)1.3 实验设备与材料 (4)1.4 实验步骤概述 (4)二、实验环境搭建 (6)2.1 环境要求 (7)2.2 设备安装与调试 (8)2.3 安全操作规范 (9)三、光纤传感器标定实验 (10)3.1 标定装置介绍 (11)3.2 标定方法与步骤 (12)3.3 数据采集与处理 (13)3.4 标定结果分析 (14)四、光纤传感器位移测量实验 (16)4.1 位移测量原理 (17)4.2 试验装置搭建 (18)4.3 数据采集与处理 (19)4.4 位移测量结果分析 (20)五、数值误差分析与处理 (21)5.1 数值误差来源分析 (23)5.2 误差测量方法 (24)5.3 误差处理策略 (25)5.4 误差分析结果展示 (26)六、实验结论与展望 (27)6.1 实验结论总结 (27)6.2 实验不足之处分析 (28)6.3 未来研究方向展望 (30)一、实验概述光纤传感器技术在现代测量领域扮演着重要角色,它利用光的全内反射原理和光时域反射技术实现对位移、应变、温度等物理量的非接触式监测。

本次实验将通过构建一套基于光纤传感器的位移测量系统,并对其进行数值误差分析,以验证其测量精度和可靠性。

实验的主要目的是通过实际操作来深入理解光纤传感器的工作原理,掌握其位移测量方法,并学会如何评估和分析实验过程中可能出现的数值误差。

通过对比理论计算与实验结果的差异,我们可以更好地理解光纤传感器在实际应用中的表现,以及可能影响其测量准确性的因素。

在实验中,我们将首先介绍光纤传感器的基本原理和位移测量方法。

然后,通过搭建实验装置,进行系统的位移测量实验。

我们将对实验数据进行分析,讨论可能的误差来源,并提出改进措施。

整个实验过程旨在培养学生的动手能力和科学思维能力,同时为今后的研究和应用提供实践经验和理论基础。

光纤传感实验报告

光纤传感实验报告

实验一 LD光源的P-I特性曲线
本实验将所测电流数据作为横坐标,功率作为纵坐标,利用MATLAB编程,得到下图所示的P-I曲线:
实验结果分析:
通过比较在不同步长下的P-I特性曲线,我们发现,步长越小,曲线越趋于直线,即相对精度越高。

同理,步长越大,曲线失真度越严重。

实验二透射式横(纵)向光纤位移传感本实验采用发射光纤不动,接收光纤移动的办法,实现光纤被横向位移和纵向位移调制。

当z固定时,得到的是横向位移传感特性参数,当r取定(r=0),则得到纵向位移传感特性函数。

下图是光纤芯径-相对光强图和强度调制图:
上图(1),纵坐标为相对光强,横坐标为r/D. D为光纤直径,其值为D=0.5nm
上图(2),纵坐标为相对光强,横坐标为z.
实验三反射式光纤位移传感
本实验是利用光纤传感实验系统构成的反射式光纤位移传感器,对微小位移量进行测量。

下图是反射式调制特性曲线图:
实验结果分析:
本实验由发射光纤发出的光照射到反射材料上,通过检测反射光的强度变化,就能测出反射体的位移。

实验五 光纤传感器位移测量

实验五 光纤传感器位移测量

实验五光纤传感器位移测量一、目的1 .熟悉反射式强度外调制光纤位移传感器的工作原理。

2 .掌握光纤位移传感器测量位移的方法。

二、实验设备光纤(光电转换器〉、光纤光电传感器实验模块、电压表、示波器、螺旋微仪、反射镜片三、实验原理1 .光纤导光的基本原理。

光是一种电磁波,一般采用波动理论来分析导光的基本原理。

然而根据光学理论:当所研究对象的几何尺寸(指光纤的芯径)远大于所用光波的波长,而光波又处在折射率变化缓慢的空间时可用“光线”即几何光学这一直观又容易理解的方法来分析光波的传播现象。

根据折射定律:光由光密媒质n0 射向光疏媒质n1时,折射角大于入射角,当入射角增至某一临界角ϕc时,出射光线沿两媒质的分界面传播,当入射角继续增大,ϕ0 >ϕc时,入射光线将不能穿过分界面而被完全反射回光密媒质中,这就是全反射。

光纤是由折射率较高(光密介质)的纤芯和折射率较低(光疏介质)的包层构成的双层同心圆柱结构。

能在光纤中传输的光线是满足全反射条件的子午光线(过光纤的轴心线,传播路径始终在一个平面内。

)和斜光线(不经过光纤轴心,不在一个平面内,它是一空间曲线)这两种光线称为受导光线。

在此只简要说明子午光线入射光纤的情况。

当光线与光纤光轴成θ角入射时,在纤芯内部将以ϕ0入射到纤芯的侧壁。

由于ϕ0>ϕc和n0> n1 ,则光在侧壁上产生连续向前的全反射,光在纤芯内成“之”字形传导,直至由终端射出。

如果入射角θ过大致使ϕ0角不能满足全反射的临界要求,即ϕ0< ϕc,光线会穿过纤芯的侧壁而逸出,产生漏光。

因此,最大入射角θ不能超过下式所要求的值式中,n为光纤所在环境的折射率(若为空气,则n=1),n sin 定义为数值孔径,记作NA,它是衡量光纤集光性能的主要参数。

它表示,无论光源发射功率多大,只有2θ张角内的光才能被光纤接收、传播(全反射),NA愈大,光纤的集光能力愈强。

2.光纤中光波的调制和相关的反射机制。

光纤位移传感器性能测试试验目的1了解光纤位移传感器的原理

光纤位移传感器性能测试试验目的1了解光纤位移传感器的原理

光纤位移传感器性能测试一、实验目的:1、了解光纤位移传感器的原理结构、性能。

2、了解光纤位移传感器的动态应用。

3、了解光纤位移传感器的测速应用。

二、实验内容:1、光纤传感器的静态实验;2、光纤位移传感器的动态应用实验;3、光纤位移传感器的测速应用实验;(一)光纤传感器的静态实验实验单元及附件:主副电源、差动放大器、F/V表、光纤传感器、振动台。

实验原理:反射式光纤位移传感器的工作原理如下图所示,光纤采用Y型结构,两束多膜光纤一端合并组成光纤探头,另一端分为两束,分别作为光源光纤和接收光纤,光纤只起传输信号的作用,当光发射器发出的红外光,经光源光纤照射至反射面,被反射的光经接收光纤至光电转换器将接受到的光纤转换为电信号。

其输出的光强决定于反射体距光纤探头的距离,通过对光强的检测而得到的位移量如下图8-1所示图8-1实验步骤:(1)观察光纤位移传感器结构,它由两束光纤混合后,组成Y形光纤,探头固定在Z 型安装架上,外表为螺丝的端面为半圆分布的光纤探头。

(2)了解振动台在实验仪上的位置(实验仪台面上右边的圆盘,在振动台上贴有反射纸作为光的反射面。

)(3)如图8-2接线:因光/电转换器内部已安装好,所以可将电信号直接经差动放大器放大。

F/V显示表的切换开关置2V档,开启主、副电源。

(4)旋转测微头,使光纤探头与振动台面接触,调节差动放大器增益最大,调节差动放大器零位旋钮使电压表读数尽量为零,旋转测微头使贴有反射纸的被测体慢慢离开探头,观察电压读数由小-大-小的变化。

(5)旋转测微头使F/V电压表指示重新回零;旋转测微头,每隔0.05mm读出电压表的读数,并将其填入下表:△X(mm) 0.05 0.10 0.15 0.20 10.00指示(V)图8-2(二)光纤传感器的动态应用实验实验单元及附件:主、副电源、差动放大器、光纤位移传感器、低通滤波器、振动台、低频振荡器、激振线圈、示波器。

实验步骤:(1)了解激振线圈在实验仪上所在位置及激振线圈的符号。

光纤端面光场分布测量与反射式光纤位移传感实验

光纤端面光场分布测量与反射式光纤位移传感实验

实验一光纤纤端光场分布的测试随着光纤通信技术的发展,派生出了光纤传感技术,并且取得了快速的发展,光纤传感器已经在民用工程、航空航天和国防等领域得到了广泛的应用。

就外部调制型光纤传感器而言,如反射接收型、直接入射型和光闸型等,一般由入射光源光纤、调制器件以及接收光纤组成。

其中接收光纤所收集到的光强随外界物理扰动而变化,其光强响应特性曲线是这类传感器的设计依据,大多与光纤出射的光场相关。

因此,光纤出射光场的场强分布对于这类传感器的分析和设计至关重要,光纤纤端光场的分布是反射式光纤传感实验的基础。

通过纤端光场分布的测量可以给使用者以直观的印象,并且对光纤传光特性有一定的定性和定量的掌握;同时,它的测量涉及到光纤传感器的设计、使用方法等基本问题,具有重要意义。

一、预习重点(1) 光纤无源器件的结构组成与操作;(2) 光纤的传光特性、光纤传输的模式理论。

二、光纤纤端光场径向分布和轴向分布的测试(一) 实验目的1. 了解“光纤传感实验仪”的基本构造和原理,熟悉其各个部件、学习和掌握其正确使用方法;2. 定性了解光纤纤端光场的分布,掌握其测量方法、步骤及计算方法;3. 测量一种光纤的纤端光场分布,绘出纤端光场分布图。

(二) 实验仪器图1 光纤传感实验仪示意图光纤传感实验仪主机(如图1所示)、接收光纤(如图2所示)、发射光纤(如图3所示)、准三维调节架(如图4所示)。

LED -光源输出插座;PIN -光探测器输入插座;AUTO -自动步进键;PRO -编程控制键;UP 、DOWN -配合PRO 设定输出电流上下限;SET -设置键;UL 、DL 、mA 、mV 、μW -仪器显示状态指示灯。

图2 反射接收光纤组件图3 发射接收光纤组件图4 二维调整架(三) 实验原理按照光纤传输的模式理论,在光纤中光功率按模式分布。

叠加后的光纤纤端光场场强沿径向分布可近似由高斯型函数描写,称其为准高斯分布。

另外沿光纤传输的光可以近似看作平面波,此平面波在纤端出射时,可等价为平面波场垂直入射到步透明屏的圆孔表明上,形成圆孔衍射,实际情况接近于两者的某种混合。

光纤位移传感器实验报告

光纤位移传感器实验报告

一、实验目的1. 理解光纤位移传感器的工作原理和结构。

2. 掌握光纤位移传感器的测量方法及其在位移检测中的应用。

3. 验证光纤位移传感器的准确性和可靠性。

二、实验原理光纤位移传感器是利用光纤的传输特性,通过测量光纤内传输光的变化来检测位移的一种传感器。

反射式光纤位移传感器是其中一种常见类型,其工作原理如下:1. 光源发射的光经光纤探头照射到被测物体表面。

2. 被测物体反射的光经接收光纤传输至光电转换元件。

3. 光电转换元件将光信号转换为电信号输出。

4. 根据电信号的强弱变化,计算被测物体的位移。

三、实验仪器与设备1. 光纤位移传感器2. 激光光源3. 光功率检测器4. 测微头5. 反射面6. 差动放大器7. 电压放大器8. 数显电压表9. 实验台四、实验步骤1. 搭建实验装置:将激光光源、光路系统、待测物体、光功率检测器等连接好。

2. 调节激光光源的位置和光路系统,使激光能够正常发出。

3. 将光纤位移传感器连接到光功率检测器,并调整其位置,使其与待测物体表面保持一定距离。

4. 旋转测微头,使光纤探头与待测物体表面接触,记录初始位移值。

5. 逐渐增加待测物体的位移,记录每个位移值对应的输出光功率。

6. 分析实验数据,绘制位移-光功率曲线,计算位移与光功率之间的关系。

五、实验结果与分析1. 通过实验,验证了光纤位移传感器在位移检测中的应用。

2. 实验结果表明,光纤位移传感器具有以下特点:- 高灵敏度:位移变化对光功率的影响较大,可以精确测量微小位移。

- 高稳定性:光纤传感器受外界环境干扰较小,具有较好的稳定性。

- 抗干扰能力强:光纤传感器对电磁干扰、温度变化等具有较强的抗干扰能力。

3. 实验数据表明,光纤位移传感器的输出光功率与位移之间存在线性关系,可以用于精确测量位移。

六、实验总结1. 通过本次实验,我们了解了光纤位移传感器的工作原理和结构。

2. 掌握了光纤位移传感器的测量方法及其在位移检测中的应用。

实验十一

实验十一

实验十一光电式传感器(一)光纤位移传感器一、实验目的1 了解光电式传感器的结构、工作原理;2 了解光电式传感器的实际应用。

二、实验原理反射式光纤位移传感器的工作原理如图(1)所示,光纤采用Y型结构,两束多模光纤一端合并组成光纤探头,另一端分为两束,分别作为接收光纤和光源光纤,光纤只起传输信号的作用,因此是属于非功能性的光纤传感器。

当光发射器产生的红外光,经光源光纤照射至反射体,被反射的光经接收光纤至光电转换元件将接收到的光信号转换为电信号。

其输出的光强决定于反射体距光纤探头的距离,通过对光强的检测而得到位移量。

三、实验所需部件1光纤2光电转换器3光电变换器4低频振荡器5示波器6电压表7支架8反射片9测微头四、实验步骤及内容1 观察光纤结构:本仪器中光纤探头为半圆型结构,由数百根光导纤维组成,一半为光源光纤,一半为接收光纤。

2 将原装电涡流线圈支架上的电涡流线圈取下,装上光纤探头,探头对准镀铬反射片(即电涡流片)。

3 振动台上装上测微头,开启电源,光电变换器V o端接电压表。

旋动测微头,带动振动平台,使光纤探头与反射面的距离发生变化,观察电压表的读数,调到电压表的读数为最大为止,然后调节光电变换器的增益旋钮,使输出电压在2V左右。

4 调节测微头,使光纤探头端面紧贴反射镜面,此时V o输出最小。

然后旋动测微头,使反射镜面离开探头,每隔0.25mm取一V o电压值填入下表,作出V-X曲线。

通过实验可得出输出电压特性曲线如图(1)所示。

分前坡和后坡,通常测量是采用线性较好的前坡。

6 振动实验将测微头移开,振动台处于自由状态,根据V-X曲线选取前坡中点位置装好光纤探头。

将低频振荡器输出接“激振I”,调节激振频率和幅度,使振动台保持适当幅度的振动(以不碰到光纤探头为宜)。

用示波器观察V o端电压波形。

并用电压/频率表读出振动频率。

五、注意事项1光电变换器工作时V o最大输出电压以2V左右为好,可通过调节增益电位器控制。

光纤位移传感器实验报告

光纤位移传感器实验报告

光纤位移传感器实验报告篇一:光纤位移传感器测位移特性实验实验二十六光纤位移传感器测位移特性实验一、实验目的:了解光纤位移传感器的工作原理和性能。

二、基本原理:光纤传感器是利用光纤的特性研制而成的传感器。

三、器件与单元:主机箱中的?15V直流稳压电源、电压表;,型光纤传感器、光纤传感器实验模板、测微头、反射面(抛光铁圆片)。

四、实验步骤:1、观察光纤结构:二根多模光纤组成Y形位移传感器。

将二根光纤尾部端面(包铁端部)对住自然光照射,观察探头端面现象,当其中一根光纤的尾部端面用不透光纸挡住时,在探头端观察面为半圆双D形结构。

2、按图安装、接线。

?安装光纤:安装光纤时,要用手抓捏两根光纤尾部的包铁部分轻轻插入光电座中,绝对不能用手抓捏光纤的黑色包皮部分进行插拔,插入时不要过分用力,以免损坏光纤座组件中光电管。

?测微头、被测体安装:调节测微头的微分筒到5mm处(测微头微分筒的0刻度与轴套5mm刻度对准)。

将测微头的安装套插入支架座安装孔内并在测微头的测杆上套上被测体(铁圆片抛光反射面),移动测微头安装套使被测体的反射面紧贴住光纤探头并拧紧安装孔的紧固螺钉。

3、将主机箱电压表的量程切换开关切换到20V档,检查接线无误后合上主机箱电源开关。

调节实验模板上的RW、使主机箱中的电压表显示为0V。

4、逆时针调动测微头的微分筒,每隔0.1mm(微分筒刻度0,10、10,20……)读取电压表显示值线性度最好区域:5、根据表26数据画出实验曲线并找出线性区域较好的范围计算灵敏度和非线性误差。

实验完毕,关闭电源。

实验二十七光电传感器测转速实验一、实验目的:了解光电转速传感器测量转速的原理及方法。

二、基本原理:光电式转速传感器有反射型和透射型二种,本实验装置是透射型的(光电断续器也称光耦),传感器端部二内侧分别装有发光管和光电管,发光管发出的光源透过转盘上通孔后由光电管接收转换成电信号,由于转盘上有均匀间隔的6个孔,转动时将获得与转速有关的脉冲数,脉冲经处理由频率表显示,,即可得到转速,=10f。

反射式光纤位移传感器应用设计实验

反射式光纤位移传感器应用设计实验
不 动 、 源 输 出稳 定 , 经标 定 后 , 验装 置 不 能 光 一 实
改变 .
测 物 的反射 面 ( 水银 膜 、 璃镜 面 …… )反射 光 镀 玻 ,
由接收 光纤把 接 收 光 能 照射 光 检 测 器 ( I 管 或 PN 光 电三 极管 ) 进行 光 电转 换 , 由显示 器 ( 字 电压 数 表 或示 波器 等) 出输 出 电压 ( 光 电 流) 检 测 测 或 与
பைடு நூலகம் 物



第3 卷 1
采 用发 光二 极 管作 为光 源 , 过 稳 流 后 的发 经 光 二极 管 ( 白光 ) 射 于发 射 光 纤 , 接 照 射 被 或 人 直
收 光纤接 收 的光 量 增 多 , 关 系 直 到 接 收光 纤 全 此
部被 照 明为止 , 时也 被 称 之 为 “ 峰 值 ” 此 光 .这 一 阶段 就是 图 2中 n 段 , 敏度高 , 6 灵 线性 好 , 动态 范 围小 ,适 于微 位移 的测量 .测量 中要求 装 置 固定
s ao i rs 一 ). n c ( ] c )
设 反 射耦合 到接 收光纤 光 能 e 发射光 纤 光能 e 与 。
的 比值 为 K, 即
K : 一 S

2 反 射 式 光 纤传 感 器 测位 移 原 理
反 射式 光纤传 感器 可 以用双 光纤或 二光 纤束 构 成 Y形 光导.图 1 双光纤 组合 探头 测试 原理 为
信 号 , 而 实 现 对 纸 币 的真 假 识 别 . 从 关键词 : 纤传感器 ; 移 ; 光 位 粗糙 度
中 图分 类 号 : P 1 . 4 T 22 1 文献 标 识 码 : A 文章 编 号 :0 544 (0 11 —0 50 1 0—6 2 2 1 )00 0 —3

基于MATLAB处理的反射式光纤位移传感器特性实验

基于MATLAB处理的反射式光纤位移传感器特性实验

% hold on % plot(x(1:f_max_pos),f(1:f_max_pos),'DisplayName','反行程','LineWidth',2,'Color',[1 0 0]); % grid on % title('反射式光纤位移传感器 V-X 前坡曲线') % xlabel('位移(mm)') % ylabel('输出电压(mv)') % grid on % legend('正行程平均值','反行程平均值')
cum=cumsum(f_max_pos) f_max_pos=round(cum(length(f_max_pos))/2) end
% %% 绘制前坡 % figure % plot(x(1:z_max_pos),z(1:z_max_pos),'DisplayName','反行程','LineWidth',2,'Color',[0 1 0]);
ylabel('输出电压(mv)') grid on legend('正行程平均值','反行程平均值')
%% 计算迟滞 disp '迟滞:' delta_MAX=max(abs(z-f)) et=delta_MAX/abs(max(z1))
z_a=abs(z1-z2); z_b=abs(z1-z3); z_c=abs(z2-z3); max(z_a); delta_MAX=max([max(z_a),max(z_b),max(z_c)]) %% 计算重复性误差 eR disp '重复性误差 eR:' eR=delta_MAX/abs(max(z1))

光纤传感器实验

光纤传感器实验

实验5—5 光纤传感器实验人类进人21世纪,信息传递的方式也在悄然改变。

从两根电线传输一路电话到一根光纤传输几十、几百路电话,从海底电缆到欧亚光缆,光纤传递光信息的优点是显而易见的。

光在光纤中不断地被全反射传输,免受大气的干扰、散射,衰减大大减少,从而实现上百公里的远距离传输而不需要中间放大器。

光纤在信息传输中的应用已为人们所熟知,但将光纤用作传感器却了解不多,该实验将介绍反射式光纤位移传感器,增强对光纤传感器的了解。

光纤传感器是一种新型传感器,随着其技术的日益发展,应用越来越广泛。

光纤传感器的机理是外界物理量的变化导致光纤参数的相应改变,例如应力或温度变化时,会引起光纤长度和折射率的变化,从而形成光纤应变或温度传感器。

光纤传感器具有许多优点:重量轻、灵敏度较高;几何形状具有多方面的适应性,可以制成任意形状的光纤传感器;耐高温、耐化学腐蚀、耐水性好,还能高速率和大容量传输测得的信息,便于测试自动化和远距离传输;光纤传感器可以用于高压、电气、噪音、高温、腐蚀或其他的恶劣环境,并可实现非破坏和非接触测量,而且具有与光纤遥感技术的内在相容性。

目前,正在研制中的光纤传感器有磁、声、压力、温度、加速度、陀螺、位移、液面、转矩、光声、电流和压变等类型的光纤传感器。

【实验目的】1.了解光纤、光纤传感器的基本概念。

2.了解反射式光纤位移传感器的基本原理。

3.测量并绘出输出电压与位移特性曲线。

4.了解利用反射式光纤位移传感器测量转盘转速和振动频率的工作原理。

【实验原理】Array1.光纤的基本知识1)光纤的基本结构光纤(Optic Fiber)是光导纤维的简称,一般由纤芯、包层、涂敷层与护套构成,是一种多层介质结构的对称性柱体光学纤维。

光纤的一般结构如图5-5-1所示。

纤芯和包层为光纤结构的主体,对光波的传播起着决定性作用,其中纤芯是光密媒质,包层是光疏媒质。

涂敷层与护套则主要用于隔离杂散光,提高光纤强度,保护光纤。

光纤传感器的位移特性实验

光纤传感器的位移特性实验

实验二十五光纤传感器的位移特性实验一、实验目的了解光纤位移传感器的工作原理和性能.二、实验内容用传光型光纤测位移.三、实验仪器光纤传感器、光纤传感器实验模板、数显单元、测微头、直流源、反射面(用电涡流传感器的铁测片做反射面)。

四、实验原理本实验采用的是传光型光纤,它由两束光纤混合后,组成Y型光纤,半园分布即双D型一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束.两光束混合后的端部是工作端亦称探头,它与被测体相距X,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,而光电转换器转换的电量大小与间距X有关,因此可用于测量位移。

五、实验注意事项1、实验时注意光纤探头与反射面保持平行,调整光纤探头使其位于反射面的圆心上。

2、实验前应用纸巾擦拭反射面,以保证反射效果。

六、实验步骤1、根据图9-1安装光纤位移传感器,二束光纤插入实验板上的座孔上。

其内部已和发光管D及光电转换管T 相接。

图9-1 光纤传感器安装示意图2、将光纤实验模板输出端VO1与数显单元相连,见图9-2。

图9-2光纤传感器位移实验接线图3、调节测微头,使探头与反射面圆平板接触。

4、实验模板接入±15V电源,合上主控台电源开关,调RW使数显表显示值最小,然后微调测微头使数显表显示为0。

000(电压选择置2V档)。

5、旋转测微头,被测体离开探头,每隔0.05mm读出数显表值,将其填入下表:(实验结论:1、本实验每隔0.05mm是相对位置,起始值看做0。

05mm即可,无需从测微头上读绝对位置值。

每旋转0.05mm,输出的电压的增量应该大致相等.2、由于学生做实验可能不能正确的找到起始点,导致采集的数据不在线性范围内,从而影响数据采集的线性度,可以让学生从选取的起始点开始计数,多计几组数据,然后选取线性度较好的十组数据,填入下表。

3、如果只看本实验的线性情况,可选取十组较好的数据填入下表,若要看到光纤传感器的整个变化趋势,则至少应该记录25组数据,其V—X曲线见思考题答案)X(mm)V(v)6、根据上表数据,作光纤位移传感器的位移——输出曲线图。

实验光纤位移传感器原理

实验光纤位移传感器原理

实验六光纤位移传感器原理一:实验原理:本实验仪中所用的为传光型光纤传感器,光纤在传感器中起到光的传输作用,因此是属于非功能性的光纤传感器。

光纤传感器的两支多模光纤分别为光源发射及接收光强之用,其工作原理如图(22)所示。

光纤传感器工作特性曲线如图(23)所示。

一般都选用线性范围较好的前坡为测试区域。

二:实验所需部件:光纤、光电变换器、放大稳幅电路、红外发射及检测电路(光纤变换电路内)、反射物(电机叶面)、电压表.三:实验步骤:1.观察光纤结构:一支发射、另一支为接收的多模光纤为半圆形结构,光纤质量的优劣可通过对光照射观察光通量得出结论。

2.光电传感器内发射光源是近红外光,接收近红外信号后经稳幅及放大。

判断光电变换器中两个安装孔位置具体为发射还是接收可采用如以下办法: 将光纤变换器电压输出端接电压表输入端,光电变换块四芯航空插头接入光纤变换器四芯插座,将双支光纤的其中一根插入光电变换块中的一孔,观察电压表输出情况。

将接通电源的红外发光管靠近光纤探头,如VO端有电压输出则此孔为接收放大端,如单独插入另一孔,光纤探头靠近接通电源的红外光敏三极管,探测电路动作则说明此孔为红外光源发射。

3.将两根光纤均装入光电变换块,装入时注意不要过分用力,以免影响到变换块中光电管的位置。

分别将光纤探头置于全暗无反射和对准较强光源的照射,光纤变换器输出电压应分别为零和最大值。

四:注意事项:光纤三端面均经过精密光学抛光,其端面的光洁度直接会影响光源损耗的大小,需仔细保护。

禁止使用硬物、尖锐物体碰触,遇脏可用镜头纸擦拭。

如非必要,最好不要自行拆卸,观察光纤结构一定要在实验老师的指导下进行。

光纤传感器--------位移测试一:实验所需部件:光纤、光电变换块、光纤变换电路、电压表、反射片(电机叶片)、位移平台二:实验步骤:1.将光纤、光电变换块与光纤变换电路相连接,注意同一实验室如有多台光电传感器实验仪,由于光电变换块中的光电元件特性存在不一致,则光纤变换电路中的发射\接收放大电路的参数也不一致,故请做实验之前将光纤\光电变换块和实验仪对应编号,不要混用,以免影响正常实验。

反射光纤实验报告

反射光纤实验报告

反射光纤实验报告1. 引言反射光纤是一种基于全反射原理传输光信号的传感器。

由于其具有高灵敏度、实时性强以及抗干扰能力强等优点,在光通信、光传感、医疗等领域有着广泛的应用。

本实验旨在研究反射光纤的基本原理和性能特点。

2. 实验目的1. 学习反射光纤的原理和结构;2. 掌握反射光纤的光信号传输特性;3. 了解反射光纤的应用场景。

3. 实验仪器和材料- 反射光纤传感器- 反射光纤接口- 光源- 光功率计- 示波器- 多功能测试仪4. 实验步骤和结果4.1 反射光纤原理实验1. 将反射光纤接口连接到信号发生器输出端,并将光纤插入到接口中。

2. 将示波器与信号发生器相连,调整信号发生器的频率和振幅,观察示波器上光信号的波形变化。

实验结果:通过示波器观察到反射光纤中光信号的反射波形,验证了反射光纤基于全反射原理的工作原理。

4.2 反射光纤传输特性实验1. 将光源连接到反射光纤接口,并将接口与光功率计相连。

2. 改变光源的功率,记录不同功率下光功率计的读数。

3. 改变光源到反射光纤的距离,记录不同距离下光功率计的读数。

实验结果:通过光功率计读数的变化,得到反射光纤的传输损耗和传输距离的关系曲线。

4.3 反射光纤应用实验1. 将反射光纤连接到多功能测试仪,并设置相应的参数。

2. 针对特定的应用场景,如温度传感、压力传感等,进行相应的实验。

3. 记录测试仪器显示的数据,并进行分析和比较。

实验结果:根据测试仪器的数据分析得到反射光纤在不同应用场景下的性能表现和应用效果。

5. 结论本实验通过对反射光纤的原理和性能特点进行了研究和实验验证。

通过示波器观察到反射光纤中光信号的波形变化,验证了反射光纤基于全反射原理的工作原理。

通过光功率计的读数变化得到了反射光纤的传输损耗和传输距离的关系曲线。

同时,在不同的实际应用场景下,通过多功能测试仪的数据记录与分析,得出了反射光纤在不同应用场景下的性能表现和应用效果。

反射光纤作为一种应用广泛的光纤传感器,在光通信、光传感、医疗等领域都具有重要的应用前景。

光纤传感器实验实验报告(3篇)

光纤传感器实验实验报告(3篇)

第1篇一、实验目的1. 理解光纤传感器的原理和结构。

2. 掌握光纤传感器的制作和调试方法。

3. 通过实验,验证光纤传感器在测量位移和温度等方面的性能。

二、实验原理光纤传感器是一种利用光纤的传输特性来实现对各种物理量进行测量的传感器。

其基本原理是:当光纤受到外界物理量的影响时,光纤的传输特性(如强度、相位、偏振态等)会发生变化,通过检测这些变化,就可以实现对物理量的测量。

本实验主要采用反射式光纤位移传感器和光纤温度传感器。

反射式光纤位移传感器的工作原理是:当光纤受到位移的影响时,光纤的反射光强会发生变化,通过检测光强的变化,就可以得到位移量。

光纤温度传感器的工作原理是:当光纤受到温度的影响时,光纤的折射率会发生变化,通过检测折射率的变化,就可以得到温度量。

三、实验仪器与设备1. 光纤传感器实验仪2. 激光器及电源3. 光纤剥线钳4. 宝石刀5. 激光功率计6. 五位调整架7. 显微镜8. 显示器四、实验步骤1. 搭建实验平台:将光纤传感器实验仪、激光器、光纤等设备连接好,确保实验平台的稳定性和安全性。

2. 制作光纤传感器:使用光纤剥线钳、宝石刀等工具,将光纤剥去外层保护层,形成裸光纤。

然后将裸光纤按照设计要求连接成反射式光纤位移传感器和光纤温度传感器。

3. 调试光纤传感器:调整激光器功率、光纤位置等参数,使光纤传感器正常工作。

4. 测量位移:将光纤位移传感器放置在待测物体上,通过调整光纤位置,使光纤反射光强发生变化。

记录不同位移量下的光强变化数据。

5. 测量温度:将光纤温度传感器放置在待测物体上,通过调整光纤位置,使光纤反射光强发生变化。

记录不同温度下的光强变化数据。

6. 数据处理与分析:将实验数据输入计算机,利用相关软件进行数据处理和分析,得到位移和温度的测量结果。

五、实验结果与分析1. 位移测量结果:根据实验数据,绘制位移-光强曲线。

从曲线可以看出,光纤位移传感器在测量位移方面具有良好的线性度和灵敏度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反射式光纤位移传感器实验报告
一、实验内容
1、按照光路图搭建各类光学元件
2、用螺丝固定两侧推平移平台,侧推平移台装在滑块上,然后采用
FC=FC对接法兰连接半导体激光输出接口与塑料反射式传感光纤,塑
料反射式光鲜FC端口与功率计感应端口通过光纤法兰座固定。

3、塑料反射式传感光纤螺纹端夹持固定可调棱镜支架中,并调节可调
棱镜支架的调节旋钮使出射的光路与导轨平行。

4、调节反射镜与反射式光纤跳线之间距离,使得反射端紧贴反射镜,
调节旋钮使得反射光与入射光重合达到反射镜与光路垂直,直到显示
的功率接近0值。

5、固定反射镜与可调棱镜的位置,旋转沿光轴方向(导轨方向)xuan
转侧推平移台尺杆,使反射镜远离光纤发光端,并记录位移-功率值数
据并绘制实验图,在曲线图中线性最好的那一段可作为实际位移传感
器应用。

二、实验结果
三、实验分析
如图,线性较好的第一段(即位移在0-0.3mm间)满足线性化,可作为实际位移传感应用。

反射式光纤位移传感器是一种传输型光纤传感器。

光从光源耦合到光源光纤,通过光纤传输,射向反射片,再被反射到接收光纤,最后由光电
转换器接收,转换器接受到的光源与反射体表面性质、反射体到光纤探头距离有关。

当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。

显然,当光纤探头紧贴反射片时,接收器接收到的光强为零。

随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。

反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。

相关文档
最新文档