高中数学 第一章《计数原理》解排列组合题的几种常见方法(一)
探析排列组合常见的十六种解题方法
探析排列组合常见的十六种解题方法ʏ福建省泉州市第七中学 彭耿铃高考排列组合试题能有效地考查同学们的阅读判断能力㊁转化与化归处理能力及应用意识㊂这类试题新颖别致,联系社会实际,贴近生活,反映了排列组合应用领域的广阔,体现了数学的应用价值㊂本文特精选一些排列组合例题予以分类探析,旨在探究题型及解题方法,希望同学们能决胜于高考㊂求解排列㊁组合问题的常见方法有以下几种㊂(1)限制条件排除法:先求出不考虑限制条件的个数,然后排除不符合条件的个数,相当于减法原理;(2)相邻问题捆绑法:在特定条件下,将几个相关元素当作一个元素来考虑,待整个问题排好之后再考虑它们 内部 的排列数,主要用于解决相邻问题;(3)插空法:先把不受限制的元素排列好,然后把特定元素插在它们之间或两端的空当中;(4)特殊元素㊁位置优先安排法:对问题中的特殊元素或位置优先考虑排列,然后排列其他一般元素或位置;(5)多元问题分类法:将符合条件的排列分为几类,根据分类计数原理求出排列总数;(6)元素相同隔板法:若把n 个不加区分的相同元素分成m 组,可通过n 个相同元素排成一排,在元素之间插入m -1块隔板来完成分组,此法适用于同元素分组问题;(7) 至多 ㊁ 至少 间接法: 至多 ㊁ 至少 的排列组合问题,需分类讨论且一般分类的情况较多,所以通常用间接法,即排除法,它适用于反面明确且易于计算的问题;(8)选排问题先取再排法:选排问题很容易出现重复或遗漏的错误,因此常先取出元素(组合)再排列,即先取再排;(9)定序问题消序法:甲㊁乙㊁丙顺序一定,采用消序法,即除法,用总排列数除以顺序一定的排列数;(10)有序分配逐分法:有序分配是指把元素按要求分成若干组,常采用逐分的方法求解㊂一㊁定位问题优先法(特殊元素和特殊位置优先考虑)例1 由0,1,2,3,4,5可以组成多少个没有重复数字的五位奇数?解析:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置㊂先排末位共有C 13种方法;然后排首位共有C 14种方法;最后排其他位置共有A 34种方法㊂由分步计数原理得,有C 14C 13A 34=288(个)满足要求的数㊂例2 6个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )㊂A.192种 B .216种C .240种D .288种解析:若最左端排甲,其他位置共有A 55=120(种)排法;若最左端排乙,最右端共有4种排法,其余4个位置有A 44=24(种)排法㊂所以共有120+4ˑ24=216(种)排法,选B ㊂小结:位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其他元素㊂若以位置分析为主,需先满足特殊位置的要求,再处理其他位置㊂若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其他条件㊂二㊁相邻元素捆绑法例3 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法?解析:可先将甲乙两个元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其他元素进行排列,同时对相邻元素内部进行自排㊂由分步计数原理可得,共有A55A22A22=480(种)不同的排法㊂例4某人射击了8枪,命中4枪,4枪命中且恰好有3枪连在一起的情形共有种㊂解析:命中的3枪捆绑在一起,与命中的另一枪插入到未命中4枪形成的5个空位,共有A25=20(种)情况㊂小结:要求某几个元素必须排在一起的问题,可以用捆绑法来解决㊂即将需要相邻的元素合并为一个元素,再与其他元素一起进行排列,同时要注意合并元素内部也必须排列㊂三㊁不相邻问题插空法例5某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()㊂A.72B.120C.144D.168解析:歌舞类节目设为a1,a2,a3,小品类节目设为b1,b2,相声类节目设为c㊂先排a1,a2,a3不相邻,顺序如ˑb1ˑb2ˑcˑ,共A33A34种方法,b1b2相邻前提下,ˑb1b2ˑcˑ插空法共A22A33A22种方法,所以同类节目不相邻的排法种数为A33A34-A22A33A22=A33㊃(A34-4)=6ˑ20=120,选B㊂例66把椅子摆成一排,3人随机就座,任何2人不相邻的坐法种数为()㊂A.144B.120C.72D.24解析:先把3把椅子隔开摆好,它们之间和两端有4个位置,再把3人带椅子插放在四个位置,共有A34=24(种)方法,故选D㊂例7(2022年新高考Ⅱ卷)有甲乙丙丁戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻的不同排列方式有()种㊂A.12B.24C.36D.48解析:因为丙丁要在一起,先把丙丁捆绑,看作一个元素,连同乙,戊看成三个元素排列,有A33种排列方式㊂为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式㊂注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有A33ˑ2ˑ2=24(种)不同的排列方式,选B㊂小结:元素相离问题可先把没有位置要求的元素进行排队,再把不相邻元素插入中间和两端㊂四㊁定序问题除序(去重复)㊁空位㊁插入法例87人排队,其中甲乙丙3人顺序一定,共有多少种不同的排法?解析:法一(除序法):对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是A77A33=840㊂法二(空位法):设想有7把椅子,让除甲乙丙以外的4人就座共有A47种方法,其余的三个位置甲乙丙共有1种坐法,则共有1ˑA47=840(种)方法㊂法三(插入法):先选三个座位让甲乙丙三人坐下,共有C37种方法,余下4个空座位让其余四人就座,共有A44种方法,则共有C37A44=840(种)方法㊂小结:定序问题可以用除序法,还可转化为空位法㊁插入法㊂五㊁重排问题求幂法例9把6名实习生分配到7个车间实习,共有多少种不同的分法?解析:完成此事共分六步,把第一名实习生分配到车间有7种分法,把第二名实习生分配到车间也有7种分法, ,由分步计数原理知共有76种不同的分法㊂小结:允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置㊂一般地,n个不同的元素没有限制地安排在m 个位置上的排列数为m n ㊂六㊁环排问题线排法例10 8人围桌而坐,共有多少种坐法?解析:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定1人并从此位置把圆形展成直线,其余7人共有(8-1)!=7!=5040(种)排法㊂小结:一般地,n 个不同元素作圆形排列,共有(n -1)!种排法㊂如果从n 个不同元素中取出m 个元素作圆形排列,共有1nA mn ㊂七㊁排列组合混合问题先选后排法例11 有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少种不同的装法解析:第一步从5个球中选出2个组成复合元素,共有C 25=10(种)方法;再把4个元素(包含一个复合元素)装入4个不同的盒内,有A 44=24(种)方法㊂根据分步计数原理,装球的方法共有C 25A 44=240(种)㊂例12 (2021年全国乙卷)将5名北京冬奥会志愿者分配到花样滑冰㊁短道速滑㊁冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( )㊂A.60种 B .120种C .240种D .480种解析:根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人组成一个小组,有C 25种选法;然后连同其余3人,看成4个元素,4个项目看成4个不同的位置,4个不同的元素在4个不同的位置的排列方法数为A 44㊂根据乘法原理,完成这件事共有C 25ˑA 44=240(种)不同的分配方案,选C ㊂例13 (2020年全国Ⅱ卷)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有种㊂解析:因为4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,所以先取2名同学看作一组,选法有C 24种㊂现在可看成是3组同学分配到3个小区,分法有A 33种㊂根据分步乘法原理,可得不同的安排方法有C 24A 33=6ˑ6=36(种)㊂小结:解决排列组合混合问题,先选后排是最基本的指导思想,此法与相邻元素捆绑策略相似㊂八㊁元素相同问题隔板法例14 有10个运动员名额,分给7个班,每班至少1人,有多少种分配方案?解析:10个名额没有差别,把它们排成一排,相邻名额之间形成9个空隙㊂在9个空隙中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法,共有C 69=84(种)分法㊂小结:将n 个相同的元素分成m 份(n ,m 为正整数),每份至少一个元素,可以用m -1块隔板,插入n 个元素排成一排的n -1个空隙中,所有分法数为C m -1n -1㊂九㊁正难则反总体淘汰法例15 从1,3,5,7,9这5个数中,每次取出2个不同的数分别记为a ,b ,共可得到l g a -l gb 的不同值的个数是( )㊂A.9 B .10 C .18 D .20解析:l g a -l g b =l gab,从1,3,5,7,9中任取2个数分别记为a ,b ,共有A 25=20(种)结果㊂其中l g13=l g 39,l g 31=l g 93,故共可得到不同值的个数为20-2=18,选C ㊂例16 某学校安排甲㊁乙㊁丙㊁丁4位同学参加数学㊁物理㊁化学竞赛,要求每位同学仅报一科,每科至少有一位同学参加,且甲㊁乙不能参加同一学科,则不同的安排方法有种㊂解析:把4位同学分成3组,有C 24=6(种)方法,然后进行全排列,即有C 24A 33=36(种)方法,去掉甲㊁乙在一个组的情况,当甲㊁乙在一个组时,参加的方法有A 33=6(种)㊂故符合题意的安排方法有36-6=30(种)㊂小结:有些排列组合问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出它的反面,再从整体中淘汰㊂十㊁平均分组问题除法例17将5名同学分到甲㊁乙㊁丙3个小组,若甲小组至少2人,乙㊁丙组至少1人,则不同的分配方案种数为()㊂A.80B.120C.140D.50解析:先将5名同学分成3组,有两种分配方案,一是3组人数分别为2,2,1,分组方法有C25C23C11A22=15(种),然后将有2人的两组分给甲㊁乙或甲㊁丙,分配方法是15ˑ(A22+ A22)=60(种);二是3组人数分别为3,1,1,分组方法有C35C12C11A22=10(种),然后将有1人的两组分给乙㊁丙两组,分配方法有10ˑA22 =20(种)㊂共有60+20=80(种)方案,选A㊂小结:平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A n n(n为平均分的组数)避免重复计数㊂十一㊁合理分类与分步法例18甲㊁乙两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有()㊂A.10种B.15种C.20种D.30种解析:由题意知比赛局数至少为3局,至多为5局㊂当局数为3局时,情况为甲或乙连赢3局,共2种㊂当局数为4局时,若甲赢,则前3局中甲赢2局,最后一局甲赢,共有C23=3(种)情况㊂同理,若乙赢,也有3种情况,共有3+3=6(种)情况㊂当局数为5局时,前4局,甲㊁乙各赢2局,最后1局胜出的人赢,共有2C24=12(种)情况㊂综上可知,共有2+6+12=20(种)情况㊂选C㊂十二㊁构造模型法例19马路上有编号为1,2,3,4,5, 6,7,8,9的9盏路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种㊂解析:把此问题当作一个排队模型,在6盏亮灯的5个空隙中插入3盏不亮的灯有C35 =10(种)㊂小结:一些不易理解的排列组合题如果能转化为非常熟悉的模型,如占位填空模型,排队模型,装盒模型等,可使问题直观解决㊂十三㊁分解与合成法例2030030能被多少个不同的偶数整除?解析:先把30030分解成质因数的乘积形式30030=2ˑ3ˑ5ˑ7ˑ11ˑ13,依题意可知偶因数必先取2,再从其余5个因数中任取若干个组成乘积,所有的偶因数有C05+C15+C25+C35+C45+C55=32(个)㊂例21正方体的8个顶点可连成多少对异面直线解析:我们先从8个顶点中任取4个顶点构成四面体,共有C48-12=58(个),每个四面体有3对异面直线,正方体中的8个顶点可连成3ˑ58=174(对)异面直线㊂例22从正方体六个面的对角线中任取两条作为一对,其中所成的角为60ʎ的共有()㊂A.24对B.30对C.48对D.60对解析:(1)方法一:与正方体的一个面上的一条对角线成60ʎ角的对角线有8条,故共有8对,正方体的12条面对角线共有8ˑ12 =96(对),且每对均重复计算一次,故共有962 =48(对)㊂选C㊂方法二:正方体的面对角线共有12条,两条为一对,共有C212=66(对)㊂同一个面上的对角线不满足题意,对面中的对角线也不满足题意,一组平行平面共有6对不满足题意的对角线对数,所以不满足题意的共有3ˑ6=18(对)㊂从正方体六个面的对角线中任取两条作为一对,其中所成的角为60ʎ的共有66-18=48(对)㊂选C㊂小结:分解与合成策略是排列组合问题的一种最基本的解题策略,把一个复杂问题分解成几个小问题逐一解决,然后依据问题分解后的结构,用分类计数原理和分步计数原理将问题合成,从而得到问题的答案,每个比较复杂的问题都要用到这种解题策略㊂十四㊁复杂问题化归法例2325人排成5ˑ5方阵,现从中选3人,要求3人不在同一行也不在同一列,不同的选法有多少种?解析:将这个问题退化成9人排成3ˑ3方阵,现从中选3人,要求3人不在同一行也不在同一列,有多少种选法㊂这样每行必有1人,从其中的一行中选取1人后,把这人所在的行列都划掉,如此继续下去㊂从3ˑ3方队中选3人的方法有C13C12C11=6(种)㊂再从5ˑ5方阵选出3ˑ3方阵便可解决问题㊂从5ˑ5方队中选取3行3列,有C35C35=100(种)选法,所以从5ˑ5方阵选不在同一行也不在同一列的3人,有C35C35C13C12C11=600(种)选法㊂例24用a代表红球,b代表蓝球,c 代表黑球,由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+a b表示出来,如: 1 表示一个球都不取㊁ a 表示取出一个红球,而 a b 表示把红球和蓝球都取出来㊂以此类推,下列各式中,其展开式可用来表示从5个无区别的红球㊁5个无区别的蓝球㊁5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是()㊂A.(1+a+a2+a3+a4+a5)(1+b5)㊃(1+c)5B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5C.(1+a)5(1+b+b2+b3+b4+b5)㊃(1+c5)D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)解析:分三步:第一步,5个无区别的红球可能取出0个,1个, ,5个,则有(1+a+ a2+a3+a4+a5)种不同的取法;第二步,5个无区别的蓝球都取出或都不取出,则有(1+b5)种不同的取法;第三步,5个有区别的黑球看作5个不同色,从5个不同色的黑球任取0个,1个, ,5个,有(1+c)5种不同的取法㊂所以所求的取法种数为(1+a+a2+ a3+a4+a5)(1+b5)(1+c)5,选A㊂小结:处理复杂的排列组合问题时可以把一个问题退化成一个简单的问题,通过先解决这个简单问题,从而下一步解决原来的问题㊂十五㊁数字排序问题查字典法例25用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()㊂A.144个B.120个C.96个D.72个解析:首位填4时,比40000大的偶数有2ˑ4ˑ3ˑ2=48(个);首位填5时,比40000大的偶数有3ˑ4ˑ3ˑ2=72(个)㊂故共有48+72=120(个)数满足题意,选B㊂小结:数字排序问题可用查字典法,查字典的法应从高位向低位查,依次求出其符合要求的个数,根据分类计数原理求出其总数㊂十六㊁住店法例267名学生争夺五项冠军,每项冠军只能由一人获得,获得冠军的可能的种数为㊂解析:因同一学生可以同时夺得n项冠军,故学生可重复排列,将7名学生看作7家 店 ,五项冠军看作5名 客 ,每个 客 有7种住宿法,由乘法原理知有75种可能㊂小结:解决 允许重复排列问题 要注意区分两类元素:一类元素可以重复,另一类不能重复,把不能重复的元素看作 客 ,能重复的元素看作 店 ,再利用乘法原理直接求解㊂排列组合历来是高中学习中的难点,同学们只要对基本的解题策略熟练掌握,就可以选取不同的技巧来解决问题㊂对于一些比较复杂的问题,我们可以将几种策略结合起来应用,把复杂的问题简单化㊂请同学们对以上排列组合的几种常见的解题策略加以复习巩固,能举一反三,触类旁通,进而为后续的概率学习打下坚实的基础㊂(责任编辑徐利杰)。
解答排列组合问题的几种措施
排列组合是每年高考数学必考的内容之一.排列组合问题侧重于考查分类计数原理和分步计数原理.解答此类问题,需仔细审题,辨别问题的类型,然后选用合适的计数原理进行求解.本文主要介绍几种求解排列组合问题的常用措施.一、优先法大部分的排列组合问题都会涉及有特殊要求的元素或位置,此时需采用优先法求解.采用优先法解题,可以从两个角度入手:(1)特殊元素.先排列特殊元素的顺序,再排列其他元素的顺序;(2)特殊位置.先将满足要求的元素安排在特殊位置上,再将其他元素安排在剩下的位置上.例1.1名歌手和4名观众排成一排照相,若歌手不排在两端,则一共有多少种排法.分析:本题中的歌手为特殊元素,两端的位置为特殊位置,需采用优先法求解.可从特殊元素、特殊位置两个角度进行考虑.解法一:优先安排歌手的位置.因为歌手不排在两端,所以歌手只能安排在中间的3个位置,有A13种排法,然后随意安排4名观众,有A44种排法.由分步计数原理可知,一共有A13∙A44=72种排法.解法二:优先考虑两端的位置.先从4名观众中选2人排在两端,有A24种排法,再排剩下的3个位置,有A33种排法.由分步计数原理知,一共有A24∙A33=72种排法.当有多个特殊元素或位置时,往往要分步逐一安排每个特殊的元素或位置,最后根据分步计数原理求解.二、捆绑法指定某些元素必须排在一起的问题称为相邻问题.当遇到相邻问题时,常需采用捆绑法求解.把相邻的若干元素捆绑在一起作为一个整体或者一个大元素进行排列,便可保证相邻的元素不会分开.采用捆绑法解答排列组合问题,需分步进行,首先排列捆绑起来的大元素以及没有被捆绑的元素的排列顺序,然后排列捆绑起来的几个元素的顺序,最后运用分步计数原理求解.例2.(1)7个人排成一排,其中甲、乙必须相邻的排法有多少种?(2)7个人排成一排,其中甲、乙中间相隔2人的排法有多少种?解:(1)先将甲、乙两人捆绑在一起作为1个元素,与其他5个人一起排列,有A66种排法;又甲、乙两人有A22种排法,则一共有A66∙A22=1440种排法.(2)先从7人中任选2人放在甲、乙中间作为一个大元素,有A25种排法,且甲、乙两人有A22种排法,再将这个大元素与剩下的3人一起排列有A44种排法,则一共有A25∙A22∙A44=960种排法.运用捆绑法解题时,要注意排列大元素内部的几个元素的顺序,这是很多同学容易忽略或忘记的一个步骤.三、间接法对于含“至多”或“至少”字眼的排列组合问题,采用直接法求解,往往需要进行很复杂的讨论,且会出现遗漏或重复计数的情况.此时从问题的反面入手,采用间接法求解比较便捷.先求出所有的排列数,再排除不符合条件的排列数即可解题.这样往往会收到意想不到的效果.例3.某校开设3门A类选修课,4门B类选修课.某同学一共选了3门选修课,若要求从两类课程中各至少选择一门,则一共有多少种选法?解:先不考虑限制条件,从7门选修课中任选3门,一共有C37种选法.所选的3门选修课均为A类,有C33种选法,均为B类,有C34种选法,由分步计数原理可知,一共有C37-C33-C34=30种选法.此题中含有“至少”的字眼,用直接法求解,要考虑的情况太多,需运用间接法,先不考虑任何限制条件,从7门选修课中任选3门,求出所有的情况数,再考虑不符合条件的情况:所选的3门选修课均为A类或B类,排除不满足要求的情况数,即可快速解题.上述三种方法都是解答排列组合问题的常用方法,但是其适用条件均不同.优先法适用于解答含有特殊元素和位置的题目,捆绑法适用于求解元素相邻的题目,间接法适用于解答从正面求解困难的题目.对于排列组合问题,同学们要多总结归纳,提炼方法,这样才能在解题时做到游刃有余.(作者单位:江苏省如东县马塘中学)方法集锦44Copyright©博看网. All Rights Reserved.。
排列组合问题的20种解法
排列组合问题的20 种解法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
复习巩固分类计数原理 ( 加法原理 )完成一件事,有类办法,在第 1 类办法中有种不同的方法,在第 2 类办法中有种不同的方法,,在第类办法中有种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成个步骤,做第 1 步有种不同的方法,做第 2 步有种不同的方法,,做第步有种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事 , 即采取分步还是分类 , 或是分步与分类同时进行 , 确定分多少步及多少类。
3.确定每一步或每一类是排列问题 ( 有序 ) 还是组合 ( 无序 ) 问题 , 元素总数是多少及取出多少个元素 .4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一. 特殊元素和特殊位置优先策略例 1. 由 0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解: 由于末位和首位有特殊要求, 应该优先安排, 以免不合要求的元素占了这两个位置.先排末位共有然后排首位共有最后排其它位置共有由分步计数原理得位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法 , 若以元素分析为主 , 需先安排特殊元素 , 再处理其它元素 . 若以位置分析为主 , 需先满足特殊位置的要求 , 再处理其它位置。
若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件练习题:7 种不同的花种在排成一列的花盆里, 若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二. 相邻元素捆绑策略例 2. 7人站成一排, 其中甲乙相邻且丙丁相邻,共有多少种不同的排法.再解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,与其它元素进行排列,同时对相邻元素内部进行自排。
陕西省高中数学 第一章 计数原理 解排列组合应用题的21种策略拓展资料素材 北师大版选修2-3
解排列组合应用题的21种策略目录排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,那么不同的排法种数有()A、60种B、48种C、36种D、24种解析:把,A B视为一人,且B固定在A的右边,则本题相当于4人的全排列,4424A=种,答案:D.2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()A、1440种B、3600种C、4820种D、4800种解析:除甲乙外,其余5个排列数为55A种,再用甲乙去插6个空位有26A种,不同的排法种数是52563600A A=种,选B.3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3.,,,,A B C D E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法种数是()A、24种B、60种C、90种D、120种解析:B在A的右边与B在A的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A=种,选B.4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有()A、6种B、9种C、11种D、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B.5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是()A、1260种B、2025种C、2520种D、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C=种,选C.(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有()A、4441284C C C种 B、44412843C C C种C、4431283C C A种 D、444128433C C CA种答案:A.6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有24C种方法,再把三组学生分配到三所学校有33A种,故共有234336C A=种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为()A、480种 B、240种 C、120种 D、96种答案:B.7.名额分配问题隔板法:例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况: ①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计. 例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有( )A 、210种B 、300种C 、464种D 、600种解析:按题意,个位数字只可能是0,1,2,3,4共5种情况,分别有55A 个,1131131131343333323333,,,A A A A A A A A A A A 个,合并总计300个,选B .(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =L 共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100A =L 共有86个元素;由此可知,从A 中任取2个元素的取法有214C,从A中任取一个,又从A中任取一个共有111486C C,两种情形共符合要求的取法有2111414861295C C C+=种.(3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?解析:将{}1,2,3,100I=L分成四个不相交的子集,能被4整除的数集{}4,8,12,100A=L;能被4除余1的数集{}1,5,9,97B=L,能被4除余2的数集{}2,6,,98C=L,能被4除余3的数集{}3,7,11,99D=L,易见这四个集合中每一个有25个元素;从A中任取两个数符合要;从,B D中各取一个数也符合要求;从C中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525 C C C C++种.10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B⋃=+-⋂.例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B--+⋂43326554252A A A A=--+=种.11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
高中数学解题技巧之排列组合问题求解
高中数学解题技巧之排列组合问题求解在高中数学中,排列组合是一个重要的概念和解题方法。
排列组合问题在考试中经常出现,因此学会解决这类问题是非常重要的。
本文将介绍一些高中数学中排列组合问题的解题技巧,并通过具体的例子来说明这些技巧的应用。
一、排列问题的解题技巧排列是指从一组元素中选取若干个元素按一定顺序排列的方式。
在解决排列问题时,我们需要关注以下几个方面:1. 确定排列的元素个数:在题目中,通常会给出元素的个数,我们需要根据题目要求确定排列的元素个数。
例如,有5个人站成一排,问有多少种不同的站法?在这个问题中,元素的个数为5。
2. 确定排列的顺序:排列问题中的元素是按照一定的顺序排列的,我们需要确定排列的顺序。
例如,从5个人中选出3个人排成一排,问有多少种不同的排法?在这个问题中,我们需要确定排列的顺序。
3. 使用排列的公式:在解决排列问题时,我们可以使用排列的公式来计算不同排列的数量。
排列的公式为:P(n, m) = n! / (n-m)!其中,n表示元素的个数,m表示排列的元素个数,n!表示n的阶乘。
例如,从5个人中选出3个人排成一排,可以使用排列的公式计算排列的数量:P(5, 3) = 5! / (5-3)! = 5! / 2! = 60。
二、组合问题的解题技巧组合是指从一组元素中选取若干个元素不考虑顺序的方式。
在解决组合问题时,我们需要关注以下几个方面:1. 确定组合的元素个数:在题目中,通常会给出元素的个数,我们需要根据题目要求确定组合的元素个数。
例如,从5个人中选出3个人,问有多少种不同的选法?在这个问题中,元素的个数为5。
2. 不考虑组合的顺序:组合问题中的元素是不考虑顺序的,我们不需要确定组合的顺序。
例如,从5个人中选出3个人,不考虑顺序,可以使用组合的公式计算组合的数量:C(5, 3) = 5! / (3! * (5-3)!) = 10。
3. 使用组合的公式:在解决组合问题时,我们可以使用组合的公式来计算不同组合的数量。
排列组合常见21种解题方法
排列组合常见21种解题方法排列组合是高中数学中的重要知识点,也是考试中常见的题型。
在解决排列组合问题时,我们可以运用多种方法来求解,下面将介绍常见的21种解题方法。
1. 直接法,根据排列组合的定义,直接计算排列或组合的个数。
2. 公式法,利用排列组合的公式进行计算,如排列公式P(n,m)=n!/(n-m)!,组合公式C(n,m)=n!/(m!(n-m)!)。
3. 递推法,通过递推关系式求解排列组合问题,如利用排列数的递推关系P(n,m)=P(n-1,m)+P(n-1,m-1)。
4. 分类讨论法,将问题进行分类讨论,分别求解每种情况的排列组合个数,然后合并得出最终结果。
5. 组合数性质法,利用组合数的性质,如C(n,m)=C(n,n-m),C(n,m)=C(n-1,m)+C(n-1,m-1),简化计算过程。
6. 二项式定理法,利用二项式定理展开式子,求解排列组合问题。
7. 二项式系数法,利用二项式系数的性质,如n个不同元素的排列个数为n!,n个相同元素的排列个数为1,简化计算过程。
8. 容斥原理法,利用容斥原理求解排列组合问题,排除重复计算的部分。
9. 对称性法,利用排列组合的对称性质,简化计算过程。
10. 逆向思维法,从问题的逆向思考,求解排列组合问题。
11. 生成函数法,利用生成函数求解排列组合问题,将排列组合问题转化为多项式求解。
12. 构造法,通过构造合适的排列组合模型,求解问题。
13. 图论法,将排列组合问题转化为图论问题,利用图论算法求解。
14. 动态规划法,利用动态规划算法求解排列组合问题,降低时间复杂度。
15. 贪心算法法,利用贪心算法求解排列组合问题,简化计算过程。
16. 模拟法,通过模拟排列组合过程,求解问题。
17. 枚举法,将所有可能的排列组合情况列举出来,求解问题。
18. 穷举法,通过穷举所有可能的情况,求解问题。
19. 数学归纳法,利用数学归纳法证明排列组合的性质,求解问题。
排列与组合.版块七.排列组合问题的常用方法总结1.学生版
排列组合问题的常用方法总结1知识内容1.基本计数原理⑴加法原理分类计数原理:做一件事,完成它有类办法,在第一类办法中有种不同的方法,在第二类办法中有种方法,……,在第类办法中有种不同的方法.那么完成这件事共有种不同的方法.又称加法原理.⑵乘法原理分步计数原理:做一件事,完成它需要分成个子步骤,做第一个步骤有种不同的方法,做第二个步骤有种不同方法,……,做第个步骤有种不同的方法.那么完成这件事共有种不同的方法.又称乘法原理.⑶加法原理与乘法原理的综合运用如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理.分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用.2.排列与组合⑴排列:一般地,从个不同的元素中任取个元素,按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列.(其中被取的对象叫做元素)排列数:从个不同的元素中取出个元素的所有排列的个数,叫做从个不同元素中取出个元素的排列数,用符号表示.排列数公式:,,并且.全排列:一般地,个不同元素全部取出的一个排列,叫做个不同元素的一个全排列.的阶乘:正整数由到的连乘积,叫作的阶乘,用表示.规定:.⑵组合:一般地,从个不同元素中,任意取出个元素并成一组,叫做从个元素中任取个元素的一个组合.组合数:从个不同元素中,任意取出个元素的所有组合的个数,叫做从个不同元素中,任意取出个元素的组合数,用符号表示.组合数公式:,,并且.组合数的两个性质:性质1:;性质2:.(规定)⑶排列组合综合问题解排列组合问题,首先要用好两个计数原理和排列组合的定义,即首先弄清是分类还是分步,是排列还是组合,同时要掌握一些常见类型的排列组合问题的解法:1.特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;2.分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏.3.排除法,从总体中排除不符合条件的方法数,这是一种间接解题的方法.4.捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列.5.插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空.6.插板法:个相同元素,分成组,每组至少一个的分组问题——把个元素排成一排,从个空中选个空,各插一个隔板,有.7.分组、分配法:分组问题(分成几堆,无序).有等分、不等分、部分等分之别.一般地平均分成堆(组),必须除以!,如果有堆(组)元素个数相等,必须除以!8.错位法:编号为1至的个小球放入编号为1到的个盒子里,每个盒子放一个小球,要求小球与盒子的编号都不同,这种排列称为错位排列,特别当,3,4,5时的错位数各为1,2,9,44.关于5、6、7个元素的错位排列的计算,可以用剔除法转化为2个、3个、4个元素的错位排列的问题.1.排列与组合应用题,主要考查有附加条件的应用问题,解决此类问题通常有三种途径:①元素分析法:以元素为主,应先满足特殊元素的要求,再考虑其他元素;②位置分析法:以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;③间接法:先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.求解时应注意先把具体问题转化或归结为排列或组合问题;再通过分析确定运用分类计数原理还是分步计数原理;然后分析题目条件,避免“选取”时重复和遗漏;最后列出式子计算作答.2.具体的解题策略有:①对特殊元素进行优先安排;②理解题意后进行合理和准确分类,分类后要验证是否不重不漏;③对于抽出部分元素进行排列的问题一般是先选后排,以防出现重复;④对于元素相邻的条件,采取捆绑法;对于元素间隔排列的问题,采取插空法或隔板法;⑤顺序固定的问题用除法处理;分几排的问题可以转化为直排问题处理;⑥对于正面考虑太复杂的问题,可以考虑反面.⑦对于一些排列数与组合数的问题,需要构造模型.典例分析直接法(优先考虑特殊元素特殊位置,特殊元素法,特殊位置法,直接分类讨论)【例1】从名外语系大学生中选派名同学参加广州亚运会翻译、交通、礼仪三项义工活动,要求翻译有人参加,交通和礼仪各有人参加,则不同的选派方法共有.【例2】北京《财富》全球论坛期间,某高校有名志愿者参加接待工作.若每天排早、中、晚三班,每班人,每人每天最多值一班,则开幕式当天不同的排班种数为A. B. C. D.【例3】在平面直角坐标系中,轴正半轴上有个点,轴正半轴有个点,将轴上这个点和轴上这个点连成条线段,这条线段在第一象限内的交点最多有()A.个 B.个 C.个 D.个【例4】一个口袋内有个不同的红球,个不同的白球,⑴从中任取个球,红球的个数不比白球少的取法有多少种?⑵若取一个红球记分,取一个白球记分,从中任取个球,使总分不少于分的取法有多少种?【例5】一个口袋内装有大小相同的个白球和个黑球.⑴从口袋内取出个球,共有多少种取法?⑵从口袋内取出个球,使其中含有个黑球,有多少种取法?⑶从口袋内取出个球,使其中不含黑球,有多少种取法?【例6】有名划船运动员,其中人只会划左舷,人只会划右舷,其余人既会划左舷也会划右舷.从这名运动员中选出人平均分在左、右舷划船参加比赛,有多少种不同的选法?【例7】若,则,就称是伙伴关系集合,集合的所有非空子集中,具有伙伴关系的集合的个数为()A. B. C. D.【例8】从名女生,名男生中,按性别采用分层抽样的方法抽取名学生组成课外小组,则不同的抽取方法种数为______.A. B. C. D.【例9】某城市街道呈棋盘形,南北向大街条,东西向大街条,一人欲从西南角走到东北角,路程最短的走法有多少种.【例10】某幢楼从二楼到三楼的楼梯共级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用步走完,则上楼梯的方法有______种.【例11】亚、欧乒乓球对抗赛,各队均有名队员,按事先排好的顺序参加擂台赛,双方先由号队员比赛,负者淘汰,胜者再与负方号队员比赛,直到一方全被淘汰为止,另一方获胜,形成一种比赛过程.那么所有可能出现的比赛过程有多少种?【例12】设含有个元素的集合的全部子集数为,其中由个元素组成的子集数为,则的值为()A. B. C. D.【例13】设坐标平面内有一个质点从原点出发,沿轴跳动,每次向正方向或负方向跳动一个单位,经过次跳动质点落在点(允许重复过此点)处,则质点不同的运动方法种数为 .【例14】从名男同学,名女同学中选名参加体能测试,则选到的名同学中既有男同学又有女同学的不同选法共有________种(用数字作答)【例15】在的边上有四点,边上有共个点,连结线段,如果其中两条线段不相交,则称之为一对“和睦线”,和睦线的对数共有:()A. B. C. D.【例16】从7名男生5名女生中,选出5人,分别求符合下列条件的选法种数有多少种?⑴、必须当选;⑵、都不当选;⑶、不全当选;⑷至少有2名女生当选;⑸选出5名同学,让他们分别担任体育委员、文娱委员等5种不同工作,但体育委员由男生担任,文娱委员由女生担任.【例17】甲组有名男同学,名女同学;乙组有名男同学、名女同学.若从甲、乙两组中各选出名同学,则选出的人中恰有名女同学的不同选法共有()A.种 B.种 C.种 D.种【例18】从名大学毕业生中选人担任村长助理,则甲、乙至少有人入选,而丙没有入选的不同选法的种数为()A. B. C. D.【例某班级要从4名男生、2名女生中选派4人参加某次社区服19】务,如果要求至少有1名女生,那么不同的选派方案种数为()A. B. C. D.【例20】要从个人中选出个人去参加某项活动,其中甲乙必须同时参加或者同时不参加,问共有多少种不同的选法?【例21】有四个停车位,停放四辆不同的车,有几种不同的停法?若其中的一辆车必须停放在两边的停车位上,共有多少种不同的停法?【例22】某班5位同学参加周一到周五的值日,每天安排一名学生,其中学生甲只能安排到周一或周二,学生乙不能安排在周五,则他们不同的值日安排有()A.288种 B.72种 C.42种 D.36种【例23】某班有名男生,名女生,现要从中选出人组成一个宣传小组,其中男、女学生均不少于人的选法为()A. B.C. D.【例24】 用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个⑴数字1不排在个位和千位⑵数字1不在个位,数字6不在千位.【例25】甲、乙、丙、丁、戊名学生进行讲笑话比赛,决出了第一到第五的名次,甲、乙两名参赛者去询问成绩,回答者对甲说:“很遗憾,你和乙都未拿到冠军”,对乙说:“你当然不会是最差的”.从这个回答分析,人的名次排列共有_______(用数字作答)种不同情况.【例26】某高校外语系有名奥运会志愿者,其中有名男生,名女生,现从中选人参加某项“好运北京”测试赛的翻译工作,若要求这人中既有男生,又有女生,则不同的选法共有()A.种 B.种 C.种 D.种【例27】用5,6,7,8,9组成没有重复数字的五位数,其中恰好有一个奇数夹在两个偶数之间的五位数的个数为()A. B. C. D.【例28】某电视台连续播放个不同的广告,其中有个不同的商业广告和个不同的奥运宣传广告,要求最后播放的必须是奥运宣传广告,且两个奥运宣传广告不能连续播放,则不同的播放方式有()A.种 B.种 C.种 D.种【例29】从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中,甲、乙两人不去巴黎游览,则不同的选择方案共有_____种(用数字作答).【例30】从名男生和名女生中选出人,分别从事三项不同的工作,若这人中至少有名女生,则选派方案共有()A.种 B.种 C.种 D.种【例31】甲组有名男同学,名女同学;乙组有名男同学、名女同学.若从甲、乙两组中各选出名同学,则选出的人中恰有名女同学的不同选法共有()A.种 B.种 C.种 D.种【例32】将名大学生分配到个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有_______种(用数字作答).【例33】用数字可以组成没有重复数字,并且比大的五位偶数共有()A.个 B.个 C.个 D.个【例34】一生产过程有道工序,每道工序需要安排一人照看.现从甲、乙、丙等名工人中安排人分别照看一道工序,第一道工序只能从甲、乙两工人中安排人,第四道工序只能从甲、丙两工人中安排人,则不同的安排方案共有()A.种 B.种 C.种 D.种【例2位男生和3位女生共5位同学站成一排.若男生甲不站两35】 端,3位女生中有且只有两位女生相邻,则不同排法的种数为()A.36B.42C. 48D.60【例36】从名女生,名男生中,按性别采用分层抽样的方法抽取名学生组成课外小组,则不同的抽取方法种数为______.A. B. C. D.【例37】名志愿者中安排人在周六、周日两天参加社区公益活动.若每天安排人,则不同的安排方案共有种(用数字作答).【例38】给定集合,映射满足:①当时,;②任取,若,则有.则称映射:是一个“优映射”.例如:用表1表示的映射:是一12323112343个“优映射”.表1 表2⑴已知表2表示的映射:是一个优映射,请把表2补充完整(只需填出一个满足条件的映射);⑵若映射:是“优映射”,且方程的解恰有6个,则这样的“优映射”的个数是_____.【例39】 将个不同的小球全部放入编号为和的两个小盒子里,使得每个盒子里的球的个数不小于盒子的编号,则不同的放球方法共有__________种.【例40】 将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( )A.10种 B.20种 C.36种 D.52种【例41】一个口袋内有个不同的红球,个不同的白球,⑴从中任取个球,红球的个数不比白球少的取法有多少种?⑵若取一个红球记分,取一个白球记分,从中任取个球,使总分不少于分的取法有多少种?【例42】正整数称为凹数,如果,且,其中,请回答三位凹数共有个(用数字作答).【例43】年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有()A.种 B.种 C.种 D.种【例44】某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有_______种.(用数字作答)【例45】 某人手中有5张扑克牌,其中2张为不同花色的2,3张为不同花色的A,有5次出牌机会,每次只能出一种点数的牌但张数不限,此人有多少种不同的出牌方法?【例46】从7人中选派5人到10个不同交通岗的5个中参加交通协管工作,则不同的选派方法有()A.种 B.种 C.种 D.【例47】12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有()A.种 B.3种 C.种 D.种【例48】袋中装有分别编号为的个白球和个黑球,从中取出个球,则取出球的编号互不相同的取法有()A.种 B.种 C.种 D.种.【例49】现有男、女学生共人,从男生中选人,从女生中选人分别参加数学、物理、化学三科竞赛,共有种不同方案,那么男、女生人数分别是()A.男生人,女生人 B.男生人,女生人C.男生人,女生人 D.男生人,女生人.【例50】将个小球任意放入个不同的盒子中,⑴若个小球各不相同,共有多少种放法?⑵若要求每个盒子都不空,且个小球完全相同,共有多少种不同的放法?⑶若要求每个盒子都不空,且个小球互不相同,共有多少种不同的放法?【例51】将个小球任意放入个不同的盒子中,每个盒子都不空,⑴若个小球完全相同,共有多少种不同的放法?⑵若个小球互不相同,共有多少种不同的放法?【例52】四个不同的小球,每球放入编号为、、、的四个盒子中.⑴随便放(可以有空盒,但球必须都放入盒中)有多少种放法?⑵四个盒都不空的放法有多少种?⑶恰有一个空盒的放法有多少种?⑷恰有两个空盒的放法有多少种?⑸甲球所放盒的编号总小于乙球所放盒的编号的放法有多少种?【例53】设坐标平面内有一个质点从原点出发,沿轴跳动,每次向正方向或负方向跳个单位,若经过次跳动质点落在点处(允许重复过此点),则质点不同的运动方法共___________种;若经过次跳动质点落在点处(允许重复过此点),其中,且为偶数,则质点不同的运动方法共有_______种.【例54】设集合,选择的两个非空子集和,要使中最小的数大于中最大的数,则不同的选择方法共有()A.50种 B.49种 C.48种 D.47种【例55】是集合到集合的映射,是集合到集合的映射,则不同的映射的个数是多少?有多少?满足的映射有多少?满足的映射对有多少?【例56】排球单循坏赛,胜者得分,负者分,南方球队比北方球队多支,南方球队总得分是北方球队的倍,设北方的球队数为.⑴试求北方球队的总得分以及北方球队之间比赛的总得分;⑵证明:或;⑶证明:冠军是一支南方球队.【例57】已知集合,函数的定义域、值域都是,且对于任意.设是的任意的一个排列,定义数表,若两个数表的对应位置上至少有一个数不同,就说这是两张不同的数表,那么满足条件的不同的数表的张数为()A. B. C. D.间接法(直接求解类别比较大时)【例有五张卡片,它的正反面分别写0与1,2与3,4与5,6与58】 7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三位数?【例59】 从中取一个数字,从中取两个数字,组成无重复数字的三位数,则所有不同的三位数的个数是( )A. B. C. D.【例60】以三棱柱的顶点为顶点共可组成个不同的三棱锥.【例61】设集合,集合是的子集,且满足,,那么满足条件的子集的个数为()A. B. C. D.【例62】将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为()A. B. C. D.【例63】某高校外语系有名奥运会志愿者,其中有名男生,名女生,现从中选人参加某项“好运北京”测试赛的翻译工作,若要求这人中既有男生,又有女生,则不同的选法共有()A.种 B.种 C.种 D.种【例64】对于各数互不相等的正数数组(是不小于的正整数),如果在时有,则称“与”是该数组的一个“顺序”,一个数组中所有“顺序”的个数称为此数组的“顺序数”.例如,数组中有顺序“”,“”,其“顺序数”等于.若各数互不相等的正数数组的“顺序数”是,则的“顺序数”是_________.【例65】已知集合,,,从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()A. B. C. D.【例66】甲、乙、丙人站到共有级的台阶上,若每级台阶最多站人,同一级台阶上的人不区分站的位置,则不同的站法种数是(用数字作答).【例67】设有编号为,,,,的五个球和编号为,,,,的五个盒子,现将这五个球放入个盒子内,⑴只有一个盒子空着,共有多少种投放方法?⑵没有一个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法?⑶每个盒子内投放一球,并且至少有两个球的编号与盒子编号是相同的,有多少种投放方法?【例68】在排成的方阵的个点中,中心个点在某一个圆内,其余个点在圆外,在个点中任选个点构成三角形,其中至少有一顶点在圆内的三角形共有()A.个 B.个 C.个 D.个【例69】从甲、乙等名同学中挑选名参加某项公益活动,要求甲、乙中至少有人参加,则不同的挑选方法共有()A.种 B.种 C.种 D.种【例70】若关于的方程组有解,且所有解都是整数,则有序数对的数目为()A. B. C. D.【例71】从名男医生、名女医生中选名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有()A.种 B.种 C.种 D.种【例72】甲、乙两人从门课程中各选修门,则甲、乙所选的课程中至少有门不相同的选法共有()A.种 B.种 C.种 D.种【例73】,则含有五个元素,且其中至少有两个偶数的的子集个数为_____.【例74】在由数字0,1,2,3,4所组成的没有重复数字的四位数中,不能被5整除的数共有_______个.【例75】在的边上取个点,在边上取个点(均除点外),连同点共个点,现任取其中三个点为顶点作三角形,可作出三角形的个数为多少?【例76】共个人,从中选名组长名副组长,但不能当副组长,不同的选法总数是()A. B. C. D.【例77】将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为()A. B. C. D.【例78】三行三列共九个点,以这些点为顶点可组成___ _个三角形.【例79】从名奥运志愿者中选出名,分别从事翻译、导游、保洁三项不同的工作,每人承担一项,其中甲不能从事翻译工作,则不同的选派方案共有()A.种 B.种 C.种 D.种【例80】某校从名教师中选派名教师同时去个边远地区支教(每地人),其中甲和乙不同去,则不同的选派方案共有种()A. B. C. D.【例81】从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的选法有_____种(用数字作答)。
高中数学排列组合计算技巧
高中数学排列组合计算技巧在高中数学中,排列组合是一个重要的概念,它涉及到很多实际问题的计算。
掌握排列组合的计算技巧对于解题非常有帮助。
本文将介绍一些常见的排列组合计算技巧,并通过具体的题目来说明其考点和解题方法。
一、排列计算技巧排列是指从一组元素中取出若干个元素按照一定的顺序进行排列的方式。
在排列计算中,有两种常见的情况:全排列和部分排列。
1. 全排列全排列是指从一组元素中取出所有的元素按照一定的顺序进行排列的方式。
在全排列中,元素的顺序非常重要,每个元素都会占据一个位置。
例如,有4个元素A、B、C、D,要求从中取出3个元素进行全排列。
根据排列的定义,第一个位置可以有4种选择,第二个位置可以有3种选择,第三个位置可以有2种选择,因此总的全排列数为4×3×2=24。
在解决全排列问题时,可以使用乘法原理来计算。
即每个位置的选择数相乘即可得到总的全排列数。
2. 部分排列部分排列是指从一组元素中取出一部分元素按照一定的顺序进行排列的方式。
在部分排列中,元素的顺序同样重要,但不是每个元素都会占据一个位置。
例如,有4个元素A、B、C、D,要求从中取出2个元素进行部分排列。
根据排列的定义,第一个位置可以有4种选择,第二个位置可以有3种选择,因此总的部分排列数为4×3=12。
在解决部分排列问题时,可以使用乘法原理来计算。
即每个位置的选择数相乘即可得到总的部分排列数。
二、组合计算技巧组合是指从一组元素中取出若干个元素进行组合的方式。
在组合计算中,元素的顺序不重要,只关注元素的选择。
1. 组合的计算公式在组合计算中,有一个重要的公式可以用来计算组合数。
组合数表示从n个元素中取出r个元素进行组合的方式的总数,记作C(n, r)。
组合数的计算公式为:C(n, r) = n! / (r! × (n-r)!)其中,n!表示n的阶乘,即n! = n × (n-1) × (n-2) × ... × 2 × 1。
解排列组合题的两种方法
解排列组合题的两种方法一、基本计数原理与排列组合公式法基本计数原理是解排列组合题最基本的方法之一,通过分步骤求解问题中的每个小步骤,然后将结果相乘来得到最终的答案。
排列组合公式法是另一种常见的解题方法,通过应用排列组合计算公式来解决问题。
在排列组合问题中,我们经常会遇到排列数、组合数、多重集合的排列与组合等问题。
下面通过几个具体的例子来说明这两种方法的应用。
例1:有5个不同的球,将其放入3个不同的盒子中,要求每个盒子至少放一个球。
问有多少种放法?基本计数原理方法:1.第一个球有3种放置方法,放入三个盒子中的任一个;2.第二个球有3种放置方法,放入三个盒子中的任一个;3.第三个球有3种放置方法,放入三个盒子中的任一个;4.第四个球有3种放置方法,放入三个盒子中的任一个;5.第五个球有3种放置方法,放入三个盒子中的任一个。
根据基本计数原理,将每个步骤的种类数相乘,即可得到最终的答案:3×3×3×3×3=3^5=243排列组合公式法:将问题转化为将5个球放进3个盒子中,每个盒子可以为空的情况下根据排列组合公式,可以得到答案:C(5+3-1,3-1)=C(7,2)=7!/(2!×5!)=7×6/(2×1)=21例2:由4个字母A、B、C、D组成2位或3位的字母排列。
基本计数原理方法:有两种情况:1.2位字母排列:第一位字母有4种选择,第二位字母有3种选择,共有4×3=12种排列;2.3位字母排列:第一位字母有4种选择,第二位字母有3种选择,第三位字母有2种选择,共有4×3×2=24种排列。
根据基本计数原理,将每个情况的种类数相加,即可得到最终的答案:12+24=36种排列。
排列组合公式法:将问题转化为选择2位字母排列和选择3位字母排列两种情况根据排列组合公式,可以得到答案:P(4,2)+P(4,3)=4!/2!+4!/1!=12+24=36种排列。
解排列组合问题的常用技巧
解排列组合问题的常用技巧排列组合是高中数学的重点和难点之一,也是进一步学习概率的基础,事实上,许多概率问题也归结为排列组合问题,这一类问题不仅内容抽象,解法灵活,而且解题过程极易出现“重复”和“遗漏”的错误,这些错误甚至不容易检查出来,所以解题时要注意不断积累经验,总结解题规律,掌握若干技巧。
解答排列组合的问题,首先必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题。
其次,要抓住问题的本质特征,灵活运用基本原理和公式进行分析解答,同时,还要注意讲究一些基本策略和方法和技巧,使一些看似复杂的问题迎刃而解,下面介绍几种常用的解题技巧。
一、特殊元素“优先安排法”对于带有特殊元素的排列组合问题,一般应先考虑特殊元素,在考虑其他元素。
例⒈ 用0,2,3,4,5这五个数字,组成没有重复数字的三位数,其中偶数共有( ) A.24个 B.30个 C.40个 D.60个分析:由于该三位数为偶数,故末尾数字必为偶数,又因为0不能排在首位,故0就是其中的特殊元素,应优先安排.按0排在末尾和0不排在末尾分为两类:①0排在末尾时,有24A 个,②0不排在末尾时,则有131312A A A 个,由分类计数原理,共有偶数3013131224=+A A A A 个,选B .例. 从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中,甲、乙两人不去巴黎游览,则不同的选择方案共有( )A. 300种B. 240种C. 144种D. 96种(05年福建卷)解析:因为甲、乙不去巴黎,故从其余4人选1人去巴黎有C 41种方法,再从剩余5人中选3人去其余3市,有A 53种方法,所以共有方案C A 4153240=(种),故选(B )。
二、总体淘汰法对于含有否定字眼的问题,还可以从总体中把不符合要求的除去,此时,应注意既不能多减也不能少减。
例⒉ 100件产品中有3件是次品,从中任取三件,其中不全是正品的选法有多少种?分析:从100件产品中选3件产品的选法有3100C 种,选好后发现3件产品都是正品的选法不符合题意,因此把这种排法除去,故有142603973100=-C C 种。
高中数学排列组合13种方法精讲
高中数学排列组合13种方法精讲排列组合1、分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共有N =m +n 种不同的方法。
2、分步乘法计数原理:完成一件事需要两个步骤,做第1步有m 种不同的方法,做第2步有n 种不同的方法. 那么完成这件事共有N =m ×n 种不同的方法。
3、排列及排列数:(1)排列:从n 个不同元素中取出m 个(m ≤n )个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。
(2)排列数:从n 个不同元素中取出m 个(m ≤n )个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用mn A 表示。
(3)排列数公式:()()11+--=m n n n A mn .(4)全排列:n 个不同元素全部取出的排列,叫做n 个不同元素的一个全排列,()()n n n n A nn =-?-?=12321!()!!m n n A m n -=,规定0!=14、组合及组合数:(1)组合:从n 个不同元素中取出m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。
(2)组合数:从n 个不同元素中取出m (m ≤n )个元素的所有组合个数,叫做从n 个不同元素取出m 个元素的组合数,用mn C 表示。
(3)计算公式:()()()()!!!1111m n m n m m m n n n A A C m m mn mn-=-+--==. 由于0!=1,所以10=n C .5、组合数的性质:(1)mn n m n C C -=(2)11-++=m nm n m n C C C (3)n nn n n nC C C C 2210=++++ (4)m A mn =!m nC1、捆绑与插空法:例1.8位同学排成一队,问:⑴甲乙必须相邻,有多少种排法?⑵甲乙不相邻,有多少种排法?⑶甲乙必须相邻且与丙不相邻,有多少种排法?⑷甲乙必须相邻,丙丁必须相邻,有多少种排法?⑸甲乙不相邻,丙丁不相邻,有多少种排法?例2.某人射击8枪,命中4枪,恰好有三枪连续命中,有多少种不同的情况?例3.要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,有多少不同的排法?(只要求写出式子,不必计算)2、定序问题缩倍法:例1.信号兵把红旗与白旗从上到下挂在旗杆上表示信号。
高中数学解排列组合问题的常用技巧
解排列组合问题的常用技巧排列组合是高中数学的重点和难点之一,也是进一步学习概率的基础,事实上,许多概率问题也归结为排列组合问题,这一类问题不仅内容抽象,解法灵活,而且解题过程极易出现“重复”和“遗漏”的错误,这些错误甚至不容易检查出来,所以解题时要注意不断积累经验,总结解题规律,掌握若干技巧。
解答排列组合的问题,首先必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题。
其次,要抓住问题的本质特征,灵活运用基本原理和公式进行分析解答,同时,还要注意讲究一些基本策略和方法和技巧,使一些看似复杂的问题迎刃而解,下面介绍几种常用的解题技巧。
一、特殊元素“优先安排法”对于带有特殊元素的排列组合问题,一般应先考虑特殊元素,在考虑其他元素。
例⒈ 用0,2,3,4,5这五个数字,组成没有重复数字的三位数,其中偶数共有( )A.24个 B.30个 C.40个 D.60个分析:由于该三位数为偶数,故末尾数字必为偶数,又因为0不能排在首位,故0就是其中的特殊元素,应优先安排.按0排在末尾和0不排在末尾分为两类:①0排在末尾时,有24A 个,②0不排在末尾时,则有131312A A A 个,由分类计数原理,共有偶数3013131224=+A A A A 个,选B . 例. 从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中,甲、乙两人不去巴黎游览,则不同的选择方案共有( )A. 300种B. 240种C. 144种D. 96种解析:因为甲、乙不去巴黎,故从其余4人选1人去巴黎有种方法,再从剩余5人中选3人去其余3市,有种方法,所以共有方案(种),故选(B )。
二、总体淘汰法对于含有否定字眼的问题,还可以从总体中把不符合要求的除去,此时,应注意既不能多减也不能少减。
例⒉ 100件产品中有3件是次品,从中任取三件,其中不全是正品的选法有多少种?分析:从100件产品中选3件产品的选法有3100C 种,选好后发现3件产品都是正品的选法不符合题意,因此把这种排法除去,故有142603973100=-C C 种。
高中数学排列组合必懂方法
高中数学排列组合必懂方法.doc高考数学排列组合难题解决方法1.分类计数原理(加法原理)完成一件事,有类办法,在第1类办法中有种不同的方法,在第2类nm1办法中有种不同的方法,…,在第类办法中有种不同的方法,那么nmm2n完成这件事共有:Nmmm,,,,12n种不同的方法(2.分步计数原理(乘法原理)完成一件事,需要分成个步骤,做第1步有种不同的方法,做第2步nm1有种不同的方法,…,做第步有种不同的方法,那么完成这件事共nmm2n有:Nmmm,,,,12n种不同的方法(3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件( 解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.1C 先排末位共有 31C 然后排首位共有 41313CACA 最后排其它位置共有 4434 113CCA,288 由分步计数原理得 434位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。
若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件 1练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法,二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
排列组合问题常用方法(上课用)
甲乙都在前排: 1、都在左面4个座位 A22 3 =6种
2、都在右面4个座位 同上,6种
3、分列在中间3个的左右 A22 4 4 =32种
一共6+6+32=44种 甲乙都在后排: A(22)*(10+9+8+7+6+5+4+3+2+1)=110种 甲乙分列在前后两排 A(22)*12*8=192种 一共44+110+192=346种
1.计划展出10幅不同的画,其中1幅水彩画,4 幅油画,5幅国画, 排成一行陈列,要求同一 品种的必须连在一起,并且水彩画不在两 端,那么共有陈列方式的种数为_A_22_A_55_A_44 _
2. 5男生和5女生站成一排照像,男生相邻,女 生也相邻的排法有_A_22_A_55_A_55 _种
十五.实际操作穷举策略
练习: 1.把6名实习生分配到6个车间实习,共有
多少种不同的分法?
2.某8层大楼一楼电梯上来8名乘客人,他们 到各自的一层下电梯,下电梯的方法共有 多少种?
一.特殊元素和特殊位置优先策略
(特殊元素(或位置)分析法)
例1.由0到9这10个数字,可以组成多少个 (1) 没有重复数字的三位数? (2) 没有重复数字的三位奇数? (3) 没有重复数字的三位偶数?
例15.设有编号1,2,3,4,5的五个球和编号1,2
3,4,5的五个盒子,现将5个球投入这五
个盒子内,要求每个盒子放一个球,并且
恰好有两个球的编号与盒子的编号相同,.
有多少投法
解:从5个球中取出2个与盒子对号有__C_52__种
还剩下3球3盒序号不能对应,利用实际
操作法,如果剩下3,4,5号球, 3,4,5号盒
(教案)解答排列组合应用题的常用方法(一)
解答排列组合应用题的常用方法(一)教学目标:要求学生在掌握分步计数原理与分类计数原理的基础上,能用它们分析和解决一些简单的应用问题。
要求学生掌握并能灵活运用解应用题的一些常用方法。
教学重难点:题型的分析和方法的灵活选用。
教材分析:解决排列组合问题首先必须分清它是排列问题还是组合问题;其次,分析求解过程要注意掌握处理排列与组合问题的基本思想,即按元素的性质分类或按事件发生过程分步。
另外,对于同一个问题应从多个角度去思考,一题多解,这样既可防止重复与遗漏问题,又可提高分析问题的能力。
解排列组合应用题,首先必须认真审题,明确问题是排列问题,还是组合问题,其次是抓住问题的本质特征,灵活运用基本原理和公式进行分析解答,同时,还要注意讲究一些基本策略和方法技巧,使一些看似复杂的问题迎刃而解。
教学过程:总的原则—合理分类和准确分步解排列(或)组合问题,应按元素的性质进行分类,事情的发生的连续过程分步,做到分类标准明确,分步层次清楚,不重不漏。
例1 、6个同学和2个老师排成一排照相,2个老师站中间,学生甲不站排头,学生乙不站排尾,共有多少种不同的排法?练习(1)0,1,2,3,4,5可组成多少个无重复数字的五位偶数?(2)0,1,2,3,4,5可组成多少个无重复数字且能被五整除的五位数?(3)0,1,2,3,4,5可组成多少个无重复数字且大于31250的五位数?(4)31250是由0,1,2,3,4,5组成的无重复数字的五位数中从小到大第几个数?解题方法(一)特殊优先,一般在后对于问题中的特殊元素、特殊位置要优先安排。
对实际问题,有时“元素优先”,有时“位置优先”。
例 2 用0,1,2,3,4这五个数,组成没有重复数字的三位数,其中偶数共有()A.24B.30C.40D.60(二)排列组合混合,先选后排对于排列组合混合问题,宜先用组合选取元素,再进行排列。
例:4个不同的小球放入编号为1、2、3、4的四个盒内,则恰有一个空盒的放法有几种?(三)正难则反,间接处理(间接法)对于某些排列组合问题的正面情况较复杂,而反面情况较简单时,可先考虑无限制条件的排列,再减去其反面情况的总数,此时应注意既不能多减又不能少减。
高中数学-解排列问题的常用技巧
高中数学-解排列问题的常用技巧(一)特殊元素的“优先安排法”对于特殊元素的排列组合问题,一般应先考虑特殊元素,再考虑其他元素。
[例1]用0,1,2,3,4这五个数,组成没有重复数字的三位数,其中偶数共有()A.24B.30C.40D.60分析:由于该三位数是偶数,所以末尾数字必须是偶数,又因为0不能排首位,故0就是其中的“特殊”元素,应优先安排。
按0排在末尾和不排在末尾分为两类;1)0排在末尾时,有个2)0不排在末尾时,有个由分类计数原理,共有偶数30个.(二)总体淘汰法对于含有否定词语的问题,还可以从总体中把不符合要求的除去,此时应注意即不能多减又不能少减,例如在例1中,也可以用此方法解答。
五个数组成三位数的全排列有个,排好后发现0不能排在首位,而且3,1不能排在末尾,这两种不合条件的排法要除去,故有30个偶数。
(三)合理分类和准确分步解含有约束条件的排列组合问题,应按元素的性质进行分类,事情的发生的连续过程分步,做到分类标准明确,分步层次清楚,不重不漏。
例2.五人从左到右站成一排,其中甲不站排头,乙不站第二个位置,那么不同的站法有()A.120B.96C.78D.72分析:由题意,可先安排甲,并按其进行分类讨论:1)若甲在第二个位置上,则剩下的四人可自由安排,有种方法.2)若甲在第三或第四、五个位置上,则根据分布计数原理,不同的站法有种站法。
再根据分类计数原理,不同的站法共有78种(四)相邻问题——捆绑法对于某几个元素要求相邻的排列问题,可先将相邻的元素“捆绑”在一起,看作一个“大”的元素,与其它元素排列,然后再对相邻的元素内部进行排列。
例3)7人站成一排照相,要求甲,乙,丙三人相邻,分别有多少种站法?分析:先将甲,乙,丙三人捆绑在一起看作一个元素,与其余4人共有5个元素做全排列,有种排法,然后对甲,乙,丙三人进行全排列由分步计数原理可得:种不同排法(五)不相邻问题——插空法对于某几个元素不相邻得排列问题,可先将其它元素排好,然后再将不相邻的元素在已排好的元素之间及两端的空隙之间插入即可。
排列组合解题方法(一)
排列组合解题方法(一)排列组合解题方法什么是排列组合?排列组合是数学中的一个重要概念,用于解决问题中的选择和安排。
排列是指从一组元素中取出若干个元素进行安排,而组合是指从一组元素中取出若干个元素进行选择。
排列和组合的计算方法有很多种,下面将详细介绍几种常用的方法。
方法一:公式法1.排列:–公式:A n m=n!(n−m)!–解释:从n个元素中取出m个元素进行排列的方法数。
2.组合:–公式:C n m=n!m!(n−m)!–解释:从n个元素中取出m个元素进行组合的方法数。
方法二:迭代法1.排列:排列,直到选择完所有元素。
–代码示例:def permutation(nums, path, res): if len(path) == len(nums):res.append(path[:]) # 注意此处要使用path的副本returnfor num in nums:if num in path:continuepath.append(num)permutation(nums, path, res)path.pop()# 使用示例nums = [1, 2, 3]res = []permutation(nums, [], res)2.组合:组合,直到选择完所有元素。
–代码示例:def combination(nums, start, k, path, res):if k == 0:res.append(path[:]) # 注意此处要使用path的副本returnfor i in range(start, len(nums)):path.append(nums[i])combination(nums, i + 1, k - 1, path,res)path.pop()# 使用示例nums = [1, 2, 3]res = []combination(nums, 0, 2, [], res)方法三:动态规划法1.排列:–算法:使用动态规划计算排列的方法数。
高一数学中的排列组合问题怎么解决
高一数学中的排列组合问题怎么解决在高一数学的学习中,排列组合问题常常让同学们感到困惑和棘手。
但其实,只要掌握了正确的方法和思路,这些问题便能迎刃而解。
首先,我们要理解排列和组合的基本概念。
排列是指从给定的元素中,按照一定的顺序选取若干个元素进行排列;而组合则是指从给定的元素中,选取若干个元素组成一组,不考虑其顺序。
比如说,从 5 个不同的球中取出 2 个排成一列,这就是排列问题;而从 5 个不同的球中取出 2 个放在一个盒子里,这就是组合问题。
那么,如何解决这些问题呢?一、分类加法计数原理和分步乘法计数原理这两个原理是解决排列组合问题的基础。
分类加法计数原理:如果完成一件事有 n 类不同的方案,在第 1 类方案中有 m1 种不同的方法,在第 2 类方案中有 m2 种不同的方法……在第 n 类方案中有 mn 种不同的方法,那么完成这件事共有 N = m1 +m2 +… + mn 种不同的方法。
分步乘法计数原理:如果完成一件事需要 n 个步骤,做第 1 步有m1 种不同的方法,做第 2 步有 m2 种不同的方法……做第 n 步有 mn种不同的方法,那么完成这件事共有 N =m1×m2×…×mn 种不同的方法。
例如,从甲地到乙地,有 3 条公路直达,有 2 条铁路直达。
那么从甲地到乙地共有 3 + 2 = 5 种不同的走法,这就是分类加法计数原理的应用;而从甲地经过丙地到乙地,甲地到丙地有 2 条路可走,丙地到乙地有 3 条路可走,那么从甲地经过丙地到乙地共有 2×3 = 6 种不同的走法,这就是分步乘法计数原理的应用。
二、排列数和组合数的计算公式排列数公式:Anm = n(n 1)(n 2)…(n m + 1) (n, m∈N,且m≤n)特别地,当 m = n 时,Anm = n!(n 的阶乘,即 n! = n×(n 1)×(n 2)×…×2×1)组合数公式:Cnm = Anm / Amm = n! / m!(n m)!(n, m∈N,且m≤n)在计算排列数和组合数时,要注意准确运用公式,并且要注意计算的准确性。
排列组合问题的解题方法总结很非常好的方法(高三复习很合适)全
排列组合问题的解题方法总结一、相邻问题 “捆绑法”:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也可以作排列。
例1:5个男生3个女生排成一排,3个女生要排在一起,有多少种不同的排法?分析 此题涉及到的是排队问题,对于女生有特殊的限制,因此,女生是特殊元素,并且要求她们要相邻,因此可以将她们看成是一个元素来解决问题.解: 因为女生要排在一起,所以可以将3个女生看成是一个人,与5个男生作全排列,有66A 种排法,其中女生内部也有33A 种排法,根据乘法原理,共有6363A A 种不同的排法. 练1-1:7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再 与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有522522480A A A =种不同的排法练1-2:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 练1-3:6个人排成一排,甲、乙二人必须相邻的排法有多少种?解:将甲、乙二人“捆绑”起来看作一个元素与其它4个元素一起排列,有A55种,甲、乙二人的排列有A22种,共有A22·A55=240种.二、不相邻问题 “插空法”:对元素不相邻问题,可先不考虑限制条件先排其它元素,再将不相邻元素插入已排好元素的空隙中(包括两端)即可。
例2: 学校组织老师学生一起看电影,同一排电影票12张。
8个学生,4个老师,要求老师在学生之间,且老师互不相邻,共有多少种不同的坐法?分析 此题涉及到的是不相邻问题,并且是对老师有特殊的要求,因此老师是特殊元素,在解决时就要特殊对待.所涉及问题是排列问题.解:先排学生共有88A 种排法,然后把老师插入学生之间的空档,共有7个空档可插,选其中的4个空档,共有47A 种选法.根据乘法原理,共有的不同坐法为4878A A 种.练2-1:一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的 出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的 6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种练2-2:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果 将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30练2-3:用1,2,3,4,5,6,7,8组成没有重复数字的八位数,其中1与2相邻、3与4相邻、5与6相邻、7与8不相邻的八位数共有 个. 解:先“相邻”排列成三个“大元素”,再三个“大元素”排列,最后7与8“插空”,共有2223222234576A A A A A =种.三、特殊元素(或位置) “优先法”:排列组合问题无外乎“元素”与“位置”的关系问题,即某个元素排在什么位置或某个位置上排什么元素的问题.因此,对于有限制条件的排列组合问题,可从限制元素(或位置)入手,优先考虑。
解决排列组合问题的常用方法
按分类计数原理有 种
2、在∠AOB的OA边上取m个点,在OB边上取n个点(均除O点外),连同O点共m+n+1个点,现任取其中三个点为顶点作三角形,可作的三角形有( )
第一类办法从OA边上(不包括O)中任取一点与从OB边上(不包括O)中任取两点,可构造一个三角形,有C C 个;第二类办法从OA边上(不包括O)中任取两点与OB边上(不包括O)中任取一点,与O点可构造一个三角形,有C C 个;第三类办法从OA边上(不包括O)任取一点与OB边上(不包括O)中任取一点,与O点可构造一个三角形,有C C 个由加法原理共有N=C C +C C +C C 个三角形
【例2】用0,1,2,3,4,5这六个数字,
(1)可以组成多少个数字不重复的三位数?
(2)可以组成多少个数字允许重复的三位数?
(3)可以组成多少个数字不允许重复的三位数的奇数?
(4)可以组成多少个数字不重复的小于1000的自然数?
(5)可以组成多少个大于3000,小于5421的数字不重复的四位数?
解(1)分三步:①先选百位数字.由于0不能作百位数,因此有5种选法;
分组(堆)问题的六个模型:①有序不等分;②有序等分;③有序局部等分;④无序不等分;⑤无序等分;⑥无序局部等分;
插空法:解决一些不相邻问题时,可以先排一些元素然后插入其余元素,
捆绑法:相邻元素的排列,可以采用“整体到局部”的排法,即将相邻的元素当成“一个”元素进行排列,然后再局部排列。
排除法:从总体中排除不符合条件的方法数,这是一种间接解题的方法
点评:以上问题归纳为
分给人(有序)
分成堆(无序)
非均匀
均匀
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
N=m1m2
3.分类计数原理分步计数原理区别
mn
分类计数原理方法相互独立,任何一种方法都可以独立地完成这 件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段, 不能完成整个事件.
练习: 1.把6名实习生分配到7个车间实习,共有 多少种不同的分法 解:完成此事共分六步:把第一名实习生分配 到车间有7种分法.把第二名实习生分配 到车间也有7种分法,依此类推,由分步计 数原理共有76种不同的排法 分步计数原理的应用
A
5 2 2 A A 2 2 5
=480
练习题
用1,2,3,4,5组成没有重复数字 的五位数其中恰有两个偶数 夹1,5这两个奇数之间,这样 的五位数有多少个?
(三).不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个 独唱,舞蹈节目不能连续出场,则节目的出 场顺序有多少种?
解:分两步进行第一步排2个相声和3个独唱共 有 种,
A
种
5 5
第二步将4舞蹈插入第一步排
好的6个元素中间包含首尾两个空位共有 不同的方法
A
4 6
由分步计数原理,节目的
不同顺序共有
种
A A
5 5
独
4 6
独 独 相
元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端
相
练习题
某人射击8枪,命中4枪,4枪命中恰好 有3枪连在一起的情形的不同种数为 ( 20 )
C3
然后排首位共有___
C
1 4
3 A4
最后排其它位置共有___
C
由分步计数原理得
CC
1 3
1 4
3 A4
1 4
=288
A
3 4
C
1 3
练习题 从6名短跑运动员中选出4人参加4×100m 接力.试求满足下列条件的参赛方案各 有多少种? (1)甲不能跑第一棒和第四棒; (2)甲不跑第一棒,乙不能跑第四棒.
C
3 99
(五).正难则反总体淘汰策略 我们班里有43位同学,从中任抽5人,正、
副班长、团支部书记至少有一人在内的
抽法有多少种? 有些排列组合问题,正面直接考虑比较复杂, 而它的反面往往比较简捷,可以先求出它的 反面,再从整体中淘汰.
回顾小结:(1)解决有关计数的应用题时,要仔细 分析事件的发生、发展过程,弄清问题究竟是排列问 题还是组合问题,还是应直接利用分类计数原理或分 步计数原理解决.一个较复杂的问题往往是分类与分 步交织在一起,要准确分清,容易产生的错误是遗漏 和重复计数;(2)解决计数问题的常用策略有:(1) 特殊元素优先安排;(2)排列组合混合题要先选 (组合)后排;(3)相邻问题捆绑处理(先整体后 局部);(4)不相邻问题插空处理;(5)顺序一定 问题除法处理;(6)正难则反,合理转化. (六).课外作业:课本P20页1、2、3;习题1-4中4.有10个运动员名额,在分给7个班,每 班至少一个,有多少种分配方案?
解:因为10个名额没有差别,把它们排成 一排。相邻名额之间形成9个空隙。
在9个空档中选6个位置插个隔板, 可把名额分成7份,对应地分给7个 班级,每一种插板方法对应一种分法 共有___________种分法。
北师大版高中数学2-3第一 章《计数原理》
一、教学目标: (1)掌握排列组合一些常见的题型及解 题方法,能够运用两个原理及排列组合 概念解决排列组合问题; (2)提高合理选用知识解决问题的能 力. 二、教学重点、难点:排列、组合综合 问题. 三、教学方法:探析归纳,讨论交流 四、教学过程
复习巩固
将n个相同的元素分成m份(n,m为正整数),每份至少一个元素,可以用m-1块隔板,插入n个元素排成一排的n-1个 空隙中,所有分法数为
C
6 9
C
m 1 n 1
一 班
二 班
三 班
四 班
五 班
六 班
七 班
练习题
1.10个相同的球装5个盒中,每盒至少一 个,有多少装法? 4
C
9
2 .x+y+z+w=100求这个方程组的正整数解 的组数
(二).相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相 邻, 共有多少种不同的排法.
解:可先将甲乙两元素捆绑成整体并看成 一个复合元素,同时丙丁也看成一个 复合元素,再与其它元素进行排列, 同时对相邻元素内部进行自排。
要求某几个元素必须排在一起的问题,可以用 捆绑法来解决问题.即将需要相邻的元素合并 为一个元素,再与其它元素一起作排列,同时 要注意合并元素内部也必须排列. 由分步计数原理可得共有 种不同的排法 甲 乙 丙 丁
排列与组合:
名 称 定 义 种 数
排
列
组
合
从n个不同元素中取出m个元 素,按一定的顺序排成一列
从n个不同元素中取出 m个元素,把它并成一组
所有排列的的个数
m An
所有组合的个数
m Cn
符 号
(一).特殊元素和特殊位置优先策略
例1.由0,1,2,3,4,5可以组成多少个没有重复数字 五位奇数.
解:由于末位和首位有特殊要求,应该优先安 排,以免不合要求的元素占了这两个位置 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再 处理其它元素.若以位置分析为主,需先满足特殊位置的要求 ,再处理其它位置。若有多个约束条件,往往是考虑一 1 先排末位共有 ___ 个约束条件的同时还要兼顾其它条件
1.分类计数原理(加法原理)
完成一件事,有n类办法,在第1类办法中有 m1种不同的方法,在第2类办法中有m2 种不 同的方法,…,在第n类办法中有mn种不同的 方法,那么完成这件事共有: 种不同的方法.
N=m1 +m2 +
+mn
2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第 2步有m2 种不同的方法,…,做第n步有mn种不同的方法,那么完成 这件事共有: 种不同的方法.