高中数学排列组合典型例题精讲
排列组合经典题型及解法
排列组合是组合数学中的一个重要概念,涉及到对一组对象进行排列或组合的方式。
下面列举几个经典的排列组合题型及解法:
1. 排列问题:
-题型:从n个不同元素中选取m个元素,有多少种排列方式?
-解法:使用排列数的公式P(n, m) = n! / (n-m)!,其中n!表示n 的阶乘。
2. 组合问题:
-题型:从n个不同元素中选取m个元素,有多少种组合方式?
-解法:使用组合数的公式C(n, m) = n! / (m!(n-m)!),其中n!表示n的阶乘。
3. 重复排列问题:
-题型:从n个元素中选取m个元素进行排列,允许元素重复,有多少种排列方式?
-解法:使用重复排列数的公式P'(n, m) = n^m,其中^n表示n的m次方。
4. 重复组合问题:
-题型:从n个元素中选取m个元素进行组合,允许元素重复,有多少种组合方式?
-解法:使用重复组合数的公式C'(n, m) = C(n+m-1, m),其中C(n, m)表示组合数。
5. 圆排列问题:
-题型:将n个不同的物体围成一个圆圈,有多少种不同的排列方式?
-解法:使用圆排列数的公式P(n) = (n-1)!。
以上是一些常见的排列组合题型及其解法。
在实际问题中,可能会出现更加复杂和变化的情况,需要根据具体问题进行分析和推导解法。
组合数学例题和知识点总结
组合数学例题和知识点总结组合数学是一门研究离散对象的组合结构及其性质的数学分支。
它在计算机科学、统计学、物理学等领域都有着广泛的应用。
下面我们通过一些例题来深入理解组合数学中的重要知识点。
一、排列组合排列是指从给定的元素集合中取出若干个元素按照一定的顺序进行排列。
组合则是指从给定的元素集合中取出若干个元素组成一组,不考虑其顺序。
例题 1:从 5 个不同的元素中取出 3 个进行排列,有多少种不同的排列方式?解:根据排列的公式,\(A_{5}^3 = 5×4×3 = 60\)(种)例题 2:从 5 个不同的元素中取出 3 个进行组合,有多少种不同的组合方式?解:根据组合的公式,\(C_{5}^3 =\frac{5×4×3}{3×2×1} =10\)(种)知识点总结:1、排列数公式:\(A_{n}^m = n×(n 1)×(n 2)××(n m + 1)\)2、组合数公式:\(C_{n}^m =\frac{n!}{m!(n m)!}\)二、容斥原理容斥原理用于计算多个集合的并集的元素个数。
例题 3:在一个班级中,有 20 人喜欢数学,15 人喜欢语文,10 人既喜欢数学又喜欢语文,求喜欢数学或语文的人数。
解:设喜欢数学的集合为 A,喜欢语文的集合为 B,则喜欢数学或语文的人数为\(|A ∪ B| =|A| +|B| |A ∩ B| = 20 + 15 10= 25\)(人)知识点总结:容斥原理的一般形式:\(|\cup_{i=1}^{n} A_i| =\sum_{i=1}^{n} |A_i| \sum_{1\leq i < j\leq n} |A_i ∩ A_j| +\sum_{1\leq i < j < k\leq n} |A_i ∩ A_j∩ A_k| +(-1)^{n 1} |A_1 ∩ A_2 ∩ ∩ A_n|\)三、鸽巢原理鸽巢原理也叫抽屉原理,如果有 n + 1 个物体放入 n 个抽屉中,那么至少有一个抽屉中会放有两个或更多的物体。
高中 排列组合 知识点+例题 全面分类
辅导讲义―排列组合教学内容1.分类加法计数原理完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,……,在第n类方案中有m n种不同的方法,则完成这件事共有N=m1+m2+…+m n种不同的方法.2.分步乘法计数原理完成一件事需要分成n个不同的步骤,完成第一步有m1种不同的方法,完成第二步有m2种不同的方法,……,完成第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.3.分类加法计数原理与分步乘法计数原理,都涉及完成一件事的不同方法的种数.它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.1.三个人踢毽子,互相传递,每人每次只能踢一下.由甲开始踢,经过3次传递后,毽子又被踢回给甲.则不同的传递方式共有()A.5种B.2种C.3种D.4种2.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243 B.252 C.261 D.2793.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14 B.13 C.12 D.104.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个.(用数字作答)题型一分类加法计数原理的应用例1高三一班有学生50人,男生30人,女生20人;高三二班有学生60人,男生30人,女生30人;高三三班有学生55人,男生35人,女生20人.(1)从高三一班或二班或三班中选一名学生任学生会主席,有多少种不同的选法?分类计数原理与分步计数原理(2)从高三一班、二班男生中,或从高三三班女生中选一名学生任学生会体育部长,有多少种不同的选法?在所有的两位数中,个位数字大于十位数字的两位数共有多少个?题型二分步乘法计数原理的应用例2有六名同学报名参加三个智力竞赛项目,在下列情况下各有多少种不同的报名方法?(不一定六名同学都能参加)(1)每人恰好参加一项,每项人数不限;(2)每项限报一人,且每人至多参加一项;(3)每项限报一人,但每人参加的项目不限.思维升华(1)利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.已知集合M={-3,-2,-1,0,1,2},若a,b,c∈M,则:(1)y=ax2+bx+c可以表示多少个不同的二次函数;(2)y=ax2+bx+c可以表示多少个图象开口向上的二次函数.题型三两个原理的综合应用例3如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法总数.如图,正五边形ABCDE中,若把顶点A、B、C、D、E染上红、黄、绿三种颜色中的一种,使得相邻顶点所染颜色不相同,则不同的染色方法共有()A.30种B.27种C.24种D.21种方法与技巧1.分类加法和分步乘法计数原理,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.2.分类标准要明确,做到不重复不遗漏.3.混合问题一般是先分类再分步.4.要恰当画出示意图或树状图,使问题的分析更直观、清楚,便于探索规律.失误与防范1.切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行.2.分类的关键在于要做到“不重不漏”,分步的关键在于要正确设计分步的程序,即合理分类,准确分步.3.确定题目中是否有特殊条件限制.A 组 专项基础训练1.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为( ) A .3 B .4 C .6 D .82.小明有4枚完全相同的硬币,每个硬币都分正反两面.他想把4个硬币摆成一摞,且满足相邻两枚硬币的正面与正面不相对,不同的摆法有( ) A .4种 B .5种 C .6种 D .9种3.集合P ={x,1},Q ={y,1,2},其中x ,y ∈{1,2,3,…,9},且P ⊆Q .把满足上述条件的一对有序整数对(x ,y )作为一个点的坐标,则这样的点的个数是( ) A .9 B .14 C .15 D .214.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a ,b ,共可得到lg a -lg b 的不同值的个数是( ) A .9 B .10 C .18 D .205.从-2、-1、0、1、2、3这六个数字中任选3个不重复的数字作为二次函数y =ax 2+bx +c 的系数a 、b 、c ,则可以组成顶点在第一象限且过原点的抛物线条数为( ) A .6 B .20 C .100 D .120. B 组 专项能力提升1.已知集合M ={1,2,3},N ={1,2,3,4},定义函数f :M →N .若点A (1,f (1))、B (2,f (2))、C (3,f (3)),△ABC 的外接圆圆心为D ,且DA →+DC →=λDB →(λ∈R ),则满足条件的函数f (x )有( ) A .6种 B .10种 C .12种 D .16种2.直角坐标xOy 平面上,平行直线x =n (n =0,1,2,…,5)与平行直线y =n (n =0,1,2,…,5)组成的图形中,矩形共有( )A .25个B .36个C .100个D .225个3.如图,一环形花坛分成A ,B ,C ,D 四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96 B .84 C .60 D .484.五名学生报名参加四项体育比赛,每人限报一项,则报名方法的种数为________.五名学生争夺四项比赛的冠军(冠军不并列),获得冠军的可能性有________种.1.排列与组合的概念名称定义排列从n个不同元素中取出m(m≤n)个元素按照一定的顺序排成一列组合合成一组2.排列数与组合数(1)排列数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用A m n表示.(2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用C m n表示.3.排列数、组合数的公式及性质公式(1)A m n=n(n-1)(n-2)…(n-m+1)=n!(n-m)!(2)C m n=A m nA m m=n(n-1)(n-2)…(n-m+1)m!=n!m!(n-m)!性质(1)0!=1;A n n=n!.(2)C m n=C n-mn;C m n+1=C m n+C m-1n.1.用数字1、2、3、4、5组成的无重复数字的四位偶数的个数为()A.8 B.24 C.48 D.1202.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144 B.120 C.72 D.243.将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()4.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案有________种.排列组合题型一排列问题例1有4名男生、5名女生,全体排成一行,问下列情形各有多少种不同的排法?(1)甲不在中间也不在两端;(2)甲、乙两人必须排在两端;(3)男女相间.由0,1,2,3,4,5这六个数字组成的无重复数字的自然数,求:(1)有多少个含有2,3,但它们不相邻的五位数?(2)有多少个数字1,2,3必须由大到小顺序排列的六位数?题型二组合问题例2某市工商局对35种商品进行抽样检查,已知其中有15种假货.现从35种商品中选取3种.(1)其中某一种假货必须在内,不同的取法有多少种?(2)其中某一种假货不能在内,不同的取法有多少种?(3)恰有2种假货在内,不同的取法有多少种?(4)至少有2种假货在内,不同的取法有多少种?(5)至多有2种假货在内,不同的取法有多少种?从10位学生中选出5人参加数学竞赛.(1)甲必须入选的有多少种不同的选法?(2)甲、乙、丙不能同时都入选的有多少种不同的选法?题型三排列与组合的综合应用问题例34个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球,共有几种放法?(2)恰有1个盒内有2个球,共有几种放法?(3)恰有2个盒不放球,共有几种放法?思维升华排列、组合综合题目,一般是将符合要求的元素取出(组合)或进行分组,再对取出的元素或分好的组进行排列.其中分组时,要注意“平均分组”与“不平均分组”的差异及分类的标准.(1)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有()A.12种B.18种C.36种D.54种(2)(2014·重庆)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72 B.120C.144 D.168排列、组合问题计算重、漏致误典例:有20个零件,其中16个一等品,4个二等品,若从20个零件中任意取3个,那么至少有1个一等品的不同取法有________种.温馨提醒(1)排列、组合问题由于其思想方法独特,计算量庞大,对结果的检验困难,所以在解决这类问题时就要遵循一定的解题原则,如特殊元素、位置优先原则、先取后排原则、先分组后分配原则、正难则反原则等,只有这样我们才能有明确的解题方向.同时解答组合问题时必须心思细腻,考虑周全,这样才能做到不重不漏,正确解题.(2)“至少、至多”型问题不能利用分步乘法计数原理求解,多采用分类求解或转化为它的对立事件求解.方法与技巧1.对于有附加条件的排列、组合应用题,通常从三个途径考虑:(1)以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素;(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;(3)先不考虑附加条件,计算出排列数或组合数,再减去不合要求的排列数或组合数.2.排列、组合问题的求解方法与技巧:(1)特殊元素优先安排;(2)合理分类与准确分步;(3)排列、组合混合问题先选后排;(4)相邻问题捆绑处理;(5)不相邻问题插空处理;(6)定序问题排除法处理;(7)分排问题直排处理;(8)“小集团”排列问题先整体后局部;(9)构造模型;(10)正难则反,等价条件.失误与防范求解排列与组合问题的三个注意点:(1)解排列与组合综合题一般是先选后排,或充分利用元素的性质进行分类、分步,再利用两个原理做最后处理.(2)解受条件限制的组合题,通常用直接法(合理分类)和间接法(排除法)来解决,分类标准应统一,避免出现重复或遗漏.(3)对于选择题要谨慎处理,注意等价答案的不同形式,处理这类选择题可采用排除法分析选项,错误的答案都有重复或遗漏的问题.A组专项基础训练1.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种2.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种D.8种3.10名同学合影,站成了前排3人,后排7人.现摄影师要从后排7人中抽2人站前排,其他人的相对顺序不变,则不同调整方法的种数为()A.C27A55B.C27A22C.C27A25D.C27A354.某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位.该台晚会节目演出顺序的编排方案共有()A.36种B.42种C.48种D.54种5.如图所示,要使电路接通,开关不同的开闭方式有()1。
高中数学排列组合典型例题精讲
高中数学排列组合典型例题精讲概念形成1、元素:我们把问题中被取的对象叫做元素2、排列:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺....序.排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....。
说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列(与位置有关)(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同合作探究二 排列数的定义及公式3、排列数:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号m nA 表示 议一议:“排列”和“排列数”有什么区别和联系?4、排列数公式推导探究:从n 个不同元素中取出2个元素的排列数2n A 是多少?3n A 呢?m A n 呢? )1()2)(1(+-⋯--=m n n n n A m n (,,m n N m n *∈≤)说明:公式特征:(1)第一个因数是n ,后面每一个因数比它前面一个少1,最后一个因数是1n m -+,共有m 个因数;(2),,m n N m n *∈≤ 即学即练:1.计算 (1)410A ; (2)25A ;(3)3355A A ÷ 2.已知101095m A =⨯⨯⨯,那么m =3.,k N +∈且40,k ≤则(50)(51)(52)(79)k k k k ----用排列数符号表示为( ) A .5079k k A -- B .2979k A - C .3079k A - D .3050k A -例1. 计算从c b a ,,这三个元素中,取出3个元素的排列数,并写出所有的排列。
5 、全排列:n 个不同元素全部取出的一个排列,叫做n 个不同元素的全排列。
此时在排列数公式中, m = n全排列数:(1)(2)21!n n A n n n n =--⋅=(叫做n 的阶乘).即学即练:口答(用阶乘表示):(1)334A (2)44A (3))!1(-⋅n n排列数公式的另一种形式:)!(!m n n A m n -= 另外,我们规定 0! =1 .例2.求证:m n m n m n A mA A 11+-=+.解析:计算时,既要考虑排列数公式,又要考虑各排列数之间的关系;先化简,以减少运算量。
(完整版)排列组合知识点总结典型例题及解析
排列组合知识点总结 +典型例题及答案解析一.根根源理1.加法原理:做一件事有n 类方法,那么完成这件事的方法数等于各样方法数相加。
2.乘法原理:做一件事分n 步完成,那么完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或地址赞同重复使用,求方法数常常用根根源理求解。
二.排列:从n 个不相同元素中,任取m〔 m≤ n 〕个元素,依照必然的序次排成一列,叫做从 n个不相同元素中取出m个元素的一个排列,所有排列的个数记为A n m .1. 公式: 1. A n m n n 1 n 2 ⋯⋯ n m 1n!n m !2.规定: 0!1(1) n!n ( n 1)!,( n 1) n! (n 1)!(2)n n! [( n 1) 1] n! (n 1) n! n! (n 1)!n! ;(3)n n 1 1n1111(n1)!(n1)!( n1)!(n 1)!n!( n 1)!三.组合:从 n 个不相同元素中任取m〔m≤n〕个元素并组成一组,叫做从n 个不相同的 m 元素中任取 m 个元素的组合数,记作Cn 。
1. 公式:C n m A n m n n 1 ⋯⋯ n m1n!定: C n01A m m m!m! n m !2.组合数性质: C n m C n n m,C n m C n m 1 C n m1, C n0 C n1⋯⋯ C n n2n①;②;③;④注: C r r C r r1C r r2L C n r1C n r C r r11C r r1C r r2 L C n r1C n r C r r21C r r2L C n r1 C n r C n r11假设C n m1C n m2 m1 =m 2或 m1+m 2n四.办理排列组合应用题 1.①明确要完成的是一件什么事〔审题〕②有序还是无序③分步还是分类。
2.解排列、组合题的根本策略〔1〕两种思路:①直接法;②间接法:对有限制条件的问题,先从整体考虑,再把不吻合条件的全部状况去掉。
高中数学排列组合中的典型例题与分析(三)
排列与组合的八大典型错误、24种解题技巧三大模型一、知识点归纳二、基本题型讲解三、排列组合解题备忘录1.分类讨论的思想2.等价转化的思想3.容斥原理与计数4.模型构造思想四、排列组合中的8大典型错误1.没有理解两个基本原理出错2.判断不出是排列还是组合出错3.重复计算出错4.遗漏计算出错5.忽视题设条件出错6.未考虑特殊情况出错7.题意的理解偏差出错8.解题策略的选择不当出错五、排列组合24种解题技巧1.排序问题相邻问题捆绑法相离问题插空排定序问题缩倍法(插空法)定位问题优先法多排问题单排法圆排问题单排法可重复的排列求幂法全错位排列问题公式法2.分组分配问题平均分堆问题去除重复法(平均分配问题)相同物品分配的隔板法全员分配问题分组法有序分配问题逐分法3.排列组合中的解题技巧至多至少间接法染色问题合并单元格法交叉问题容斥原理法构造递推数列法六.排列组合中的基本模型分组模型(分堆模型)错排模型染色问题七.排列组合问题经典题型与通用方法(一)排序问题1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,则不同的排法有()A、60种B、48种C、36种D、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()A、1440种B、3600种C、4820种D、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B .3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3.A,B,C,D,E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法有()A、24种B、60种C、90种D、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B .11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
(完整版)排列组合题型分类解析(教师版)
排列组合题型分类解析一. 知识梳理:1、 两个计数原理:___________________________(分类)____________________________(分步)2、 排列:(1)排列的定义:_______________________(2)排列数公式:__________________________3、 组合:(1)组合的定义:_______________________(2)组合数公式:__________________________(3)组合数性质:①______________②_______________二.排列组合题常见解法.1. 分类法.例1:50件产品中有4件是次品从中任意抽出5件,至少有三件是次品的抽法共多少种.解析:分两类,有4件次品抽法14644C C ⋅;有三件次品的抽法24634C C ⋅,所以共有14644C C ⋅ +24634C C ⋅=4186种不同的抽法.练习1. 假设在100件产品中有3件次品,从中任意抽取5件. ①至少有两件是次品的抽法共多少种? ②至多有两件是次品的抽法共有多少种?2. 捆绑法例2: 6名同学排成一排,其中甲、乙必须排在一起的不同排法共有___种 ( C )(A)720种 (B)360种 (C)240种 (D)120种解析 将甲、乙两人视为一人,则有55A 种,再将甲、Z 两人互换位置,则共有5522A A ⋅=240种.练习2. 7个人按如下各种方式排队照相, 甲乙两人要站在一起的排法共有多少种?练习3. 6人站成一排,其中甲乙丙不全相邻的排法共有_________种3. 对称法例3. A 、B 、C 、D 、E 五人并排站在一排,若B 必须站在A 的右边(A 、B 可以不相邻).则不同排法共有( )。
A. 24种B. 60种C. 90种D. 120种解析:考虑对称性,B 在A 右和A 在B 右机会均等.应得排法5521A =60种. 说明 本题还可以推广到更为一般的情况,m 个人并排站成一排,其中n(m>n)个人的相对顺序一定,共有n n m m A A 种.如例3中,若A 、B 、C 顺序一定,共有3355A A =20种。
排列组合专题复习及经典例题详解
排列组合专题复习及经典例题详解研究目标:掌握排列、组合问题的解题策略。
重点:1.特殊元素优先安排的策略;2.合理分类与准确分步的策略;3.排列、组合混合问题先选后排的策略;4.正难则反、等价转化的策略;5.相邻问题捆绑处理的策略;6.不相邻问题插空处理的策略。
难点:综合运用解题策略解决问题。
研究过程:1.知识梳理1.分类计数原理(加法原理):完成一件事,有几类办法,在第一类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类型办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+。
+mn种不同的方法。
2.分步计数原理(乘法原理):完成一件事,需要分成n 个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法……,做第n步有mn种不同的方法;那么完成这件事共有N=m1×m2×。
×mn种不同的方法。
特别提醒:分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性;分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏。
3.排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,m<n时叫做选排列,m=n时叫做全排列。
4.排列数:从n个不同元素中,取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号Pn表示。
5.排列数公式:Pn=n(n-1)(n-2)。
(n-m+1)=m!/(n-m)。
其中m≤n,n、m∈N+。
特别提醒:规定0!=1.6.组合:从n个不同的元素中,任取m(m≤n)个不同元素,组成一组,叫做从n个不同元素中取m个不同元素的一个组合。
7.组合数:从n个不同元素中取m(m≤n)个不同元素的所有组合的个数,叫做从n个不同元素中取出m个不同元素的组合数,用符号Cn表示。
排列组合知识点归纳总结高考题
排列组合知识点归纳总结高考题编号一:排列组合基础知识在高考数学中,排列组合是一个重要的考点。
掌握排列组合知识对于解决相关题目至关重要。
本文将对排列组合的基础知识进行归纳总结,并配以高考题进行实例分析。
1. 排列排列是从若干个元素中取出一部分元素,按照一定的顺序进行排列,形成不同的序列。
排列有两种情况:有重复元素的排列和无重复元素的排列。
1.1 有重复元素的排列当从 n 个元素中取出 r 个进行排列时(r ≤ n),若这些元素中有重复元素,则排列的总数为 P(n;r) = n! / (n1! × n2! × ... × nr!),其中 ni 表示第 i 个元素的个数。
【例题1】:某班上有 10 名学生,其中 5 名男生和 5 名女生,现要从这 10 人中选出 3 人组成一支足球队。
求不同的组队方案数。
解:由于男生和女生分别占一定数量,该问题属于有重复元素的排列。
根据公式可知,解法为 P(5;3) = 5! / (2! × 3!) = 10 种。
1.2 无重复元素的排列当从 n 个不同元素中取出 r 个进行排列时(r ≤ n),排列的总数为P(n;r) = n! / (n-r)!。
【例题2】:有 9 个不同的球队参加一场篮球比赛。
其中第一名和第二名分别获得冠军和亚军。
请问这 9 支球队的比赛有多少种可能的结果?解:由于每个球队的位置是不同的,问题属于无重复元素的排列。
根据公式可知,解法为 P(9;2) = 9! / 7! = 72 种。
2. 组合组合是从若干个元素中取出一部分元素,不考虑顺序,形成不同的组合。
同样地,组合也有两种情况:有重复元素的组合和无重复元素的组合。
2.1 有重复元素的组合当从 n 个元素中取出 r 个进行组合时(r ≤ n),若这些元素中有重复元素,则组合的总数为 C(n;r) = (n+r-1)! / (r! × (n-1)!)。
高中数学排列组合总结及例题解析
高中数学排列组合总结及例题解析内容总结:一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A mn -=+---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+(2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式: ()()()C A A n n n m m n m n m n mn m m m==--+=-11……!!!! 10=n C 规定:组合数性质:.2 nn n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,,①;②;③;④11112111212211r r r r r r r r r r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:若12m m 1212m =m m +m n nn C C ==则或 四、二项式定理.1. ⑴二项式定理:n n n r r n r n n n n nn b a C b a C b a C b a C b a 01100)(+++++=+-- . 展开式具有以下特点:① 项数:共有1+n 项;② 系数:依次为组合数;,,,,,,210n n r n n n n C C C C C③ 每一项的次数是一样的,即为n 次,展开式依a 的降幕排列,b 的升幕排列展开.⑵二项展开式的通项.n b a )+(展开式中的第1+r 项为:),0(1Z r n r b aC T rr n r n r ∈≤≤=-+.⑶二项式系数的性质.①在二项展开式中与首未两项“等距离”的两项的二项式系数相等; ②二项展开式的中间项二项式系数.....最大. I. 当n是偶数时,中间项是第12+n项,它的二项式系数2nn C 最大; II. 当n 是奇数时,中间项为两项,即第21+n 项和第121++n 项,它们的二项式系数2121+-=n nn n C C 最大.③系数和:1314201022-=++=+++=+++n n n n n n n n n n n C C C C C C C C典例分类讲解:一、合理分类与准确分步法(利用计数原理)解含有约束条件的排列组合问题,应按元素性质进行分类,按事情发生的连续过程分步,保证每步独立,达到分类标准明确,分步层次清楚,不重不漏。
高中数学排列组合习题及解析
排列组合问题在实际应用中是非常广泛的,并且在实际中的解题方法也是比较复杂的,下面就通过一些实例来总结实际应用中的解题技巧。
1。
排列的定义:从n个不同元素中,任取m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
2.组合的定义:从n个不同元素中,任取m个元素,并成一组,叫做从n个不同元素中取出m个元素的一个组合.3.排列数公式:4。
组合数公式:5.排列与组合的区别与联系:与顺序有关的为排列问题,与顺序无关的为组合问题。
例1 学校组织老师学生一起看电影,同一排电影票12张。
8个学生,4个老师,要求老师在学生中间,且老师互不相邻,共有多少种不同的坐法?分析此题涉及到的是不相邻问题,并且是对老师有特殊的要求,因此老师是特殊元素,在解决时就要特殊对待。
所涉及问题是排列问题。
解先排学生共有种排法,然后把老师插入学生之间的空档,共有7个空档可插,选其中的4个空档,共有种选法。
根据乘法原理,共有的不同坐法为种。
结论1 插入法:对于某两个元素或者几个元素要求不相邻的问题,可以用插入法。
即先排好没有限制条件的元素,然后将有限制条件的元素按要求插入排好元素的空档之中即可。
例2 、5个男生3个女生排成一排,3个女生要排在一起,有多少种不同的排法?分析此题涉及到的是排队问题,对于女生有特殊的限制,因此,女生是特殊元素,并且要求她们要相邻,因此可以将她们看成是一个元素来解决问题。
解因为女生要排在一起,所以可以将3个女生看成是一个人,与5个男生作全排列,有种排法,其中女生内部也有种排法,根据乘法原理,共有种不同的排法。
结论2 捆绑法:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题。
即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也可以作排列。
例3 高二年级8个班,组织一个12个人的年级学生分会,每班要求至少1人,名额分配方案有多少种?分析此题若直接去考虑的话,就会比较复杂。
高中数学排列组合典型例题精讲
高中数学排列组合典型例题精讲概念形成1、元素:我们把问题中被取的对象叫做元素2、排列:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺....序.排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....。
说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列(与位置有关)(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同合作探究二 排列数的定义及公式3、排列数:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号m n A 表示议一议:“排列”和“排列数”有什么区别和联系?4、排列数公式推导探究:从n 个不同元素中取出2个元素的排列数2n A 是多少?3n A 呢?mA n 呢? )1()2)(1(+-⋯--=m n n n n A m n (,,m n N m n *∈≤) 说明:公式特征:(1)第一个因数是n ,后面每一个因数比它前面一个少1,最后一个因数是1n m -+,共有m 个因数;(2),,m n N m n *∈≤ 即学即练:1.计算 (1)410A ; (2)25A ;(3)3355A A ÷2.已知101095m A =⨯⨯⨯L ,那么m =3.,k N +∈且40,k ≤则(50)(51)(52)(79)k k k k ----L 用排列数符号表示为( )A .5079k k A --B .2979k A -C .3079k A -D .3050k A -例1. 计算从c b a ,,这三个元素中,取出3个元素的排列数,并写出所有的排列。
5 、全排列:n 个不同元素全部取出的一个排列,叫做n 个不同元素的全排列。
此时在排列数公式中, m = n全排列数:(1)(2)21!n n A n n n n =--⋅=L (叫做n 的阶乘).即学即练:口答(用阶乘表示):(1)334A (2)44A (3))!1(-⋅n n排列数公式的另一种形式:)!(!m n n A m n -= 另外,我们规定 0! =1 .例2.求证:m n m n m n A mA A 11+-=+.解析:计算时,既要考虑排列数公式,又要考虑各排列数之间的关系;先化简,以减少运算量。
排列组合典型例题 详解
典型例题一例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数?典型例题二例2三个女生和五个男生排成一排(1)如果女生必须全排在一起,可有多少种不同的排法?(2)如果女生必须全分开,可有多少种不同的排法?(3)如果两端都不能排女生,可有多少种不同的排法?(4)如果两端不能都排女生,可有多少种不同的排法?典型例题三例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。
(1)任何两个舞蹈节目不相邻的排法有多少种?(2)歌唱节目与舞蹈节目间隔排列的方法有多少种?典型例题四例4某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法.典型例题五例5 现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种?典型例题六例6下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法?典型例题七例5 7名同学排队照相.(1)若分成两排照,前排3人,后排4人,有多少种不同的排法?(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法?(3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法?(4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法?典型例题八例8 从65432、、、、五个数字中每次取出三个不同的数字组成三位数,求所有三位数的和.典型例题九例9 计算下列各题:(1) 215A ; (2) 66A ; (3) 1111------⋅n n m n m n m n A A A ; (4) !!33!22!1n n ⋅++⋅+⋅+ (5) !1!43!32!21n n -++++ 典型例题十例10 f e d c b a ,,,,,六人排一列纵队,限定a 要排在b 的前面(a 与b 可以相邻,也可以不相邻),求共有几种排法.对这个题目,A 、B 、C 、D 四位同学各自给出了一种算式:A 的算式是6621A ;B 的算式是441514131211)(A A A A A A ⋅++++;C 的算式是46A ; D 的算式是4426A C ⋅.上面四个算式是否正确,正确的加以解释,不正确的说明理由. 典型例题十一例11 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法?典型例题十二例12 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有( ).A .5544A A ⋅B .554433A A A ⋅⋅C .554413A A C ⋅⋅D .554422A A A ⋅⋅典型例题十三例13 由数字5,4,3,2,1,0组成没有重复数字的六位数,其中个位数字小于十位数的个数共有( ).A .210B .300C .464D .600典型例题十四例14 用5,4,3,2,1,这五个数字,组成没有重复数字的三位数,其中偶数共有( ).A .24个B .30个C .40个D .60个典型例题十五例15 (1)计算88332211832A A A A ++++ .(2)求!!3!2!1n S n ++++= (10≥n )的个位数字.典型例题十六例16 用543210、、、、、共六个数字,组成无重复数字的自然数,(1)可以组成多少个无重复数字的3位偶数?(2)可以组成多少个无重复数字且被3整除的三位数?典型例题十七例17 一条长椅上有7个座位,4人坐,要求3个空位中,有2个空位相邻,另一个空位与2个相邻空位不相邻,共有几种坐法?典型例题分析1、分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下:如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二.如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三.如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四.解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个;当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ⋅⋅(个). ∴ 没有重复数字的四位偶数有2296179250428181439=+=⋅⋅+A A A A 个.解法2:当个位数上排“0”时,同解一有39A 个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千位数是“0”排列数得:)(283914A A A -⋅个∴ 没有重复数字的四位偶数有22961792504)(28391439=+=-⋅+A A A A 个.解法3:千位数上从1、3、5、7、9中任选一个,个位数上从0、2、4、6、8中任选一个,百位,十位上从余下的八个数字中任选两个作排列有281515A A A ⋅⋅个干位上从2、4、6、8中任选一个,个位数上从余下的四个偶数中任意选一个(包括0在内),百位,十位从余下的八个数字中任意选两个作排列,有281414A A A ⋅⋅个∴ 没有重复数字的四位偶数有2296281414281515=⋅⋅+⋅⋅A A A A A A 个.解法4:将没有重复数字的四位数字划分为两类:四位奇数和四位偶数.没有重复数字的四位数有39410A A -个. 其中四位奇数有)(283915A A A -个∴ 没有重复数字的四位偶数有28393939283915394105510)(A A A A A A A A A +--⨯=---283954A A +=2828536A A +=2841A =2296=个说明:这是典型的简单具有限制条件的排列问题,上述四种解法是基本、常见的解法、要认真体会每种解法的实质,掌握其解答方法,以期灵活运用.2、解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有66A 种不同排法.对于其中的每一种排法,三个女生之间又都有33A 对种不同的排法,因此共有43203366=⋅A A 种不同的排法.(2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有55A 种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都有36A 种方法,因此共有144003655=⋅A A 种不同的排法.(3)解法1:(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有25A 种不同的排法,对于其中的任意一种排法,其余六位都有66A 种排法,所以共有144006625=⋅A A 种不同的排法.解法2:(间接法)3个女生和5个男生排成一排共有88A 种不同的排法,从中扣除女生排在首位的7713A A ⋅种排法和女生排在末位的7713A A ⋅种排法,但这样两端都是女生的排法在扣除女生排在首位的情况时被扣去一次,在扣除女生排在未位的情况时又被扣去一次,所以还需加一次回来,由于两端都是女生有6623A A ⋅种不同的排法,所以共有1440026623771388=+-A A A A A 种不同的排法.解法3:(元素分析法)从中间6个位置中挑选出3个来让3个女生排入,有36A 种不同的排法,对于其中的任意一种排活,其余5个位置又都有55A 种不同的排法,所以共有144005536=⋅A A 种不同的排法,(4)解法1:因为只要求两端不都排女生,所以如果首位排了男生,则未位就不再受条件限制了,这样可有7715A A ⋅种不同的排法;如果首位排女生,有13A 种排法,这时末位就只能排男生,有15A 种排法,首末两端任意排定一种情况后,其余6位都有66A 种不同的排法,这样可有661513A A A ⋅⋅种不同排法.因此共有360006615137715=⋅⋅+⋅A A A A A 种不同的排法.解法2:3个女生和5个男生排成一排有88A 种排法,从中扣去两端都是女生排法6623A A ⋅种,就能得到两端不都是女生的排法种数.因此共有36000662388=⋅-A A A 种不同的排法.说明:解决排列、组合(下面将学到,由于规律相同,顺便提及,以下遇到也同样处理)应用问题最常用也是最基本的方法是位置分析法和元素分析法.若以位置为主,需先满足特殊位置的要求,再处理其它位置,有两个以上约束条件,往往是考虑一个约束条件的同时要兼顾其它条件.若以元素为主,需先满足特殊元素要求再处理其它的元素.间接法有的也称做排除法或排异法,有时用这种方法解决问题来得简单、明快. 捆绑法、插入法对于有的问题确是适用的好方法,要认真搞清在什么条件下使用.3、解:(1)先排歌唱节目有55A 种,歌唱节目之间以及两端共有6个位子,从中选4个放入舞蹈节目,共有46A 中方法,所以任两个舞蹈节目不相邻排法有:55A 46A =43200.(2)先排舞蹈节目有44A 中方法,在舞蹈节目之间以及两端共有5个空位,恰好供5个歌唱节目放入。
高中数学选修_排列组合经典问题练习(详细解析)
排列组合经典练习(含解析)1.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为( )A .40B .50C .60D .70 【解析】先分组再排列,一组2人一组4人有C 26=15种不同的分法;两组各3人共有C 36A 22=10种不同的分法,所以乘车方法数为25×2=50,故选B.2.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有( )A .36种B .48种C .72种D .96种【解析】恰有两个空或n =6,代入验证,可知女生为2人或3人.5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有( )A .45种B .36种C .28种D .25种【解析】因为10÷8的余数为2,故可以肯定一步一个台阶的有6步,一步两个台阶 ②所得空间直角坐标系中的点的坐标中含有1个1的有C 12·A 33+A 33=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有C 13=3个.故共有符合条件的点的个数为12+18+3=33个,故选A.8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( )A .72B .96C .108D .144 【解析】分两类:若1与3相邻,有A 22·C 13A 22A 23=72个,若1与3不相邻有A 33·A 33=36个故共有72+36=108个.9.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有( )A .50种B .60种C .120种D .210种【解析】先安排甲学校的参观时间,一周内两天连排的方法一共有6种:(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7),甲任选一种为C 16,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有A 25种,按照分步乘法计数原理可知共有不同的安排方法C 16·A 25=120种,故选C.10.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有________种.(用数字作答)【解析】先安排甲、乙两人在后5天值班,有A 25=20(种)排法,其余5人再进行排列,有A 55=120(种)排法,所以共有20×120=2400(种)安排方法.11.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种不同的排法.(用数字作答)【解析】由题意可知,因同色球不加以区分,实际上是一个组合问题,共有C 49·C 25·C 33=1260(种)排法.12.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).【解析】先将6名志愿者分为4组,共有C 26C 24A 22种分法,再将4组人员分到4个不同场馆去,共有A 44种分法,故所有分配方案有:C 26·C 24A 22·A 44=1 080种. 13.要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有________种不同的种法(用数字作答).【解析】5有4种种法,1有3种种法,4有2种种法.若1、3同色,2有2种种法,若1、3不同色,2有1种种法,∴有4×3×2×(1×2+1×1)=72种.14. 将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有( )(A )12种 (B )18种 (C )36种 (D )54种【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.15. 某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有( )A. 504种B. 960种C. 1008种D. 1108种 解析:分两类:甲乙排1、2号或6、7号 共有4414222A A A ⨯种方法甲乙排中间,丙排7号或不排7号,共有)(43313134422A A A A A +种方法故共有1008种不同的排法16. 由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( ) (A )72 (B )96 (C ) 108 (D )144【解析】先选一个偶数字排个位,有3种选法①若5在十位或十万位,则1、3有三个位置可排,32232A A =24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共32222A A =12个算上个位偶数字的排法,共计3(24+12)=108个答案:C17. 在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为( )A.10B.11C.12D.15【解析】与信息0110至多有两个对应位置上的数字相同的信息包括三类:第一类:与信息0110有两个对应位置上的数字相同有624=C 个第二类:与信息0110有一个对应位置上的数字相同有414=C 个第三类:与信息0110没有一个对应位置上的数字相同有104=C 个。
高中数学-排列组合13种方法精讲
排列组合1、分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共有N=m+n种不同的方法。
2、分步乘法计数原理:完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法. 那么完成这件事共有N=m×n种不同的方法。
3、排列及排列数:(1)排列:排列数:从n个不同元素中取出m个(m≤n)个元素的所有排列的个数,(2)排列数公式()()1.nnA mn=m-⋅⋅⋅-1+n全排列:4、组合及组合数:(1)组合:组合数:(2)\计算公式:.5、组合数的性质:1、捆绑与插空法:例1.8位同学排成一队,问:⑴甲乙必须相邻,有多少种排法?⑵甲乙不相邻,有多少种排法?⑶甲乙必须相邻且与丙不相邻,有多少种排法?⑷甲乙必须相邻,丙丁必须相邻,有多少种排法?⑸甲乙不相邻,丙丁不相邻,有多少种排法?例2.某人射击8枪,命中4枪,恰好有三枪连续命中,有多少种不同的情况?例3.要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,有多少不同的排法?(只要求写出式子,不必计算)2、定序问题缩倍法:例1.信号兵把红旗与白旗从上到下挂在旗杆上表示信号。
现有3面红旗、2面白旗,把这5面旗都挂上去,可表示不同信号的种数是__________(用数字作答)例2.A 、B 、C 、D 、E 五人并排站成一排,如果B 必须站在A 的右边(A,B 可以不相邻)那么不同的排法有( )A 、24种B 、60种C 、90种D 、120种例3.从1,2,3,4,5五个数字当中任选3个组成一个三位数,其中十位比个位数字大的三位数共有多少个?3、 标号排位问题分步法:例1.同室4人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送来的贺年卡,则四张贺年卡的分配方式有( )A 、6种B 、9种C 、11种D 、23种例2.将标有1, 2,… 10的10个小球投入同样标有1, 2,… 10的圆筒中,每个圆筒都不空,且所投小球与圆筒标号均不相同的投法共有多少种?4、 有序分配问题逐分法:例1.有甲、乙、丙三项任务,甲需由2人承担,乙、丙各需由1人承担,从10人中选派4人承担这三项任务,不同的选法共有( )种A. 1260B. 2025C. 2520D. 5040例2.12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( )种A 、4448412C C C B 、44484123C C C C 、3348412A C C D 、334448412A C C C例3.有6本不同的书,按照以下要求处理,各有几种分法?(1) 平均分给甲、乙、丙三人;(2) 甲得一本,乙得两本,丙得三本.5、 隔板法:例1.10个名额分配到八个班,每班至少一个名额,问有多少种不同的分配方法?例2.求方程X+Y+Z=10的正整数解的个数例3.将10个相同的小球装入3个编号分别为1,2,3的盒子当中,每次将10个球装完,每个盒子里的球的个数都不小于盒子的编号数,则不同的装法共有多少种?6、多元问题分类法:例1.由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有()A. 210个B. 300个C. 464个D. 600个例2.(1)从1,2,3,…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?(2)从1,2,3,…,100这100个数中,任取两个数,使其和能被4整除的取法(不计顺序)共有多少种?7、至少问题间接法:例1.从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的取法共有()种A. 140B. 80C. 70D. 35例2.课外活动小组共13人,其中男生8人,女生5人,并且男、女各指定一名队长。
高中数学排列组合经典题型全面总结版(解析)
高中数学排列与组合(一)典型分类讲解一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有522522480A A A =种不同的排法乙甲丁丙练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30四.定序问题倍缩空位插入策略例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有47A 种方法。
专题09 排列组合高考常见小题全归类(精讲精练)(解析版)
专题09排列组合高考常见小题全归类【命题规律】排列组合是高考重点考查的内容之一,今后在本节的考查形式依然以选择或者填空为主,以考查基本概念和基本方法为主,难度中等偏下,与教材相当.本节内容与生活实际联系紧密,考生可适当留意常见的排列组合现象,如体育赛事排赛、彩票规则等,培养数学应用的思维意识.【核心考点目录】核心考点一:两个计数原理的综合应用核心考点二:直接法核心考点三:间接法核心考点四:捆绑法核心考点五:插空法核心考点六:定序问题(先选后排)核心考点七:列举法核心考点八:多面手问题核心考点九:错位排列核心考点十:涂色问题核心考点十一:分组问题核心考点十二:分配问题核心考点十三:隔板法核心考点十四:数字排列核心考点十五:几何问题核心考点十六:分解法模型与最短路径问题核心考点十七:排队问题核心考点十八:构造法模型和递推模型核心考点十九:环排问题【真题回归】1.(2022·全国·统考高考真题)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有()A.12种B.24种C.36种D.48种【答案】B【解析】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有3!种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:3!2224⨯⨯=种不同的排列方式,故选:B2.(2021·全国·统考高考真题)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种B.120种C.240种D.480种【答案】C【解析】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有25C种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有2 54!240C⨯=种不同的分配方案,故选:C.3.(2020·山东·统考高考真题)现从4名男生和3名女生中,任选3名男生和2名女生,分别担任5门不同学科的课代表,则不同安排方法的种数是()A.12B.120C.1440D.17280【答案】C【解析】首先从4名男生和3名女生中,任选3名男生和2名女生,共有3243C C种情况,再分别担任5门不同学科的课代表,共有55A种情况.所以共有3254351440C C A=种不同安排方法.故选:C4.(2020·海南·高考真题)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有()A.2种B.3种C.6种D.8种【答案】C【解析】第一步,将3名学生分成两个组,有12323C C=种分法第二步,将2组学生安排到2个村,有222A=种安排方法所以,不同的安排方法共有326⨯=种故选:C5.(2020·海南·统考高考真题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种【答案】C【解析】首先从6名同学中选1名去甲场馆,方法数有16C ; 然后从其余5名同学中选2名去乙场馆,方法数有25C ; 最后剩下的3名同学去丙场馆.故不同的安排方法共有126561060C C ⋅=⨯=种.故选:C6.(2020·全国·统考高考真题)如图,将钢琴上的12个键依次记为a 1,a 2,…,a 12.设1≤i <j <k ≤12.若k –j =3且j –i =4,则称ai ,aj ,ak 为原位大三和弦;若k –j =4且j –i =3,则称ai ,aj ,ak 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为( )A .5B .8C .10D .15【答案】C【解析】根据题意可知,原位大三和弦满足:3,4k j j i -=-=.∴1,5,8i j k ===;2,6,9i j k ===;3,7,10i j k ===;4,8,11i j k ===;5,9,12i j k ===. 原位小三和弦满足:4,3k j j i -=-=.∴1,4,8i j k ===;2,5,9i j k ===;3,6,10i j k ===;4,7,11i j k ===;5,8,12i j k ===. 故个数之和为10. 故选:C .7.(2022·全国·统考高考真题)从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.【答案】635. 【解析】从正方体的8个顶点中任取4个,有48C 70n ==个结果,这4个点在同一个平面的有6612m =+=个,故所求概率1267035m P n ===. 故答案为:635. 8.(2020·全国·统考高考真题)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.【答案】36【解析】4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学∴先取2名同学看作一组,选法有:246C =现在可看成是3组同学分配到3个小区,分法有:336A =根据分步乘法原理,可得不同的安排方法6636⨯=种 故答案为:36.【方法技巧与总结】1、如图,在圆中,将圆分n 等份得到n 个区域1M ,2M ,3M ,,(2)n M n ,现取(2)k k 种颜色对这n 个区域涂色,要求每相邻的两个区域涂不同的两种颜色,则涂色的方案有(1)(1)(1)n n k k --+-种.2、错位排列公式1(1)(1)!!inn i D n n =-=+⋅∑ 3、数字排列问题的解题原则、常用方法及注意事项(1)解题原则:排列问题的本质是“元素”占“位子”问题,有限制条件的排列问题的限制条件主要表现在某元素不排在某个位子上,或某个位子不排某些元素,解决该类排列问题的方法主要是按“优先”原则,即优先排特殊元素或优先满足特殊位子,若一个位子安排的元素影响到另一个位子的元素个数时,应分类讨论.4、定位、定元的排列问题,一般都是对某个或某些元素加以限制,被限制的元素通常称为特殊元素,被限制的位置称为特殊位置.这一类问题通常以三种途径考虑:(1)以元素为主考虑,这时,一般先解决特殊元素的排法问题,即先满足特殊元素,再安排其他元素; (2)以位置为主考虑,这时,一般先解决特殊位置的排法问题,即先满足特殊位置,再考虑其他位置; (3)用间接法解题,先不考虑限制条件,计算出排列总数,再减去不符合要求的排列数.5、解决相邻问题的方法是“捆绑法”,其模型为将n 个不同元素排成一排,其中某k 个元素排在相邻位置上,求不同排法种数的方法是:先将这k 个元素“捆绑在一起”,看成一个整体,当作一个元素同其他元素一起排列,共有11n k n k A -+-+种排法;然后再将“捆绑”在一起的元素“内部”进行排列,共有k k A 种排法.根据分步乘法计数原理可知,符合条件的排法共有11n k n k kk A A -+-+⋅种. 6、解决不相邻问题的方法为“插空法”,其模型为将n 个不同元素排成一排,其中某k 个元素互不相邻(1k n k ≤-+),求不同排法种数的方法是:先将(n k -)个元素排成一排,共有n k n k A --种排法;然后把k 个元素插入1n k -+个空隙中,共有1k n k A -+种排法.根据分步乘法计数原理可知,符合条件的排法共有n k n k A --·1k n k A -+种.7、解决排列、组合综合问题时需注意“四先四后”:(1)先分类,后分步:某些问题总体不好解决时,常常分成若干类,再由分类加法计数原理解决或分成若干步,再由分步乘法计数原理解决.常常既要分类,又要分步,其原则是先分类,再分步.(2)先特殊,后一般:解排列、组合问题时,常先考虑特殊情形(特殊元素,特殊位置等),再考虑其他情形.(3)先分组,后分配:对不同元素且较为复杂的平均分组问题,常常“先分组,再分配”. (4)先组合,后排列:对于既要选又要排的排列组合综合问题,常常考虑先选再排.【核心考点】核心考点一:两个计数原理的综合应用 【典型例题】例1.(2022·全国·高三专题练习)重庆九宫格火锅,是重庆火锅独特的烹饪方式.九宫格下面是相通的,实现了“底同火不同,汤通油不通”它把火锅分为三个层次,不同的格子代表不同的温度和不同的牛油浓度,其锅具抽象成数学形状如图(同一类格子形状相同):“中间格“火力旺盛,不宜久煮,适合放一些质地嫩脆、顷刻即熟的食物; “十字格”火力稍弱,但火力均匀,适合煮食,长时间加热以锁住食材原香;“四角格”属文火,火力温和,适合焖菜,让食物软糯入味.现有6种不同食物(足够量),其中1种适合放入中间格,3种适合放入十字格,2种适合放入四角格.现将九宫格全部放入食物,且每格只放一种,若同时可以吃到这六种食物(不考虑位置),则有多少种不同放法( )A .108B .36C .9D .6【答案】C【解析】由题可知中间格只有一种放法;十字格有四个位置,3种适合放入,所以有一种放两个位置,共有3种放法;四角格有四个位置,2种适合放入,可分为一种放三个位置,另一种放一个位置,有两种放法,或每种都放两个位置,有一种放法,故四角格共有3种放法;所以不同放法共有133=9⨯⨯种.故选:C .例2.(2022春·黑龙江哈尔滨·高三哈尔滨七十三中校考阶段练习)某市抽调5位医生分赴4所医院支援抗疫,要求每位医生只能去一所医院,每所医院至少安排一位医生.由于工作需要,甲、乙两位医生必须安排在不同的医院,则不同的安排种数是( )A .90B .216C .144D .240【答案】B【解析】完成这件事情,可以分两步完成,第一步,先将5为医生分为四组且甲、乙两位医生不在同一组,共有2519C -=种方案;第二步,再将这四组医生分配到四所医院,共有4424A =种不同方案,所以根据分步乘法计数原理得共有249216⨯=种不同安排方案. 故选:B .例3.(2022春·山东聊城·高三山东聊城一中校考期末)某大型联欢会准备从含甲、乙的6个节目中选取4个进行演出,要求甲、乙2个节目中至少有一个参加,且若甲、乙同时参加,则他们演出顺序不能相邻,那么不同的演出顺序的种数为( )A .720B .520C .600D .264【答案】D【解析】若甲、乙两节目只有一个参加,则演出顺序的种数为:134244192C C A =, 若甲、乙两节目都参加,则演出顺序的种数为:22242372C A A =;因此不同的演出顺序的种数为19272264+=. 故选:D .核心考点二:直接法 【典型例题】例4.甲、乙、丙、丁、戊共5名同学进行劳动技术比赛,决出第1名到第5名的名次.甲和乙去询问成绩,回答者对甲说:“很遗憾,你和乙都没有得到冠军.”对乙说:“你当然不会是最差的.”从这两个回答分析,5人的名次排列方式共有( )种A .54B .72C .96D .120【答案】A【解析】根据题意,甲乙都没有得到冠军,而乙不是最后一名, 分2种情况讨论:①甲是最后一名,则乙可以为第二、三、四名,即乙有3种情况,剩下的三人安排在其他三个名次,有336A =种情况,此时有1863=⨯种名次排列情况;②甲不是最后一名,甲乙需要排在第二、三、四名,有236A =种情况,剩下的三人安排在其他三个名次,有336A=种情况,此时有6636⨯=种名次排列情况;则一共有361854+=种不同的名次情况,故选:A.例5.某校开展研学活动时进行劳动技能比赛,通过初选,选出,,,,,A B C D E F共6名同学进行决赛,决出第1名到第6名的名次(没有并列名次),A和B去询问成绩,回答者对A说“很遗㙳,你和B都末拿到冠军;对B说“你当然不是最差的”.试从这个回答中分析这6人的名次排列顺序可能出现的结果有()A.720种B.600种C.480种D.384种【答案】D【解析】由题意,,A B不是第一名且B不是最后一名,B的限制最多,故先排B,有4种情况,再排A,也有4种情况,余下4人有44432124A=⨯⨯⨯=种情况,利用分步相乘计数原理知有4424384⨯⨯=种情况.故选:D.例6.甲、乙、丙、丁四人站成一列,要求甲站在最前面,则不同的排法有()A.24种B.6种C.4种D.12种【答案】B【解析】甲、乙、丙、丁四人站成一列,要求甲站在最前面,则只需对剩下3人全排即可,则不同的排法共有333216A=⨯⨯=,故选:B.核心考点三:间接法【典型例题】例7.将7个人从左到右排成一排,若甲、乙、丙3人中至多有2人相邻,且甲不站在最右端,则不同的站法有().A.1860种B.3696种C.3600种D.3648种【答案】D【解析】7个人从左到右排成一排,共有775040A=种不同的站法,其中甲、乙、丙3个都相邻有3535720A A=种不同的站法,甲站在最右端有66720A=种不同的站法,甲、乙、丙3个相邻且甲站最右端有242448A A=种不同的站法,故甲、乙、丙3人中至多有2人相邻,且甲不站在最右端,不同的站法有5040720720483648--+=种不同的站法.故选:D例8.某学校计划从包含甲、乙、丙三位教师在内的10人中选出5人组队去西部支教,若甲、乙、丙三位教师至少一人被选中,则组队支教的不同方式共有()A .21种B .231种C .238种D .252种【答案】B【解析】10人中选5人有510C 252=种选法,其中,甲、乙、丙三位教师均不选的选法有57C 21=种,则甲、乙、丙三位教师至少一人被选中的选法共有55107C C 231-=种.故选:B例9.中园古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”主要指德育;“乐”主要指美育;“射”和“御”就是体育和劳动;“书”指各种历史文化知识;“数”指数学.某校国学社团开展“六艺”讲座活动,每周安排一次讲座,共讲六次.讲座次序要求“射”不在第一次,“数”和“乐”两次不相邻,则“六艺”讲座不同的次序共有( )A .408种B .240种C .1092种.D .120种【答案】A【解析】每周安排一次,共讲六次的“六艺”讲座活动,“射”不在第一次的不同次序数为1555A A ,其中“射”不在第一次且“数”和“乐”两次相邻的不同次序数为142442A A A , 于是得1514255442A A A A A 51204242408-=⨯-⨯⨯=,所以“六艺”讲座不同的次序共有408种. 故选:A核心考点四:捆绑法 【典型例题】例10.(2022·四川自贡·统考一模)在某个单位迎新晚会上有A 、B 、C 、D 、E 、F 6个节目,单位为了考虑整体效果,对节目演出顺序有如下具体要求,节目C 必须安排在第三位,节目D 、F 必须安排连在一起,则该单位迎新晚会节目演出顺序的编排方案共有( )种A .36B .48C .60D .72【答案】A【解析】由题意D 、F 在一二位或四五位、五六位,C 是固定的,其他三个节目任意排列,因此方法数为23233A A 36=.故选:A .例11.(2022·四川宜宾·统考模拟预测)“四书” “五经”是我国9部经典名著《大学》《论语》《中庸》《孟子》《周易》《尚书》《诗经》《礼记》《春秋》的合称.为弘扬中国传统文化,某校计划在读书节活动期间举办“四书”“五经”知识讲座,每部名著安排1次讲座,若要求《大学》《论语》相邻,但都不与《周易》相邻,则排法种数为( )A .622622A A AB .6262A AC .622672A A A D .622662A A A【答案】C【解析】先排除去《大学》《论语》《周易》之外的6部经典名著的讲座,共有66A 种排法,将《大学》《论语》看作一个元素,二者内部全排列有22A 种排法, 排完的6部经典名著的讲座后可以认为它们之间包括两头有7个空位,从7个空位中选2个,排《大学》《论语》捆绑成的一个元素和《周易》的讲座,有27A 种排法,故总共有622627A A A 种排法,故选:C .例12.(2022春·四川内江·高三威远中学校校考期中)某一天的课程表要排入语文、数学、英语、物理、化学、生物六门课,如果数学只能排在第一节或者最后一节,物理和化学必须排在相邻的两节,则共有( )种不同的排法A .24B .144C .48D .96【答案】D【解析】若数学只能排在第一节或者最后一节,则数学的排法有2种, 物理和化学必须排在相邻的两节,将物理和化学捆绑,与语文、英语、生物三门课程进行排序,有2424A A 48=种排法.由分步乘法计数原理可知,共有24896⨯=种不同的排法. 故选:D .核心考点五:插空法 【典型例题】例13.(2022·全国·高三专题练习)电视台在电视剧开播前连续播放6个不同的广告,其中4个商业广告2个公益广告,现要求2个公益广告不能连续播放,则不同的播放方式共有( ).A .5424A A ⋅B .5424C C ⋅ C .4267A A ⋅D .4267C C ⋅【答案】A【解析】先排4个商业广告,则44A ,即存在5个空,再排2个公益广告,则25A ,故总排法:4245A A , 故选:A .例14.(2022·全国·高三专题练习)五声音阶是中国古乐的基本音阶,故有成语“五音不全”.中国古乐中的五声音阶依次为:宫、商、角、徽、羽,如果用上这五个音阶,排成一个五音阶音序,且商、角不相邻,徽位于羽的左侧,则可排成的不同音序有( )A .18种B .24种C .36种D .72种【答案】C【解析】先将宫、徽、羽三个音节进行排序,且徽位于羽的左侧,有33A 32=,再将商、角插入4个空中,共有243A 36=种.故选:C .例15.(2022·全国·高三专题练习)A ,B ,C ,D ,E ,F 这6位同学站成一排照相,要求A 与C 相邻且A 排在C 的左边,B 与D 不相邻且均不排在最右边,则这6位同学的不同排法数为( )A .72B .48C .36D .24【答案】C【解析】首先将A 与C 捆绑到一起,与除B 、D 以外的其他2位同学共3个元素进行排列,有33A 6=种排法,再将B 、D 插空到除最右边的3个位置中,有23A 6= 种排法,因此共有6636⨯=种排法,故选:C核心考点六:定序问题(先选后排) 【典型例题】例16.满足*(1,2,3,4)i x i ∈=N ,且123410x x x x <<<<的有序数组()1234,,,x x x x 共有( )个.A .49CB .49PC .410CD .410P【答案】A【解析】∵数组中数字的大小确定,从1到9共9个数任取4个数得一个有序数组,所有个数为49C . 故选:A .例17.某次演出有5个节目,若甲、乙、丙3个节目间的先后顺序已确定,则不同的排法有( ) A .120种 B .80种 C .20种 D .48种【答案】C【解析】在5个位置中选两个安排其它两个节目,还有三个位置按顺序放入甲、乙、丙,方法数为2520A =.故选:C .例18.花灯,又名“彩灯”“灯笼”,是中国传统农业时代的文化产物,兼具生活功能与艺术特色.如图,现有悬挂着的8盏不同的花灯需要取下,每次取1盏,则不同取法总数为 ( )A .2520B .5040C .7560D .10080【答案】A【解析】由题意,对8盏不同的花灯进行取下, 先对8盏不同的花灯进行全排列,共有88A 种方法, 因为取花灯每次只能取一盏,而且只能从下往上取, 所以须除去重复的排列顺序,即先取上方的顺序,故一共有8822222222=2520A A A A A 种,故选:A核心考点七:列举法【典型例题】例19.(2022春·河南南阳·高三统考期末)2021年8月17日,国家发改委印发的《2021年上半年各地区能耗双控目标完成情况晴雨表》显示,青海、宁夏、广西、广东、福建、新疆、云南、陕西、江苏、浙江、安徽、四川等12个地区能耗强度同比不降反升,全国节能形势十分严峻.某地市为响应节能降耗措施,决定对非繁华路段路灯在晚高峰期间实行部分关闭措施.如图,某路段有十盏路灯(路两边各有五盏),现欲在晚高峰期关闭其中的四盏灯,为保证照明的需求,要求相邻的路灯不能同时关闭且相对的路灯也不能同时关闭,则不同的关闭方案有()A.15种B.16种C.17种D.18种【答案】B【解析】因为在晚高峰期关闭其中的四盏灯,为保证照明的需求,要求相邻的路灯不能同时关闭且相对的路灯也不能同时关闭,所以不同的关闭方案如下:''''''''''''ACEB ACED ACB D ACB E ADB E ADC E AEB D,,,,,,,'''''''''''''''''''',,,,,,,,BDAC BDA E BDC E BEAC BEA D CEA D CEB D BAC E DAC E,共16种方案,故选:B例20.三人互相传球,由甲开始发球,并作为第一次传球,经过5次传球后,球仍回到甲手中,则不同的传球方式共有()A.6种B.8种C.10种D.16种【答案】C【解析】根据题意,作出树状图,第四次球不能传给甲,由分步加法计数原理可知:经过5次传球后,球仍回到甲手中,则不同的传球方式共有10种,故选:C .例21.(2022·上海浦东新·上海市实验学校校考模拟预测)定义“规范01数列”{an }如下:{an }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,,k a a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有A .18个B .16个C .14个D .12个【答案】C【解析】由题意,得必有10a =,81a =,则具体的排法列表如下:,01010011;010101011,共14个核心考点八:多面手问题 【典型例题】例22.我校去年11月份,高二年级有10人参加了赴日本交流访问团,其中3人只会唱歌,2人只会跳舞,其余5人既能唱歌又能跳舞.现要从中选6人上台表演,3人唱歌,3人跳舞,有种不同的选法.A .675B .575C .512D .545【答案】A【解析】分析:根据题意可按照只会左边的2人中入选的人数分类处理,分成三类,即可求解. 详根据题意可按照只会左边的2人中入选的人数分类处理.第一类2个只会左边的都不选,有3355100C C ⋅=种;第二类2个只会左边的有1人入选,有123256400C C C ⋅=种;第三类2个只会左边的全入选,有213257175C C C ⋅=种,所以共有675种不同的选法,故选A .例23.某国际旅行社现有11名对外翻译人员,其中有5人只会英语,4人只会法语,2人既会英语又会法语,现从这11人中选出4人当英语翻译,4人当法语翻译,则共有( )种不同的选法A .225B .185C .145D .110【答案】B【解析】根据题意,按“2人既会英语又会法语”的参与情况分成三类. ①“2人既会英语又会法语”不参加,这时有4454C C 种; ②“2人既会英语又会法语”中有一人入选, 这时又有该人参加英文或日文翻译两种可能,因此有134413254524C C C C C C +种; ③“2人既会英语又会法语”中两个均入选,这时又分三种情况:两个都译英文、两个都译日文、两人各译一个语种,因此有22442213132545242514C C C C C C C C C C ++种. 综上分析,共可开出441344132244221313542545242545242514185C C C C C C C C C C C C C C C C C C +++++=种. 故选:B .例24.“赛龙舟”是端午节的习俗之一,也是端午节最重要的节日民俗活动之一,在我国南方普遍存在端午节临近,某单位龙舟队欲参加今年端午节龙舟赛,参加训练的8名队员中有3人只会划左桨,3人只会划右桨,2人既会划左桨又会划右桨.现要选派划左桨的3人、划右桨的3人共6人去参加比赛,则不同的选派方法共有( )A .26种B .30种C .37种D .42种【答案】C【解析】根据题意,设{A =只会划左桨的3人},{B =只会划右桨的3人},{C =既会划左桨又会划右桨的2人},据此分3种情况讨论:①从A 中选3人划左桨,划右桨的在(B C ⋃)中剩下的人中选取,有35C 10=种选法,②从A 中选2人划左桨,C 中选1人划左桨,划右桨的在(B C ⋃)中选取,有213324C C C 24=种选法,③从A 中选1人划左桨,C 中2人划左桨,B 中3人划右桨,有13C 3=种选法,则有1024337++=种不同的选法. 故选:C .核心考点九:错位排列 【典型例题】例25.编号为1、2、3、4、5的5个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个人的编号与座位号一致的坐法有( )A .10种B .20种C .30种D .60种【答案】B【解析】先选择两个编号与座位号一致的人,方法数有2510C =,另外三个人编号与座位号不一致,方法数有2, 所以不同的坐法有10220⨯=种. 故选:B例26.将编号为1、2、3、4、5、6的小球放入编号为1、2、3、4、5、6的六个盒子中,每盒放一球,若有且只有两个盒子的编号与放入的小球的编号相同,则不同的放法种数为( )A .90B .135C .270D .360【答案】B【解析】根据题意,分以下两步进行:(1)在6个小球中任选2个放入相同编号的盒子里,有2615C =种选法,假设选出的2个小球的编号为5、6;(2)剩下的4个小球要放入与其编号不一致的盒子里,对于编号为1的小球,有3个盒子可以放入,假设放入的是2号盒子. 则对于编号为2的小球,有3个盒子可以放入, 对于编号为3、4的小球,只有1种放法.综上所述,由分步乘法计数原理可知,不同的放法种数为1533135⨯⨯=种. 故选:B .例27.若5个人各写一张卡片(每张卡片的形状、大小均相同),现将这5张卡片放入一个不透明的箱子里,并搅拌均匀,再让这5人在箱子里各摸一张,恰有1人摸到自己写的卡片的方法数有( )A .20B .90C .15D .45【答案】D【解析】根据题意,分2步分析:①先从5个人里选1人,恰好摸到自己写的卡片,有15C种选法,②对于剩余的4人,因为每个人都不能拿自己写的卡片,因此第一个人有3种拿法,被拿了自己卡片的那个人也有3种拿法,剩下的2人拿法唯一,所以不同的拿卡片的方法有11153345C C C⋅⋅=种.故选:D.核心考点十:涂色问题【典型例题】例28.(2022春·陕西宝鸡·高三校考开学考试)某儿童游乐园有5个区域要涂上颜色,现有四种不同颜色的油漆可供选择,要求相邻区域不能涂同一种颜色,则符合条件的涂色方案有()种A.36B.48C.54D.72【答案】D【解析】如图:将五个区域分别记为∴,∴,∴,∴,∴,则满足条件的涂色方案可分为两类,第一类区域∴,∴涂色相同的涂色方案,第二类区域∴,∴涂色不相同的涂色方案,其中区域∴,∴涂色相同的涂色方案可分为5步完成,第一步涂区域∴,有4种方法,第二步涂区域∴,有3种方法,第三步涂区域∴,有2种方法,第四步涂区域∴,有1种方法,第五步涂区域∴,有2种方法,由分步乘法计数原理可得区域∴,∴涂色相同的涂色方案有43212⨯⨯⨯⨯种方案,即48种方案;区域∴,∴涂色不相同的涂色方案可分为5步完成,第一步涂区域∴,有4种方法,第二步涂区域∴,有3种方法,第三步涂区域∴,有2种方法,第四步涂区域∴,有1种方法,第五步涂区域∴,有1种方法,由分步乘法计数原理可得区域∴,∴涂色不相同的涂色方案有43211⨯⨯⨯⨯种方案,即24种方案;所以符合条件的涂色方案共有72种,故选:D.。
高中数学 2-3 排列组合典型例题 教师用
1.分类计数原理: 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法,那么完成这件事共有N = n 1+n 2+n 3+…+n M 种不同的方法.2.分步计数原理:完成一件事,需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事共有N =n 1·n 2·n 3·…n M 种不同的方法.注:分类计数原理和分步计数原理是排列组合的基础和核心,既可用来推导排列数、组合数公式,也可用来直接解题。
它们的共同点都是把一个事件分成若干个分事件来进行计算。
只不过利用分类计算原理时,每一种方法都独立完成事件;如需连续若干步才能完成的则是分步。
利用分类计数原理,重在分“类”,类与类之间具有独立性和并列性;利用分步计数原理,重在分步;步与步之间具有相依性和连续性.比较复杂的问题,常先分类再分步。
3.⑪排列的定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.⑫排列数的定义: 从n 个不同元素中取出m (m ≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数, 用符号m n A 表示. 其中n ,m ∈N *,并且m ≤n .⑬排列数公式: !(1)(1)(,,)()!m n n A n n n m m n n m N n m =--+=∈- ≤ 当m =n 时,排列称为全排列,排列数为n n A =(1)21n n ⨯-⨯⨯⨯ 记为n !, 且规定O!=1.注:!(1)!!n n n n ⋅=+- ; 11--=m n m n nA A 4.⑪组合的定义: 从n 个不同的元素中任取m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.⑫组合数的定义: 从n 个不同的元素中取出m (m ≤n )个元素的所有组合数,叫做从n 个不同元素中取出m 个元素的组合数.用符号mn C 表示. ⑬组合数公式: (1)(1)!!!()!m m n n m m A n n n m n C A m m n m --+===- . 规定01n C =,其中m ,n ∈N +,m ≤n.注: 排列是“排成一排”,组合是“并成一组”, 前者有序而后者无序. ⑭组合数的两个性质:①;mn m n n C C -= 从n 个不同元素中取出m 个元素后就剩下n -m 个元素,因此从n 个不同元素中取出 n -m 个元素的方法是一一对应的,因此是一样多的.②11m m m n n n C C C -++= 根据组合定义与加法原理得;在确定n +1个不同元素中取m 个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n 个元素中再取m -1个元素,所以有C 1-m n ,如果不取这一元素,则需从剩余n 个元素中取出m 个元素,所以共有C mn 种,依分类原理有m n m n m n C C C 11+-=+.5.解排列、组合题的基本策略与方法(Ⅰ)排列、组合问题几大解题方法:①直接法; ②排除法;③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”;④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.⑥调序法:当某些元素次序一定时,可用此法.解题方法是:先将n 个元素进行全排列有n n A 种,()m m n <个元素的全排列有m m A 种,由于要求m 个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到去调序的作用,即若n 个元素排成一列,其中m 个元素次序一定,共有m m n nA A 种排列方法.(Ⅱ)排列组合常见解题策略:①特殊元素优先安排策略; ②合理分类与准确分步策略;③排列、组合混合问题先选后排的策略(处理排列组合综合性问题一般是先选元素,后排列); ④正难则反,等价转化策略; ⑤相邻问题插空处理策略;⑥不相邻问题插空处理策略; ⑦定序问题除法处理策略;⑧分排问题直排处理的策略; ⑨ “小集团”排列问题中先整体后局部的策略; ⑩构造模型的策略.1.1两个计数原理(1)例1、某班共有男生28名,女生20名,从该班选出学生代表参加校学代会。
数学高中排列组合知识和典例
1.排列与排列数(1)排列:从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)排列数:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,记作A m n.2.组合与组合数(1)组合:从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.(2)组合数:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,记作C m n.排列数、组合数的公式及性质顺序有关,组合问题与顺序无关.一、排列问题排列典型例题:有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.(1)选5人排成一排;(2)排成前后两排,前排3人,后排4人;(3)全体排成一排,甲不站排头也不站排尾;(4)全体排成一排,女生必须站在一起;(5)全体排成一排,男生互不相邻.解:(1)从7人中选5人排列,有A57=7×6×5×4×3=2 520(种).(2)分两步完成,先选3人站前排,有A37种方法,余下4人站后排,有A44种方法,共有A37·A44=5 040(种).(3)法一:(特殊元素优先法)先排甲,有5种方法,其余6人有A66种排列方法,共有5×A66=3 600(种).法二:(特殊位置优先法)首尾位置可安排另6人中的两人,有A26种排法,其他有A55种排法,共有A26A55=3 600(种).(4)(捆绑法)将女生看作一个整体与3名男生一起全排列,有A44种方法,再将女生全排列,有A44种方法,共有A44·A44=576(种).(5)(插空法)先排女生,有A44种方法,再在女生之间及首尾5个空位中任选3个空位安排男生,有A35种方法,共有A44·A35=1 440(种).1.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324 B.648C.328 D.3602.用1,2,3,4这四个数字组成无重复数字的四位数,其中恰有一个偶数夹在两个奇数之间的四位数的个数为________.3.甲、乙两人要在一排8个空座上就坐,若要求甲、乙两人每人的两旁都有空座,则不同的坐法有()A.10种B.16种C.20种D.24种二、组合问题组合典型例题:某运动队有男运动员6名,女运动员4名,若选派5人外出比赛,在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名;(2)至少有1名女运动员.解:(1)任选3名男运动员,方法数为C36,再选2名女运动员,方法数为C24,共有C36·C24=120(种)方法.(2)法一:(直接法)至少1名女运动员包括以下几种情况:1女4男,2女3男,3女2男,4女1男,由分类加法计数原理可得总选法数为C14C46+C24C36+C34C26+C44C16=246(种).法二:(间接法)“至少有1名女运动员”的反面是“全是男运动员”,因此用间接法求解,不同选法有C510-C56=246(种).1.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有()A.30种B.36种C.60种D.72种2.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种三、排列组合综合问题(1)简单的排列与组合的综合问题;(2)分组、分配问题.1.将标号为1,2,3,4的四个篮球分给三位小朋友,每位小朋友至少分到一个篮球,且标号1,2的两个篮球不能分给同一个小朋友,则不同的分法种数为()A.15 B.20C.30 D.422.将5位同学分别保送到大学、交通大学、大学这3所大学就读,每所大学至少保送1人,则不同的保送方法共有()A .150种B .180种C .240种D .540种此题是高考出现频率最高的题型,我把他称为均分问题:对于部分均分,解题时注意重复的次数是均匀分组的阶乘数,即若有m 组元素个数相等,则分组时应除以m !,分组过程中有几个这样的均匀分组,就要除以几个这样的全排列数.(3)涂色问题:涂色的规则是“相邻区域涂不同的颜色”,在处理涂色问题时,可按照选择颜色的总数进行分类讨论,每减少一种颜色的使用,便意味着多出一对不相邻的区域涂相同的颜色(还要注意两两不相邻的情况),先列举出所有不相邻区域搭配的可能,再进行涂色即可。
高中数学排列组合中的典型例题与分析(五)
排列与组合的八大典型错误、24种解题技巧三大模型一、知识点归纳二、基本题型讲解三、排列组合解题备忘录1.分类讨论的思想2.等价转化的思想3.容斥原理与计数4.模型构造思想四、排列组合中的8大典型错误1.没有理解两个基本原理出错2.判断不出是排列还是组合出错3.重复计算出错4.遗漏计算出错5.忽视题设条件出错6.未考虑特殊情况出错7.题意的理解偏差出错8.解题策略的选择不当出错五、排列组合24种解题技巧1.排序问题相邻问题捆绑法相离问题插空排定序问题缩倍法(插空法)定位问题优先法多排问题单排法圆排问题单排法可重复的排列求幂法全错位排列问题公式法2.分组分配问题平均分堆问题去除重复法(平均分配问题)相同物品分配的隔板法全员分配问题分组法有序分配问题逐分法3.排列组合中的解题技巧至多至少间接法染色问题合并单元格法交叉问题容斥原理法构造递推数列法六.排列组合中的基本模型分组模型(分堆模型)错排模型染色问题(四)高考数学中涂色问题的常见解法及策略与涂色问题有关的试题新颖有趣,近年已经在高考题中出现,其中包含着丰富的数学思想。
解决涂色问题方法技巧性强且灵活多变,因而这类问题有利于培养学生的创新思维能力、分析问题与观察问题的能力,有利于开发学生的智力。
本文拟总结涂色问题的常见类型及求解方法一.区域涂色问题1、根据分步计数原理,对各个区域分步涂色,这是处理染色问题的基本方法。
例1。
用5种不同的颜色给图中标①、②、③、④的各部分涂色,每部分只涂一种颜色,相邻部分涂不同颜色,则不同的涂色方法有多少种?分析:先给①号区域涂色有5种方法,再给②号涂色有4种方法,接着给③号涂色方法有3种,由于④号与①、②不相邻,因此④号有4种涂法,根据分步计数原理,不同的涂色方法有5434240⨯⨯⨯=2、根据共用了多少种颜色讨论,分别计算出各种出各种情形的种数,再用加法原理求出不同的涂色方法种数。
例2、四种不同的颜色涂在如图所示的6个区域,且相邻两个区域不能同色。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概念形成1、元素:我们把问题中被取的对象叫做元素2、排列:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺....序.排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....。
说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列(与位置有关)(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同合作探究二 排列数的定义及公式3、排列数:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号m n A 表示议一议:“排列”和“排列数”有什么区别和联系?4、排列数公式推导探究:从n 个不同元素中取出2个元素的排列数2n A 是多少?3n A 呢?mA n 呢? )1()2)(1(+-⋯--=m n n n n A m n (,,m n N m n *∈≤) 说明:公式特征:(1)第一个因数是n ,后面每一个因数比它前面一个少1,最后一个因数是1n m -+,共有m 个因数;(2),,m n N m n *∈≤即学即练:1.计算 (1)410A ; (2)25A ;(3)3355A A ÷2.已知101095m A =⨯⨯⨯,那么m =3.,k N +∈且40,k ≤则(50)(51)(52)(79)k k k k ----用排列数符号表示为( )A .5079k k A --B .2979k A -C .3079k A -D .3050k A -例1. 计算从c b a ,,这三个元素中,取出3个元素的排列数,并写出所有的排列。
5 、全排列:n 个不同元素全部取出的一个排列,叫做n 个不同元素的全排列。
此时在排列数公式中, m = n全排列数:(1)(2)21!n n A n n n n =--⋅=(叫做n 的阶乘).即学即练:口答(用阶乘表示):(1)334A (2)44A (3))!1(-⋅n n排列数公式的另一种形式:)!(!m n n A m n -= 另外,我们规定 0! =1 .例2.求证:m n m n m n A mA A 11+-=+.解析:计算时,既要考虑排列数公式,又要考虑各排列数之间的关系;先化简,以减少运算量。
解:左边=右边)!)!!)((!)!(!==+-+=+-⋅++=+-⋅+-+m1n A 1()!1(1(n!m n 1m -n )!1m n n m m n n m n n m n 点评:(1)熟记两个公式;(2)掌握两个公式的用途;(3)注意公式的逆用。
变式训练:已知89557=-nn n A A A ,求n 的值。
(n =15) 1.若!3!n x =,则x = ( ) ()A 3nA ()B 3n n A - ()C 3n A ()D 33n A - 2.若532m m A A =,则m 的值为 ( )()A 5 ()B 3 ()C 6 ()D 73. 已知256n A =,那么n = ;4.一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假定每股岔道只能停放1列火车)?1.计算 (1)410A ; (2)25A ;(3)3355A A ÷2.已知101095m A =⨯⨯⨯,那么m =3.,k N +∈且40,k ≤则(50)(51)(52)(79)k k k k ----用排列数符号表示为( )A .5079k k A --B .2979k A -C .3079k A -D .3050k A -例1. 计算从c b a ,,这三个元素中,取出3个元素的排列数,并写出所有的排列。
1.若!3!n x =,则x = ( ) ()A 3n A ()B 3n n A - ()C 3n A ()D 33n A -2.若532m m A A =,则m 的值为 ( )()A 5 ()B 3 ()C 6 ()D 73. 已知256n A =,那么n = ;4.一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假定每股岔道只能停放1列火车)?1.下列各式中与排列数mn A 相等的是( ) (A )!(1)!-+n n m (B )n(n -1)(n -2)……(n -m) (C )11m n nA n m --+ (D )111m n n A A -- 2.若 n ∈N 且 n<20,则(27-n)(28-n)……(34-n)等于( )(A )827n A - (B )2734n n A -- (C )734n A - (D )834n A -3.若S=123100123100A A A A ++++,则S 的个位数字是( ) (A )0 (B )3 (C )5 (D )84.已知25-n 2n A 6A =,则n= 。
5.计算=-+59884858A A A 7A 2 。
6.解不等式:2<42A A 1n 1n 1n1n ≤--++ 1.用1,2,3,4,5这五个数字组成没有重复数字的三位数,其中偶数共有( )(A )24个 (B )30个 (C )40个 (D )60个2.甲、乙、丙、丁四种不同的种子,在三块不同土地上试种,其中种子甲必须试种,那么不同的试种方法共有( )(A )12种 (B )18种 (C )24种 (D )96种3.某天上午要排语文、数学、体育、计算机四节课,其中体育不排在第一节,那么这天上午课程表的不同排法共有( )(A )6种 (B )9种 (C )18种 (D )24种4.五男二女排成一排,若男生甲必须排在排头或排尾,二女必须排在一起,不同的排法共有 种.例1、(1)某足球联赛共有12支队伍参加,每队都要与其他队在主、客场分别比赛一场,共要进行多少场比赛?解:(1)放假了,某宿舍的四名同学相约互发一封电子邮件,则他们共发了多少封电子邮件?(2) 放假了,某宿舍的四名同学相约互通一次电话,共打了多少次电话?例2、(1)从5本不同的书中选3本送给3名同学,每人1本,共有多少种不同的送法?(2)从5种不同的书中买3本送给3名同学,每人各1本,共有多少种不同的送法?例3、用0到9这10个数字,可以组成多少个没有重复数字的三位数?变式训练: 有四位司机、四个售票员组成四个小组,每组有一位司机和一位售票员,则不同的分组方案共有( )(A )88A 种 (B )48A 种 (C )44A ·44A 种 (D )44A 种例4、三个女生和五个男生排成一排.(1)如果女生必须全排在一起,有多少种不同的排法?(2)如果女生必须全分开,有多少种不同的排法?(3)如果两端都不能排女生,有多少种不同的排法?(4)如果两端不能都排女生,有多少种不同的排法?(5)如果三个女生站在前排,五个男生站在后排,有多少种不同的排法?点评:1)若要求某n 个元素相邻,可采用“捆绑法”,所谓“捆绑法”就是首先将要求排在相邻位置上的元素看成一个整体同其它元素一同排列,然后再考虑这个整体内部元素的排列。
2)若要求某n 个元素间隔,常采用“插空法”。
所谓插空法就是首先安排一般元素,然后再将受限制元素插人到允许的位置上.变式训练:1、6个人站一排,甲不在排头,共有 种不同排法.2.6个人站一排,甲不在排头,乙不在排尾,共有 种不同排法.1.由0,l ,2,3,4,5这六个数字组成的无重复数字的三位数中,奇数个数与偶数个数之比为 ( )(A ) l :l (B )2:3 (C ) 12:13 (D ) 21:232.由0,l ,2,3,4这五个数字组成无重复数字的五位数中,从小到大排列第86个数是 ( ) (A )42031 (B )42103 (C )42130 (D )430213.若直线方程AX 十By=0的系数A 、B 可以从o , 1,2,3,6,7六个数中取不同的数值,则这些方程所表示的直线条数是 ( )(A )25A 一2 B )25A (C )25A +2 (D )25A -215A4.从a ,b ,c ,d ,e 这五个元素中任取四个排成一列,b 不排在第二的不同排法有 ()A 3514A AB 2313A AC 45AD 3414A A5.从4种蔬菜品种中选出3种,分别种在不同土质的3块土地上进行实验,有 24 种不同的种植方法。
6.9位同学排成三排,每排3人,其中甲不站在前排,乙不站在后排,这样的排法种数共有 166320种。
7、某产品的加工需要经过5道工序,(1)如果其中某一工序不能放在最后加工,有多少种排列加工顺序的方法?(2)如果其中某两工序不能放在最前,也不能放在最后,有多少种排列加工顺序的方法?1.四支足球队争夺冠、亚军,不同的结果有 ( )A .8种B .10种C .12种D .16种2.信号兵用3种不同颜色的旗子各一面,每次打出3面,最多能打出不同的信号有 ( )A .3种B .6种C .1种D .27种3.,k N +∈且40,k ≤则(50)(51)(52)(79)k k k k ----用排列数符号表示为 ( )A .5079k k A --B .2979k A -C .3079k A -D .3050k A - 4.5人站成一排照相,甲不站在排头的排法有 ( )A .24种B .72种C .96种D .120种5.4·5·6·7·…·(n-1)·n等于 ( )A.4-n nA B.3-n n A C.n!-4! D.!4!n6.21+n A 与3n A 的大小关系是 ( )A.321n n A A 〉+B.321n n A A 〈+C.321n n A A =+D.大小关系不定7.给出下列问题:①有10个车站,共需要准备多少种车票?②有10个车站,共有多少中不同的票价?③平面内有10个点,共可作出多少条不同的有向线段?④有10个同学,假期约定每两人通电话一次,共需通话多少次?⑤从10个同学中选出2名分别参加数学和物理竞赛,有多少种选派方法?以上问题中,属于排列问题的是 (填写问题的编号)。
8.若{|,||4}x x Z x ∈∈< ,{|,||5}y y y Z y ∈∈<,则以(,)x y 为坐标的点共有 个。
9.若x =!3!n ,则x 用m n A 的形式表示为x = . 10.(1)=m n A 11--m n A ;(2)=m n A 1-m n A11.(1)已知101095m A =⨯⨯⨯,那么m = ;(2)已知9!362880=,那么79A = ;(3)已知256n A =,那么n = ;(4)已知2247n n A A -=,那么n = .12.从参加乒乓球团体比赛的5名运动员中选出3名进行某场比赛,并排定他们的出场顺序,有多少种不同的方法?13.从4种蔬菜品种中选出3种,分别种植在不同土质的3块土地上进行试验,有多少中不同的种植方法?14.计算:(1)325454A A + (2)12344444A A A A +++16.求证: 11m m m n n n A mA A -++=;17.计算:①55666657A A A A +- ②5699610239!A A A +- 18.三个数成等差数列,其比为3:4:5,如果最小数加上1,则三数成等比数列,那么原三数为什么?排列与排列数作业(2)1.与37107A A ⋅不等的是 ( )()A 910A ()B 8881A ()C 9910A ()D 1010A 2.若532m m A A =,则m 的值为 ( )()A 5 ()B 3 ()C 6 ()D 73.100×99×98×…×89等于 ( )A.10100AB.11100AC.12100AD.13100A 4.已知2n A =132,则n 等于 ( )A.11B.12C.13D.以上都不对5.将1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不相同的填法多少种?( )A . 6B . 9C . 11D . 236.有5列火车停在某车站并排的五条轨道上,若快车A 不能停在第三条轨道上,货车B 不能停在第一条轨道上,则五列火车的停车方法有多少种 ( )A .78B .72C .120D .967.由0,1,3,5,7这五个数组成无重复数字的三位数,其中是5的倍的共有多少个 ( )A .9B .21C . 24D .428.从9,5,0,1,2,3,7--七个数中,每次选不重复的三个数作为直线方程0ax by c ++=的系数,则倾斜角为钝角的直线共有多少条?( )A . 14B .30C . 70D .609.把3张电影票分给10人中的3人,分法种数为( )A.2160B.240C.720D.12010.五名学生站成一排,其中甲必须站在乙的左边(可以不相邻)的站法种数( )A. A 44B.44A 21C.A 55D. 55A 21 11.从4种蔬菜品种中选出3种,分别种在不同土质的3块土地上进行实验,有 种不同的种植方法。