碳化硅陶瓷的制备技术

合集下载

多孔碳化硅陶瓷及复合材料的制备与性能共3篇

多孔碳化硅陶瓷及复合材料的制备与性能共3篇

多孔碳化硅陶瓷及复合材料的制备与性能共3篇多孔碳化硅陶瓷及复合材料的制备与性能1多孔碳化硅陶瓷及复合材料的制备与性能随着科学技术的发展和人们对环境保护的重视,传统陶瓷材料的应用范围已经不能满足人们的需求。

多孔碳化硅材料凭借其高度的化学稳定性、热稳定性和机械强度等优良性能,在高级材料领域应用广泛。

本文将介绍多孔碳化硅陶瓷的制备方法以及其在新材料领域的应用。

一、多孔碳化硅陶瓷的制备方法多孔碳化硅陶瓷的制备方法包括两种:一种是传统的陶瓷制备方法,一种是新型的多级微波制备方法。

1. 传统制备方法传统的多孔碳化硅陶瓷制备方法包括高温烧结和化学气相沉积两种。

高温烧结法是将混合了碳化硅粉末和其他添加剂或者硅的混合粉末,在高温下进行烧结得到多孔碳化硅材料。

化学气相沉积法是将氯化硅等硅源及碳源放入炉中进行化学反应,最终得到多孔碳化硅材料。

2. 多级微波制备方法多级微波制备法是指通过微波辐射、干燥和碳化构成,形成多孔碳化硅陶瓷材料。

首先将硅源和碳源均匀混合,然后使用微波辐射干燥,在多个微波腔中进行碳化反应,最终得到多孔碳化硅陶瓷材料。

二、多孔碳化硅陶瓷的性能分析1. 化学稳定性多孔碳化硅材料具有很好的化学稳定性,能够抵御酸、碱等强化学腐蚀,不会被氧化、退化,可长期使用于高温、高压等恶劣环境下。

2. 热稳定性多孔碳化硅材料热稳定性较高,耐热温度高达1500℃以上,不易熔化或瓦解,能够在高温下保持稳定结构和性能。

3. 机械强度多孔碳化硅材料具有很高的机械强度,能够承受很大的压力和载荷,保持长期的强度稳定性。

三、多孔碳化硅陶瓷复合材料的应用多孔碳化硅陶瓷复合材料是指将多孔碳化硅材料与其他材料(如金属、聚合物等)复合,形成性能更为优异的材料。

多孔碳化硅陶瓷复合材料具有多孔材料的高孔隙率和复合材料的高强度、高稳定性等优点,广泛应用于先进制造技术、光伏、半导体等领域。

结论多孔碳化硅陶瓷是一种具有高度化学稳定性、热稳定性和机械强度等优良性能的新型材料,在复合材料中具有广泛的应用前景。

碳化硅陶瓷的制备工艺和性能研究

碳化硅陶瓷的制备工艺和性能研究

碳化硅陶瓷的制备工艺和性能研究碳化硅陶瓷是一种高性能陶瓷材料,它具有许多优异的性能,如高硬度、高耐磨性、高抗腐蚀性和高温稳定性等。

这些优异的性能使碳化硅陶瓷成为重要的工业材料,被广泛应用于航空、航天、船舶、电子、机械等领域。

本文将围绕碳化硅陶瓷的制备工艺和性能进行研究。

一、碳化硅陶瓷的制备工艺1. 原料选择与预处理制备碳化硅陶瓷的原料主要有碳素和硅源。

碳素选用的主要有石墨、太空热解炭等,硅源则有二氧化硅、硅酸及其盐酸等。

在选择原料时,需要考虑原料的纯度、颗粒度、分布、比例等因素,并针对原料的特性做出相应的预处理,如研磨、筛选、混合等。

2. 成型工艺碳化硅陶瓷的成型工艺主要有四种,分别是压制法、注塑法、挤出法和成型造型法。

其中,压制法是最常用的一种成型方法,它包括干压法和湿压法两种,前者适用于制备密实的块体或棒材,后者适用于制备具有较高粘结力的薄膜或管材。

注塑法则适用于制备形状复杂的零部件,挤出法则适用于制备长丝、异形管和板材等。

成型造型法则可以将原料直接制成所需形状,常用于制备复杂的结构件。

3. 热处理工艺碳化硅陶瓷的热处理工艺包括热压缩、热处理和气相热解三种方法。

其中,热压缩被广泛用于制备密实的碳化硅材料,其工艺是将成型后的坯体放入高温高压下热处理,使其晶粒细化,形成高硬度的碳化硅陶瓷。

热处理则是将成型后的坯体放入高温处进行热肥,使其形成均匀的晶粒和致密的组织结构。

气相热解则是将碳素、硅源放入炉内,经过高温热解,生成碳化硅陶瓷。

二、碳化硅陶瓷的性能研究1. 物理性能碳化硅陶瓷具有较高密度、较高硬度、高抗压强度和高质量的特点。

它的热导率约为金属的三倍左右,热膨胀系数小,因此在高温下具有优异的热冲击性。

其断裂韧性和抗拉强度也相对较高。

此外,由于碳化硅陶瓷中Si-C键的共价性,其化学稳定性及抗氧化性也很高。

2. 磨损性能碳化硅陶瓷具有良好的耐磨性能,这是由于其微硬度和韧性之间的平衡作用所致。

实验表明,碳化硅陶瓷与钢材的耐磨性相当,具有良好的抗磨、抗切削性能,因此常用于制造高速切削工具、模具和轴承等。

碳化硅制备方法

碳化硅制备方法

碳化硅制备方法碳化硅是一种重要的结构陶瓷材料,具有高硬度、高强度、高温稳定性等优良性能,在电子、航天、汽车等领域有广泛应用。

本文将介绍碳化硅制备的几种常见方法。

1. 碳热还原法碳热还原法是一种常见的碳化硅制备方法,其基本反应为:SiO2 + 3C → SiC + 2CO该反应发生在高温下(约为2000℃),需要通过特殊的电炉进行。

首先需要将硅粉和碳粉混合,制成一定比例的混合物,然后放入电炉中进行加热,使其达到足够高的温度。

在加热过程中,硅粉与碳粉发生反应,生成碳化硅。

碳热还原法制备碳化硅的优点是工艺简单,原料易得,而且产物质量较高。

但缺点是设备成本高,能源消耗大,且产物存在夹杂物和晶界不完整等问题。

2. 化学气相沉积法化学气相沉积法是一种较新的碳化硅制备方法,该方法可以通过化学反应在高温下沉积碳化硅薄膜。

具体步骤如下:(1)将SiCl4或CH3SiCl3等碳源物质和NH3或H2等气体混合,并通过加热将其气化。

(2)将气态混合物输送到反应器中,同时引入载气,让混合物在反应器内均匀分布。

(3)将反应器中的混合物加热到800-1200℃,在催化剂的作用下发生碳化反应,并在衬底上沉积出碳化硅薄膜。

化学气相沉积法具有生产规模大、生产效率高、产物质量优等优点,但是制备设备昂贵,制备条件严格,需要配合催化剂才能实现反应。

3. 溶胶-凝胶法溶胶-凝胶法也是一种常见的碳化硅制备方法,该方法通过一系列溶胶-凝胶反应,将前驱体溶液凝胶化,制备出碳化硅粉末。

具体步骤如下:(1)将SiO2前驱体(例如TEOS等)和碳源物质(例如甲基丙烯酸三甲氧基硅烷)溶解在有机溶剂中。

(2)通过控制pH值和温度等参数,使溶液逐渐凝胶化,形成固体凝胶体。

(3)将凝胶体在特定温度下煅烧,使其发生脱水、脱氯和碳化反应。

经过一定的处理,可制备出碳化硅粉末。

溶胶-凝胶法制备碳化硅的优点是制备工艺简单、成型性好、加工易、粉末质量高等,并且可以制备出多孔、纳米级的碳化硅制品,但缺点是煅烧温度较高,制备周期长,并且前驱体的选择也对产物质量有较大影响。

国内外碳化硅陶瓷材料研究与应用进展

国内外碳化硅陶瓷材料研究与应用进展

国内外碳化硅陶瓷材料研究与应用进展一、本文概述碳化硅陶瓷材料,作为一种高性能的无机非金属材料,因其出色的物理和化学性能,如高强度、高硬度、高热稳定性、良好的化学稳定性以及低热膨胀系数等,在航空航天、汽车、能源、电子等多个领域具有广泛的应用前景。

本文旨在全面综述国内外碳化硅陶瓷材料的研究现状、发展趋势和应用领域,以期为相关领域的科研人员和技术人员提供有价值的参考。

本文首先回顾了碳化硅陶瓷材料的发展历程,并分析了其独特的物理和化学性质,以及这些性质如何使其在众多领域中脱颖而出。

随后,文章重点介绍了国内外在碳化硅陶瓷材料制备工艺、性能优化、结构设计等方面的研究进展,包括新型制备技术的开发、复合材料的制备与应用、纳米碳化硅陶瓷的研究等。

文章还讨论了碳化硅陶瓷材料在航空航天、汽车、能源、电子等领域的应用现状及未来发展趋势。

通过本文的综述,我们期望能够为碳化硅陶瓷材料的研究与应用提供更为清晰和全面的视角,推动该领域的技术进步和创新发展。

我们也期待通过分享国内外的研究经验和成果,为国内外科研人员和技术人员搭建一个交流与合作的平台,共同推动碳化硅陶瓷材料的发展和应用。

二、碳化硅陶瓷材料的制备技术碳化硅陶瓷材料的制备技术是决定其性能和应用领域的关键因素。

经过多年的研究和发展,目前碳化硅陶瓷的主要制备技术包括反应烧结法、无压烧结法、热压烧结法、气相沉积法等。

反应烧结法:反应烧结法是一种通过碳和硅粉在高温下反应生成碳化硅的方法。

这种方法工艺简单,成本较低,但制备的碳化硅陶瓷材料致密度和性能相对较低,主要用于制备大尺寸、低成本的碳化硅制品。

无压烧结法:无压烧结法是在常压下,通过高温使碳化硅粉末颗粒之间发生固相反应,实现烧结致密化。

这种方法制备的碳化硅陶瓷材料具有较高的致密度和优良的力学性能,但烧结温度较高,时间较长。

热压烧结法:热压烧结法是在加压和高温条件下,使碳化硅粉末颗粒之间发生固相反应,实现快速烧结致密化。

这种方法制备的碳化硅陶瓷材料具有极高的致密度和优异的力学性能,但设备成本高,生产效率较低。

泡沫碳化硅陶瓷的制备工艺与性能研究

泡沫碳化硅陶瓷的制备工艺与性能研究

泡沫碳化硅陶瓷的制备工艺与性能研究一、本文概述随着科学技术的不断发展和进步,新型陶瓷材料的研究与应用逐渐成为材料科学领域的研究热点。

其中,泡沫碳化硅陶瓷作为一种轻质、高强、耐高温的新型陶瓷材料,凭借其独特的物理和化学性能,在航空航天、能源、环保等领域展现出广阔的应用前景。

本文旨在深入探讨泡沫碳化硅陶瓷的制备工艺,研究其性能特点,为进一步优化制备工艺、提升材料性能以及推动其在实际应用中的广泛使用提供理论支撑和实践指导。

本文首先概述了泡沫碳化硅陶瓷的基本性质和研究背景,阐述了其在不同领域中的应用价值。

随后,详细介绍了泡沫碳化硅陶瓷的制备工艺,包括原料选择、配方设计、成型方法、烧结工艺等关键步骤,并分析了各工艺参数对材料性能的影响。

在此基础上,本文重点研究了泡沫碳化硅陶瓷的物理性能、化学性能以及力学性能,如密度、孔隙率、热稳定性、抗腐蚀性等,并通过实验数据分析了其性能特点与制备工艺之间的关联。

本文总结了泡沫碳化硅陶瓷的制备工艺与性能研究成果,指出了当前研究中存在的问题和不足,并对未来的研究方向和应用前景进行了展望。

通过本文的研究,旨在推动泡沫碳化硅陶瓷制备工艺的进一步优化,提升材料性能,拓展其应用领域,为新型陶瓷材料的发展做出积极贡献。

二、泡沫碳化硅陶瓷的制备工艺泡沫碳化硅陶瓷的制备工艺主要包括原料选择、配方设计、泡沫前驱体的制备、碳化硅化过程以及后处理几个关键步骤。

原料选择是制备泡沫碳化硅陶瓷的第一步,其主要原料包括硅源、碳源、造孔剂以及可能的添加剂。

硅源一般选择硅粉、硅溶胶或硅烷等,碳源则可以选择石墨、炭黑、有机聚合物等。

造孔剂的选择对于泡沫结构的形成至关重要,常用的有无机盐类、高分子聚合物等。

根据需求,还可以添加一些助剂,如分散剂、催化剂等。

配方设计则需要根据所需的碳化硅陶瓷性能,合理搭配各原料的比例。

通过调整硅碳比、造孔剂含量等参数,可以控制泡沫碳化硅陶瓷的密度、孔径、孔结构以及机械性能等。

泡沫前驱体的制备是制备泡沫碳化硅陶瓷的关键步骤。

化学气相沉积碳化硅陶瓷工艺_解释说明

化学气相沉积碳化硅陶瓷工艺_解释说明

化学气相沉积碳化硅陶瓷工艺解释说明1. 引言1.1 概述化学气相沉积碳化硅陶瓷工艺是一种重要的材料制备技术,在多个领域具有广泛应用。

碳化硅陶瓷具有优异的高温稳定性、耐磨性以及化学稳定性,因此受到了广泛关注和研究。

本文将重点介绍化学气相沉积碳化硅陶瓷的工艺原理、材料选择与准备方法以及反应参数的控制。

1.2 文章结构本文将分为五个主要部分来进行讨论。

首先是引言部分,概述了文章整体内容和背景;接着是对化学气相沉积碳化硅陶瓷工艺进行详细介绍;然后是实验方法与结果分析,展示了本文中所采用的实验设备和条件,以及样品制备与处理情况;接下来是对碳化硅陶瓷性能评估的讨论,包括结构与形貌表征、机械性能测试以及热稳定性检测;最后是总结和展望部分,总结了主要研究发现,并提出对未来研究的建议。

1.3 目的本文旨在全面介绍化学气相沉积碳化硅陶瓷工艺,并通过实验方法与结果分析以及性能评估,对其进行深入探讨。

通过本文的研究,旨在为相关领域的科研人员和工程师提供参考,推动碳化硅陶瓷工艺的进一步发展和应用。

2. 化学气相沉积碳化硅陶瓷工艺:2.1 工艺原理:化学气相沉积碳化硅陶瓷(Chemical Vapor Deposition, CVD)是一种常用的制备碳化硅陶瓷材料的方法。

其工艺原理基于在高温条件下,将合适的预体物质通过气态反应在衬底或样品表面上进行沉积,最终形成致密、均匀的碳化硅陶瓷薄膜或块状材料。

2.2 材料选择与准备:在化学气相沉积碳化硅陶瓷工艺中,需要选择适合的前驱物和衬底材料。

常用的前驱物包括有机硅类、无机盐类等,在反应过程中可以释放出所需的C和Si元素。

而对于衬底材料,则要具有较好的耐高温性能和平整度,通常选用石英、SiC 等材料。

在进行材料准备时,首先需要对前驱物进行预处理,如根据具体工艺要求进行溶解、过滤或稀释等操作。

对于衬底材料,则需要进行清洗、干燥等处理,以确保表面无杂质和水分。

2.3 反应参数控制:在化学气相沉积碳化硅陶瓷工艺中,合理控制反应参数对于最终产品的性能至关重要。

真空反应烧结获取碳化硅的工艺

真空反应烧结获取碳化硅的工艺

真空反应烧结获取碳化硅的工艺1.引言1.1 概述概述部分可以介绍文章的主题和内容,以及碳化硅在工业领域的重要性。

以下是一个示例:概述随着科技的不断发展,碳化硅作为一种重要的功能陶瓷材料,被广泛应用于多个工业领域。

在制备碳化硅材料的过程中,真空反应烧结技术成为一种重要的制备方法,具有高度的适应性和优越的性能。

本文将重点介绍真空反应烧结获取碳化硅的工艺,详细讨论了其工艺原理和步骤。

同时,我们还会对碳化硅的性质和应用进行探讨,包括它的物理性质和广泛应用于工业领域的各个方面。

在真空反应烧结工艺中,通过在高温和高真空环境下进行粉末烧结,可以获得高纯度的碳化硅材料。

这种工艺具有独特的优势,如高密度、均匀性好、化学稳定性高等,适用于各种碳化硅制品的制备。

此外,我们还将总结真空反应烧结工艺的优势,并展望未来该工艺的发展趋势。

通过深入研究和改进该工艺,我们有望进一步提高碳化硅材料的品质和性能,满足不断发展的科技需求。

综上所述,本文将全面介绍真空反应烧结获取碳化硅的工艺,并探讨其在工业领域的重要性和应用前景。

希望通过本文的阐述,能够增进对该工艺和碳化硅材料的理解,为相关领域的研究和应用提供参考。

文章结构部分的内容可以描述整篇文章的结构安排和各个章节的主要内容。

以下是一个可能的写作内容:1.2 文章结构本篇文章主要分为引言、正文和结论三个部分。

引言部分包括概述、文章结构和目的三个小节。

首先,概述部分将简要介绍真空反应烧结获取碳化硅的工艺的背景和重要性。

然后,文章结构部分将提供整篇文章的结构安排,包括各个章节的主要内容和关联性。

最后,目的部分将明确说明本篇文章的写作目的。

正文部分是本篇文章的核心,包含两个主要章节:真空反应烧结工艺和碳化硅的性质和应用。

真空反应烧结工艺章节将分为工艺原理和工艺步骤两小节,分别介绍该工艺的基本原理以及具体的工艺步骤和参数。

碳化硅的性质和应用章节则将分别探讨碳化硅的物理性质和广泛应用的领域。

碳化硅陶瓷的制备及烧结温度对其密度影响的研究

碳化硅陶瓷的制备及烧结温度对其密度影响的研究

一、引言碳化硅陶瓷是一种非常重要的陶瓷材料,具有高温强度、抗腐蚀和高热导率等优良性能,因此在航空航天、电子、光学等领域有着广泛的应用。

碳化硅陶瓷的制备及性能研究一直备受关注,而其密度是衡量其质量的重要指标之一。

烧结温度是影响碳化硅陶瓷密度的一个重要因素,因此研究烧结温度对碳化硅陶瓷密度的影响具有重要意义。

二、碳化硅陶瓷的制备方法1. 原料准备:通常采用碳化硅粉末和适量的添加剂作为原料,碳化硅粉末的粒度、纯度及其添加剂的种类和用量都会对制备后的陶瓷密度产生影响。

2. 混合:将碳化硅粉末和添加剂进行充分混合,以确保添加剂均匀分散在碳化硅粉末中。

3. 成型:将混合后的原料进行成型,常用的成型方法包括压制、注塑、浇铸等。

4. 烧结:将成型后的陶瓷坯体放入烧结炉中进行烧结,烧结温度、时间和气氛对陶瓷的性能有重要影响。

三、烧结温度对碳化硅陶瓷密度的影响1. 烧结温度过低会造成碳化硅陶瓷未充分烧结,导致陶瓷密度较低。

2. 烧结温度过高可能会导致碳化硅陶瓷晶粒长大过快,使得陶瓷内部产生较大的孔隙,从而影响陶瓷密度。

3. 烧结温度的选择需综合考虑碳化硅陶瓷的成分、添加剂、烧结环境等因素来确定。

四、研究方法1. 实验材料:选取工业级碳化硅粉末和添加剂作为原料。

2. 实验设计:分别对不同烧结温度下制备的碳化硅陶瓷进行密度测试,对比分析烧结温度对碳化硅陶瓷密度的影响。

3. 实验步骤:包括原料制备、混合、成型、烧结、密度测试等步骤。

4. 实验仪器:密度测试常采用排水法、气体置换法等方法,可选用密度计进行测试。

五、实验结果与分析1. 进行实验后得出不同烧结温度下制备的碳化硅陶瓷密度随着烧结温度的增加呈现出先升高后降低的趋势。

2. 烧结温度较低时,陶瓷密度较低,可能是由于未充分烧结导致的。

3. 随着烧结温度的升高,碳化硅陶瓷的密度也随之增加,但当烧结温度过高时,密度反而下降,可能是因为晶粒长大导致陶瓷内部产生大的孔隙所致。

4. 综合分析得出最佳烧结温度范围,以获得较高密度的碳化硅陶瓷。

【精品文章】碳化硅陶瓷的制备及应用简介

【精品文章】碳化硅陶瓷的制备及应用简介

碳化硅陶瓷的制备及应用简介
21世纪随着科学技术的进步,当今社会生产力的发展集中在信息、能源、材料、生物工程等几个方面。

碳化硅材料由于其化学性能稳定、导热系数高、热膨胀系数小、密度小、耐磨性能好、硬度大、机械强度高、耐化学腐蚀等特点,在材料领域迅速发展起来。

 碳化硅陶瓷起始于20世纪60年代,之前碳化硅主要用于机械磨削材料和耐火材料。

但随着先进陶瓷的发展,人们已经不满足于制备传统碳化硅陶瓷,近几年,各类以碳化硅陶瓷为基的复相陶瓷相继出现,改善了单相材料的各方面性能,使得碳化硅陶瓷得到了更加广泛地应用。

碳化硅陶瓷材料密度低、硬度高、耐高温、热膨胀系数小、耐腐蚀,现普遍用于陶瓷球轴承、阀门、半导体材料、测量仪、航空航天等领域。

 1.碳化硅的性质
 碳化硅是一种人造材料,分子式为SiC,陨石及地壳上偶然存在碳化硅。

碳化硅分子量为40.07,密度为3.16~3.2g/cm3。

SiC具有α和β两种晶型,当温度低于1600℃时,SiC以β-SiC形式存在,当高于1600℃时,β-SiC转变为α-SiC的形式。

碳化硅以共价键为主,共价键约占88%。

晶格的基本结构是互相穿插的SiC4和CSi4四面体。

由于四面体堆积次序的不同形成不同的结构,至今已发现几百种变体,常见的结构如3C-SiC、4H-SiC、6H-SiC等,堆积规律如图所示。

 图1 常见碳化硅多型体的原子排列图[1]
 碳化硅的化学稳定性与其氧化特性有密切关系,碳化硅本身很容易氧化,但它氧化之后形成了一层二氧化硅薄膜,氧化进程逐步被阻碍。

在空。

碳化硅sic制备方法-概述说明以及解释

碳化硅sic制备方法-概述说明以及解释

碳化硅sic制备方法-概述说明以及解释1.引言1.1 概述碳化硅(SiC)是一种广泛应用于材料科学领域的重要陶瓷材料。

它具有优异的物理和化学性质,如高熔点、高硬度、高热导率、低热膨胀系数和良好的耐腐蚀性能等。

由于这些特殊性能,碳化硅在诸多领域的应用十分广泛,包括电子、能源、化工、航空航天和汽车等领域。

为了满足不同领域对碳化硅材料的需求,科学家们研究出了多种碳化硅制备方法。

根据不同的反应条件和原料,可以将这些方法分为不同的分类,每种方法都有其特定的制备工艺和应用范围。

本文将重点介绍一些常用的碳化硅制备方法,包括硅烷化合物法、碳热还原法和化学气相沉积法。

在这些方法中,硅烷化合物法是一种常见且简单的制备方法,它通过将硅烷化合物在高温下分解,生成碳化硅。

而碳热还原法则通过碳源和硅源的反应,生成碳化硅。

最后,化学气相沉积法则是将硅源和碳源的气体通过化学反应,在衬底上沉积出碳化硅薄膜。

不同的制备方法具有各自的优缺点,这些将在后续章节进行详细讨论。

此外,本文还将探讨碳化硅制备方法的发展趋势和展望,并在结论部分对整个文章进行总结。

通过深入研究碳化硅制备方法,我们可以更好地理解碳化硅的制备过程和特性,为其在不同领域的应用提供更多可能性和机遇。

1.2 文章结构本文主要分为以下几个部分:引言、正文和结论。

在引言部分,我们将对碳化硅的概述进行介绍,包括其定义和应用领域。

同时,我们还会说明本文的文章结构和目的。

接下来的正文部分将详细探讨碳化硅制备方法。

首先,我们将对碳化硅制备方法进行分类,介绍不同方法的特点和应用场景。

然后,我们将详细介绍常用的碳化硅制备方法,包括硅烷化合物法、碳热还原法和化学气相沉积法。

每种方法都将进行详细讲解,包括原理、步骤和适用条件等方面。

在结论部分,我们将对碳化硅制备方法的优缺点进行总结,并展望其发展趋势。

同时,我们也会结合全文内容对碳化硅制备方法进行总结,为读者提供一个综合的观点。

最后,我们会对全文的内容进行总结,以便读者更好地理解和应用本文的内容。

碳化硅陶瓷光固化增材制造工艺

碳化硅陶瓷光固化增材制造工艺

碳化硅陶瓷光固化增材制造工艺的意义
制造工艺创新
碳化硅陶瓷光固化增材制造工艺 结合了碳化硅陶瓷的优异性能和 光固化增材制造的优势,为制造 高性能碳化硅陶瓷制品提供了新
途径。
提高生产效率
采用光固化增材制造工艺,可以 大幅度提高碳化硅陶瓷的生产效 率,降低成本,满足大规模生产
的需求。
拓展应用领域
通过光固化增材制造工艺,可以 制造出更加复杂结构和优异性能 的碳化硅陶瓷制品,进一步拓展 其在航空航天、能源、环保等领
复杂结构件
高端装备制造领域往往涉及复杂结构和精密零部件的制造。光固化增材制造工艺 能够适应各种复杂结构的设计需求,实现高精度、高效率的制造,推动高端装备 制造的创新发展。
发展前景
随着科技的不断进步和创新,碳化硅陶瓷光固化 增材制造工艺将在未来展现更广阔的应用前景
智能化制造:引入人工智能、大数据等技术,实 现碳化硅陶瓷光固化增材制
采用有效的清洗方法,将 打印完成后产品表面的残 留物清洗干净。
固化技术
通过高温或者紫外线等方 法,进一步固化产品,提 高其机械性能。
烧结技术
在高温环境下进行烧结处 理,使得产品最终具备碳 化硅陶瓷的特性。
04
碳化硅陶瓷光固化增材制 造工艺的应用及前景
在航空航天领域的应用
高温结构部件
碳化硅陶瓷具有优异的高温力学性能和抗氧化性能,可用于 制造航空航天领域的高温结构部件,如发动机燃烧室、涡轮 叶片等。光固化增材制造工艺能够实现复杂结构的快速制造 ,提高部件的设计自由度和生产效率。
碳化硅陶瓷是一种具有优异力学 性能、热学性能和化学稳定性的 高性能陶瓷材料。
广泛应用
因其出色的性能,碳化硅陶瓷在 航空航天、能源、环保等领域具 有广泛的应用前景。

碳化硅 无压烧结和反应烧结 配对

碳化硅 无压烧结和反应烧结 配对

碳化硅无压烧结和反应烧结配对
碳化硅是一种具有优异性能的陶瓷材料,具有高温强度、高硬度、耐腐蚀、耐磨性等
特点,被广泛应用于高温领域。

其中,无压烧结和反应烧结是碳化硅制备过程中常用的两
种方法。

本文将对这两种方法进行配对分析。

一、无压烧结
无压烧结是指在常气压和常温下进行的碳化硅陶瓷制备方法。

其制备过程主要包括粉
末制备、混合、成型和烧结等步骤。

具体来说,首先将碳化硅粉末和其他添加剂混合,然
后将混合物制成所需形状并进行烧结。

烧结的过程中,需要加热到高温以使其致密化。


压烧结的主要优点在于制备工艺简单,成本较低,且易于控制材料性能。

二、反应烧结
反应烧结是指将碳化硅粉末与一定的添加剂混合后,放入高温反应炉内进行烧结。


应烧结可以分为热压烧结和热力烧结两种方式。

热压烧结是指在高温和高压的情况下进行
烧结,热力烧结则是指在高温和惰性气氛下进行烧结。

相比无压烧结,反应烧结可以得到
更高质量的碳化硅材料,具有更高的致密性、强度和硬度等优点。

三、配对分析
无压烧结和反应烧结是两种不同的碳化硅陶瓷制备方法,其制备过程和性质有所不同。

无压烧结可以制备出相对较便宜的碳化硅材料,其制备过程简单,易于控制材料性能;反
应烧结则可以制备出更高质量的碳化硅材料,其致密度、强度和硬度等性能优于无压烧结。

此外,无压烧结适用于碳化硅制备的各种形状,而反应烧结则对形状要求较高,较难制备
出复杂形状的碳化硅材料。

碳化硅陶瓷的制备及应用

碳化硅陶瓷的制备及应用

碳化硅陶瓷的制备及应用碳化硅陶瓷是一种由碳和硅元素组成的陶瓷材料,具有高硬度、高耐温、高抗腐蚀性和高导热性等优异性能。

它广泛应用于多个领域,包括机械、电子、航空航天等。

碳化硅陶瓷的制备方法有多种,常见的包括热压烧结法和化学气相沉积法。

热压烧结法是将硅粉和碳粉混合后,在高压和高温条件下进行压制和烧结。

首先,在高温下将碳粉转化为石墨,然后通过烧结作用,使碳粉与硅粉结合成碳化硅陶瓷。

这种方法制备出的陶瓷密度高、尺寸稳定、性能均匀。

但是,这种方法的制备成本较高,生产周期较长。

化学气相沉积法是以硅氢化物和有机气体作为原料,通过热解分解反应生成碳化硅薄膜。

这种方法制备的碳化硅材料具有高纯度、均匀性好的特点,而且可以控制薄膜的厚度和形状。

这种方法的优点是成本较低,生产周期较短,适合大规模生产。

碳化硅陶瓷具有许多优异的性能,使其在各个领域都有广泛的应用。

在机械领域,碳化硅陶瓷常用于制造高速切削刀具、轴承和密封件等。

由于碳化硅陶瓷具有高硬度和高强度,能够承受高温和高速条件下的切削和磨损,因此适用于加工硬质材料,如陶瓷、合金和复合材料。

在电子领域,碳化硅陶瓷被广泛应用于半导体设备、电子元器件和电子封装等。

其高导热性能和优良的绝缘性能,使其成为散热材料和电子封装材料的重要选择。

此外,碳化硅陶瓷还可以用于制造硅片基座和高温电子组件。

在航空航天领域,碳化硅陶瓷具有耐高温、抗氧化和抗热冲击等特点,因此被广泛应用于航空航天器的热防护和结构材料。

其高硬度和抗腐蚀性能,使其适合制造高速飞行器的燃烧室和喷嘴。

另外,碳化硅陶瓷还常用于石油化工、化学工业和医疗器械等领域。

在石油化工领域,碳化硅陶瓷常用于制造泵体和阀门等耐腐蚀设备。

在化学工业中,碳化硅陶瓷可以作为催化剂载体和反应器材料。

在医疗器械方面,碳化硅陶瓷被用作人工关节和牙科材料,因为其生物相容性好、耐磨性强。

总之,碳化硅陶瓷具有多种优异的性能和广泛的应用领域。

随着技术的不断进步,碳化硅陶瓷将在更多领域展现其巨大的潜力。

无压烧结碳化硅陶瓷环的生产工艺设计

无压烧结碳化硅陶瓷环的生产工艺设计

无压烧结碳化硅陶瓷环的生产工艺设计引言无压烧结碳化硅陶瓷环是一种重要的工程材料,具有高温强度、高硬度、耐腐蚀等优异特性,广泛应用于石化、冶金、电子等行业的高温、高压场合。

本文将介绍无压烧结碳化硅陶瓷环的生产工艺设计。

原料准备1. 碳化硅粉末无压烧结碳化硅陶瓷环的主要成分是碳化硅粉末。

碳化硅粉末应具有适当的粒度和颗粒分布,以保证成型和烧结过程的顺利进行。

通常采用工业级碳化硅粉末,经过筛分和粉碎处理,获得所需的粒度范围。

2. 缩合剂缩合剂是为了增加材料的粘结力和成型性能而加入的。

常用的缩合剂包括有机胶粘剂、聚合物、陶瓷浆料等。

缩合剂的选择应根据材料的特性和工艺要求进行。

3. 助烧剂助烧剂是为了促进材料在烧结过程中的致密化和结晶化而加入的。

常用的助烧剂包括氧化铝、氮化硅等。

助烧剂的种类和添加量应根据材料的成分和性能要求确定。

成型工艺无压烧结碳化硅陶瓷环的成型工艺一般采用注塑成型或模压成型。

下面以注塑成型为例,进行介绍。

1. 碳化硅粉末预处理首先将碳化硅粉末与缩合剂进行混合,使其均匀分散。

然后通过制粒或湿法制浆等方式,将混合物进行处理,得到适合注塑成型的材料。

2. 注塑成型将经过预处理的材料放入注塑机的料斗中,经过高温和高压的作用,使材料熔化并溢出成型腔。

在注塑成型过程中,需要控制注塑机的温度、压力和注射速度等参数,以确保成型的质量。

3. 成型脱模经过注塑成型的材料需进行脱模处理。

通常使用冷却或加热的方式进行脱模。

脱模后的材料具有一定的强度和形状稳定性。

烧结工艺无压烧结碳化硅陶瓷环的烧结工艺对最终材料的密度和性能有着重要影响。

下面介绍一种常用的烧结工艺。

1. 制备烧结体将成型后的材料置于烧结炉中,经过一系列的升温和保温过程,使材料内部发生相应的物理和化学变化,形成初级烧结体。

2. 烧结过程将制备好的初级烧结体进行烧结。

烧结过程中,需要精确控制烧结炉的温度、气氛和时间等参数。

通常采用惰性气氛(如氩气)进行烧结,以防止材料氧化。

碳化硅陶瓷的烧结工艺

碳化硅陶瓷的烧结工艺

碳化硅陶瓷的合成方法综述碳化硅陶瓷具有机械强度高、耐高温、抗氧化性强、热稳定性能好、热导率大、耐磨损性能好、耐化学腐蚀性能好、硬度高、抗热震性能好等优良的特性。

碳化硅是所有非氧化物陶瓷中抗氧化性能最好的一种。

碳化硅陶瓷不仅在高新技术领域发挥着重要的作用,而且在冶金、机械、能源和建材化工等热门领域也拥有广阔的市场。

随着高新技术的不断发展,对碳化硅陶瓷的要求也越来越高,需要不同层次和不同性能的各种产品。

早在20 世纪50 年代,Popper[ 1] 首次提出反应烧结制备碳化硅。

其基本原理是:具有反应活性的液硅或硅合金,在毛细管力的作用下渗入含碳的多孔陶瓷素坯,并与其中的碳反应生成碳化硅,新生成的碳化硅原位结合素坯中原有的碳化硅颗粒,浸渗剂填充素坯中的剩余气孔,完成致密化的过程。

1.1 常压烧结1.1.1 固相烧结单一陶瓷粉体烧结常常属于典型的固相烧结,即在烧结过程中没有液相形成。

陶瓷坯体的致密化主要是通过蒸发和凝聚、扩散传质等方式来实现的。

其烧结过程主要由颗粒重排、气孔填充和晶粒生长等阶段组成。

同时,固相烧结可以通过合适的颗粒级配、适当的烧结温度和较短的保温时间等工艺参数来实现致密化烧结。

自20世纪7O年代,Prochazkal6在高纯度的SiC中加人少量的B和C作为烧结助剂,在2050℃成功地固相烧结出致密度高于98 的SiC陶瓷以来,固相烧结就一直很受关注。

虽然SiC-B-C体系固相烧结SiC需要较高的烧结温度,烧结晶粒粗大,均匀性差,而且SiC陶瓷具有较低的断裂韧性、较高的裂纹强度敏感性和典型的穿晶断裂模式,但是固相烧结的烧结助剂含量低,杂质少,晶界几乎不残留低熔点物质,烧结后的SiC陶瓷高温稳定性好、热导能力强l7剖。

因此,固相烧结在SiC陶瓷烧结中具有潜在的应用价值。

目前,采用SiC-B-C烧结体系来进行固相烧结SiC陶瓷的厂家主要有美国的GE公司。

1.1.2 液相烧结由于陶瓷粉体中总有少量的杂质,大多数材料在烧结过程中都会或多或少地出现液相。

碳化硅导电陶瓷制备

碳化硅导电陶瓷制备

碳化硅导电陶瓷制备
碳化硅(SiC)导电陶瓷是一种高性能的陶瓷材料,具有优异的导热性和机械性能。

以下是一般碳化硅导电陶瓷的制备过程:
1. 原材料准备:制备碳化硅陶瓷的第一步是准备原材料。

通常使用的原料包括硅粉(SiO2)和碳源(通常是石墨)。

这些原料通过粉碎和混合的过程得到均匀的混合物。

2. 混合和研磨:将硅粉和碳源混合,确保均匀分布。

混合物然后经过机械研磨,以确保颗粒的均匀分散,形成均匀的混合粉末。

3. 成型:将混合粉末放入模具中,通过压制或注射成型,形成所需形状的坯体。

成型压力和温度是关键参数,影响着成型体的密度和机械性能。

4. 干燥:成型后的坯体需要进行干燥,以去除水分和挥发性成分。

这一步通常在较低的温度下进行,以防止坯体裂开或发生变形。

5. 硬化:干燥后,将坯体进行硬化处理。

这通常包括高温烧结或热处理,将混合物中的硅和碳进行反应,形成碳化硅结构。

6. 烧结:硬化后的坯体需要进一步烧结,以提高材料的致密度和机械性能。

这通常在高温下进行,使碳化硅晶体得到进一步的生长和结晶。

7. 加工和整形:经过烧结后,陶瓷坯体可能需要进行加工和整形,以获得所需的尺寸和表面质量。

这可能包括磨削、切割、抛光等工艺。

8. 涂层和导电性处理:根据应用要求,碳化硅陶瓷表面可能需要进行涂层或导电性处理,以提高其导电性能。

以上步骤中的参数如温度、压力和处理时间等,都需要根据具体材料和制备工艺进行调整,以确保最终碳化硅导电陶瓷具有优异的性能。

碳化硅陶瓷工艺流程是什么

碳化硅陶瓷工艺流程是什么

碳化硅陶瓷工艺流程是什么?碳化硅(SiC)陶瓷,具有抗氧化性强,耐磨性能好,硬度高,热稳定性好,高温强度大,热膨胀系数小,热导率大以及抗热震和耐化学腐蚀等优良特性。

因此,已经在石油、化工、机械、航天、核能等领域大显身手,日益受到人们的重视。

例如,SiC陶瓷可用作各类轴承、滚珠、喷嘴、密封件、切削工具、燃汽涡轮机叶片、涡轮增压器转子、反射屏和火箭燃烧室内衬等等。

SiC陶瓷的优异性能与其独特结构密切相关。

SiC是共价键很强的化合物,SiC中Si-C键的离子性仅12%左右。

因此,SiC强度高、弹性模量大,具有优良的耐磨损性能。

纯SiC不会被HCl、HNO3、H2SO4和HF等酸溶液以及NaOH等碱溶液侵蚀。

在空气中加热时易发生氧化,但氧化时表面形成的SiO2会抑制氧的进一步扩散,故氧化速率并不高。

在电性能方面,SiC具有半导体性,少量杂质的引入会表现出良好的导电性。

此外,SiC还有优良的导热性。

SiC具有α和β两种晶型。

β-SiC的晶体结构为立方晶系,Si和C分别组成面心立方晶格;α-SiC存在着4H、15R和6H等100余种多型体,其中,6H多型体为工业应用上最为普遍的一种。

在SiC 的多种型体之间存在着一定的热稳定性关系。

在温度低于1600℃时,SiC以β-SiC形式存在。

当高于1600℃时,β-SiC缓慢转变成α-SiC的各种多型体。

4H-SiC在2000℃左右容易生成;15R和6H多型体均需在2100℃以上的高温才易生成;对于6H-SiC,即使温度超过2200℃,也是非常稳定的。

SiC 中各种多型体之间的自由能相差很小,因此,微量杂质的固溶也会引起多型体之间的热稳定关系变化。

现就SiC陶瓷的生产工艺简述如下:一、SiC粉末的合成SiC在地球上几乎不存在,仅在陨石中有所发现,因此,工业上应用的SiC粉末都为人工合成。

目前,合成SiC粉末的主要方法有:1、Acheson法:这是工业上采用最多的合成方法,即用电将石英砂和焦炭的混合物加热至2500℃左右高温反应制得。

碳化硅陶瓷的性能和生产

碳化硅陶瓷的性能和生产

碳化硅陶瓷的性能和⽣产⾃从美国⼈阿奇逊在1891年偶然发现sic材料以来,sic已成为⼈们⼴为利⽤的⾮氧化物陶瓷材料。

因其具有很⼤的硬度、耐热性、耐氧化性、耐腐蚀性,它已被确认为⼀种磨料、耐⽕材料、电热元件、⿊⾊有⾊⾦属冶炼等⽤的原料。

现在⼜被应⽤在机械⼯程中的结构件和化学⼯程中的密封件等。

并已被世⼈证明这种材料⽤在包括腐蚀、磨蚀和⾼温以及航天等极端条件下是⾮常成功的。

1、碳化硅的晶体结构 sic是以共介健为主的共价化合物,由于碳与硅两元素在形成sic晶体时,sic原⼦中s→p电⼦的迁移导致能量稳定的sp3杂化排列,从⽽形成具有⾦刚⽯结构的sic。

因此它的基本单元是四⾯体。

所有sic均由sic四⾯体堆积⽽成,所不同的只是平⾏结合或反平⾏结合。

sic有75种变体,如α -sic、β -sic、3c-sic、4h-sic、15r-sic等,所有这些结构可分为⽴⽅晶系、六⽅晶系和菱形晶系。

其中α -sic、β -sic最为常见。

α -sic是⾼温稳定型,β -sic是低温稳定型。

β -sic在2100~2400℃可转变为α -sic,β -sic可在1450℃左右温度下由简单的硅和碳混合物制得。

利⽤透射电⼦显微镜和x-射线衍射技术可对sic显微体进⾏多型体分析和定量测定。

2、碳化硅的⽣产2.1 碳化硅粉料的制备2.1.1 sio2-c还原法⼯业上按下列反应式⽤⾼纯度⽯英砂和焦炭或⽯油焦在电阻炉内⽣产sic:这是个吸热反应,需使⽤⼤量电能。

实际上反应远⽐上述反应式复杂的多,有些中间反应还有⽓相参加。

⽤此法制得的sic含量⼀般为96%左右。

颜⾊有绿⾊和⿊⾊,sic含量愈⾼颜⾊愈浅,⾼纯为⽆⾊。

2.1.2 ⽓凝sio2的碳还原法在粒度18~22纳⽶的sio2中加⼊30~35纳⽶的天然⽓碳⿊在1400~1500℃温度下通氩⽓保护,反应即可获得纯sic。

反应中加⼊微量sic粉可抑制sic晶体的长⼤。

2.1.3 ⽓相合成法在⽓相硅的卤化物中加⼊碳氢化合物(⽓体)并通⼈⼀定量的氢⽓,在1200~1800℃的⾼温作⽤下可以制取⾼纯sic.在这个反应中,碳氢化合物是作为碳的载体,氢⽓是⽤来还原,同时氢⽓还可以抑制在sic⽣成过程中游离硅和碳的沉积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Байду номын сангаас
4、反应烧结:
SiC的反应烧结法最早在美国研究成功。反
应烧结的工艺过程为:先将α-SiC粉和石墨粉 按比例混匀,经干压、挤压或注浆等方法制成 多孔坯体。在高温下与液态Si接触,坯体中的 C与渗入的Si反应,生成β-SiC,并与α-SiC 相结合,过量的Si填充于气孔,从而得到无孔 致密的反应烧结体。反应烧结SiC通常含有8% 的游离Si。因此,为保证渗Si的完全,素坯应 具有足够的孔隙度。一般通过调整最初混合料 中α-SiC和C的含量,α-SiC的粒度级配,C的 形状和粒度以及成型压力等手段来获得适当的 素坯密度。
3、SiC的烧结
由于碳化硅陶瓷的高性能和在工业领域中 的广泛应用,SiC的烧结一直是材料界研究的 热点,如何采用较简单的生产工艺在较低的温 度下制备得到高致密度的碳化硅陶瓷制品也是 研究者一直关心的课题;但由于碳化硅是一种 共价性极强的共价键化合物,所以 SiC 很难烧 结,必须借助烧结助剂或外部压力才可能在 2000℃以下实现致密化。
3、热等静压烧结:
近年来,为进一步提高SiC陶瓷的力 学性能,研究人员进行了SiC陶瓷的热等 静压工艺的研究工作。研究人员以B和C 为添加剂,采用热等静压烧结工艺,在 1900℃便获得高密度SiC烧结体。更进一 步,通过该工艺,在2000℃和138MPa压 力下,成功实现无添加剂SiC陶瓷的致密 烧结。 研究表明:当SiC粉末的粒径小 于0.6μm时,即使不引入任何添加剂, 通过热等静压烧结,在1950℃即可使其 致密化。
有研究在2050℃和 SiC+1%B4C+ 3%C体 系热压保温45分钟工艺条件下,密度达到理论 致密度的98.75% 。由于热压工艺自身的缺点 而无法应用在商业化生产中,因此无压烧结成 了高性能碳化硅陶瓷工业化首选的制备方法。
3、碳化硅烧结反应工艺流程图
1、无压烧结
1974年美国GE公司通过在高纯度β -SiC细粉中同时加入少量的B和C,采 用无压烧结工艺,于2020℃成功地获得 高密度SiC陶瓷。目前,该工艺已成为制 备SiC陶瓷的主要方法。
粉料成型技术的目的是为了得到内部均匀和高密 度的坯体,提高成型技术是提高陶瓷产品可靠性的关 键步骤。成型是陶瓷生产过程的一个重要步骤。
成型过程就是将分散体系(粉料、塑性物料、浆料) 转变为具有一定几何形状和强度的块体,也称素坯。 成型的方法很多,且各有优缺点,主要可分为干法成 型和湿法成型,其中干法成型包括模压成型和等静压 成型,湿法成型包括注浆成型、流延成型、直接凝固 注模成型、挤出成型、注射成型等成型方法。
最近,有研究者在亚微米SiC粉料中加入 Al2O3和Y2O3,在1850℃~2000℃温度下 实现SiC的致密烧结。由于烧结温度低而 具有明显细化的微观结构,因而,其强 度和韧性大大改善。
2、热压烧结
50年代中期,美国Norton公司就开始 研究B、Ni、Cr、Fe、Al等金属添加物对 SiC热压烧结的影响。实验表明:Al和Fe 是促进SiC热压致密化的最有效的添加剂。 有研究者以Al2O3为添加剂,通过热压烧 结工艺,也实现了SiC的致密化,并认为 其机理是液相烧结。此外,还有研究者 分别以B4C、B或B与C,Al2O3和C、 Al2O3和Y2O3、Be、B4C与C作添加剂, 采用热压烧结,也都获得了致密SiC陶瓷。
下面主要介绍模压成型、等静压成型、注浆成型、 直接凝固注模成型、挤压成型和注射成型这几种主要 的陶瓷成型工艺的成型原理、基本工艺及特点。
5.1.1模压成型(Stamping Process)
以下是对四种烧结方法的一些概括:
实验表明,采用无压烧结、热压烧结、热 等静压烧结和反应烧结的SiC陶瓷具有各异的 性能特点。假如就烧结密度和抗弯强度来说, 热压烧结和热等静压烧结SiC陶瓷相对较高, 反应烧结SiC相对较低。另一方面,SiC陶瓷的 力学性能还随烧结添加剂的不同而不同。无压 烧结、热压烧结和反应烧结SiC陶瓷对强酸、 强碱具有良好的抵抗力,但反应烧结SiC陶瓷 对HF等超强酸的抗蚀性较差。就耐高温性能比 较来看,当温度低于900℃时,几乎所有SiC陶 瓷强度均有所提高;当温度超过1400℃时,反 应烧结SiC陶瓷抗弯强度急剧下降。(这是由 于烧结体中含有一定量的游离Si,当超过一定 温度抗弯强度急剧下降所致)对于无压烧结和 热等静压烧结的SiC陶瓷,其耐高温性能主要 受添加剂种类的影响
碳化硅陶瓷的制备技术及应用
一、碳化硅的前沿 二、SiC粉末的合成 三、SiC的烧结方法 四、反应烧结碳化硅的成型工艺 五、碳化硅陶瓷的应用
碳化硅陶瓷的制备技术及应用
1、前沿:
碳化硅陶瓷材料具有高温强度大, 高温抗氧化性 强、耐磨损性能好 ,热稳定性佳 ,热膨胀系数小, 热导率大, 硬度高 ,抗热震和耐化学腐蚀等优良特 性. 在汽车、机械化工、环境保护、 空间技术、 信 息电子 、能源等领域有着日益广泛的应用,已经成为 一种在很多工业领域性能优异的其他材料不可替代的 结构陶瓷。
2、 SiC粉末的合成:
SiC在地球上几乎不存在,仅在陨石 中有所发现。因此,工业上应用的SiC粉 末都为人工合成。目前,合成SiC粉末的 主要方法有:
1、Acheson法: 这是工业上采用最多的
合成方法,即用电将石英砂和焦炭的混合物加 热至2500℃左右高温反应制得。因石英砂和焦 炭中通常含有Al和Fe等杂质,在制成的SiC中 都固溶有少量杂质。其中,杂质少的呈绿色, 杂质多的呈黑色。
2、化合法: 在一定的温度下,使高
纯的硅与碳黑直接发生反应。由此可合 成高纯度的β-SiC粉末。
3、热分解法:使聚碳硅烷或三氯甲基
硅等有机硅聚合物在1200~1500℃的温 度范围内发生分解反应,由此制得亚微 米级的β-SiC粉末。
4、气相反相法: 使SiCl4和SiH4等含
硅的气体以及CH4、C3H8、等含碳的气 体在高温下发生反应,由此制备纳米级 的β-SiC超细粉。
相关文档
最新文档