ANSYS-1-非线性分析概述

合集下载

ANSYS中材料非线性模型介绍与选择

ANSYS中材料非线性模型介绍与选择

1.强化应力达到屈服点后,继续加载(如果切线弹模大于0),有塑形变形,应力升高,然后卸载,这时是弹性的,再加载还是弹性的,直到应力得到卸载时的应力值才开始新的屈服。

这种屈服点升高的现象称为强化。

强化机理:塑性变形对应于微观上的位错运动。

在塑性变形过程中不断产生新的位错,位错的相互作用提高了位错运动的阻力。

这在宏观上表现为材料的强化,在塑性力学中则表现为屈服面的变化。

各种材料的强化规律须通过材料实验资料去认识。

利用强化规律得到的加载面(即强化后的屈服面)可用来导出具体材料的本构方程。

强化规律比较复杂,一般用简化的模型近似表示。

目前广泛采用的强化模型是等向强化模型和随动强化模型。

2.等向强化如果材料在一个方向屈服强度提高(强化)在其它方向的屈服强度也同时提高,这样的材料叫等向强化材料。

等向强化模型假设,在塑性变形过程中,加载面作均匀扩大,即加载面仅决定于一个强化参量q。

如果初始屈服面是f*(σij)=0,则等向强化的加载面可表为:f(σij)=f*(σij)-C(q)=0,式中σij为应力分量;C(q)是强化参量q的函数。

通常q可取为塑性功或等效塑性应变式中dε为塑性应变ε的增量;式中重复下标表示约定求和。

3.随动强化如果材料在应该方向的屈服点提高,其它方向的屈服应力相应下降,比如拉伸的屈服强度提高多少,反向的压缩屈服强度就减少多少,这样的材料叫随动强化材料。

随动强化模型假设,在塑性变形过程中,加载面的大小和形状不变,仅整体地在应力空间中作平动。

以αij代表加载面移动矢量的分量,则加载面可表为:f(σij)=f*(σij-αij)=0,式中可取αij=Aε,A为常数。

4.材料模型选择对于多数实际材料,强化规律大多介于等向强化和随动强化之间。

在加载过程中,如果在应力空间中应力矢量的方向(或各应力分量的比值)变化不大,则等向强化模型与实际情况较接近。

由于这种模型便于数学处理,所以应用较为广泛。

随动强化模型考虑了包辛格效应,可应用于循环加载和可能反向屈服的问题中。

ANSYS教程,非线性结构分析过程

ANSYS教程,非线性结构分析过程

ANSYS教程,非线性结构分析过程尽管非线性分析比线性分析变得更加复杂,但处理基本相同。

只是在非线形分析的适当过程中,添加了需要的非线形特性。

非线性结构分析的基本分析过程也主要由建模、加载并求解和观察结果组成。

下面来讲解其主要步骤和各个选项的处理方法。

建模这一步对线性和非线性分析都是必需的,尽管非线性分析在这一步中可能包括特殊的单元或非线性材料性质,如果模型中包含大应变效应,应力─应变数据必须依据真实应力和真实(或对数)应变表示。

加载求解在建立好有限元模型之后,将进入ANSYS求解器(GUI:Main Menu | Solution),并根据分析的问题指定新的分析类型(ANTYPE)。

求解问题的非线性特性在ANSYS中是通过指定不同的分析选项和控制选项来定义的。

非线性分析不同于线性分析之处在于,它通常要求执行多荷载步增量和平衡迭代。

下面就详细讲解一下进行非线性结构分析需要定义的各个求解选项、分析选项和控制选项是如何设置的,以及他们的意义是什么。

求解控制对于一些基本的非线性问题的分析选项,可以通过ANSYS提供的求解控制对话框中的选项设置来完成。

选择菜单路径:Main Menu | Solution | Analysis Type | Sol’n Controls,将弹出求解控制(Solution Controls)对话框,如下图所示。

从图中可以看出该对话框主要包括5个选项卡:基本选项(Basic)、瞬态选项(Transient)、求解选项(Sol’n Options)、非线性选项(Nonlinear)和高级非线性选项(Advanced NL)。

如果开始一项新的分析,在设置分析类型和非线性选项时,选择“Large Displacement Static”选项(不是所有的非线性分析都支持大变形)。

如果想要重新启动一个失败的非线性分析,则选择“Restart Current Analysis”选项。

选中下面的“Calculate prestress effects”单选按钮用于有预应力的模态分析时的预应力计算,具体内容见模态分析部分。

ANSYS结构非线性分析指南

ANSYS结构非线性分析指南

ANSYS结构非线性分析指南ANSYS是一个强大的工程仿真软件,能够对各种复杂的结构进行分析。

其中,结构非线性分析是其中一种重要的分析方法,它能够模拟结构在非线性载荷和变形条件下的行为。

本文将为您提供一个ANSYS结构非线性分析的指南,帮助您更好地理解和应用这个方法。

首先,我们需要明确结构非线性分析的目标。

一般来说,结构非线性分析主要用于研究结构在大变形、材料非线性、接触或摩擦等复杂条件下的响应。

例如,当结构受到极大的外力作用时,其产生的变形可能会导致材料的非线性行为,这时我们就需要进行非线性分析。

在进行非线性分析之前,我们需要进行准备工作。

首先,我们需要准备一个几何模型,可以通过CAD软件导入或者直接在ANSYS中绘制。

然后,我们需要选择合适的材料模型,这将直接影响分析结果的准确性。

ANSYS提供了多种材料模型,例如线弹性模型、塑性模型和粘弹性模型等。

接下来,我们需要定义边界条件和载荷。

边界条件指明了结构的固定边界和自由边界,这决定了结构的位移约束。

载荷是作用在结构上的外力或者外界约束,例如压力、点载荷或者摩擦力等。

在非线性分析中,载荷的大小和施加方式可能会导致结构的非线性响应,因此需要仔细选择。

接下来,我们需要选择适当的非线性分析方法。

ANSYS提供了多种非线性分析方法,例如几何非线性分析、材料非线性分析和接触非线性分析等。

几何非线性分析适用于大变形情况下的分析,材料非线性分析适用于材料的弹塑性行为分析,而接触非线性分析适用于多个结构之间的接触行为分析。

在进行非线性分析之前,我们需要对模型进行预处理,包括网格划分和解算控制参数的设置。

网格划分的精度会直接影响分析结果的准确性,因此需要进行适当的剖分。

解算控制参数的设置涉及到收敛性和稳定性的问题,需要进行合理的调整。

然后,我们可以进行非线性分析了。

ANSYS提供了多种求解器,例如Newton-Raphson方法和弧长法等。

这些求解器可以通过迭代算法来求解非线性方程组,得到结构的响应结果。

ansys材料非线性概述

ansys材料非线性概述

4.1 材料非线性概述许多与材料有关的参数可以使结构刚度在分析期间改变。

塑性、非线性弹性、超弹性材料、混凝土材料的非线性应力—应变关系,可以使结构刚度在不同载荷水平下(以及在不同温度下)改变.蠕变、粘塑性和粘弹性可以引起与时间、率、温度和应力相关的非线性.膨胀可以引起作为温度、时间、中子流水平(或其他类似量)函数的应变.ANSYS程序应可以考虑多种材料非线性特性:1.率不相关塑性指材料中产生的不可恢复的即时应变。

2.率相关塑性也可称之为粘塑性,材料的塑性应变大小将是加载速度与时间的函数。

3.材料的蠕变行为也是率相关的,产生随时间变化的不可恢复应变,但蠕变的时间尺度要比率相关塑性大的多。

4.非线性弹性允许材料的非线性应力应变关系,但应变是可以恢复的。

5.超弹性材料应力应变关系由一个应变能密度势函数定义,用于模拟橡胶、泡沫类材料,变形是可以恢复的。

6.粘弹性是一种率相关的材料特性,这种材料应变中包含了弹性应变和粘性应变。

7.混凝土材料具有模拟断裂和压碎的能力.8.膨胀是指材料在中子流作用下的体积扩大效应。

4。

2 塑性分析4。

2。

1 塑性理论简介许多常用的工程材料,在应力水平低于比例极限时,应力—应变关系为线性的。

超过这一极限后,应力—应变关系变成非线性,但却不一定是非弹性的。

以不可恢复的应变为特征的塑性,则在应力超过屈服点后开始出现。

由于屈服极限与比例极限相差很小,ANSYS程序在塑性分析中,假设这二个点相同,见图4—1。

图4—1 弹塑性应力—应变曲线塑性是一种非保守的(不可逆的),与路径相关的现象.换句话说,荷载施加的顺序,以及什么时候发生塑性响应,影响最终求解结果。

如果用户预计在分析中会出现塑性响应,则应把荷载处理成一系列的小增量荷载步或时间步,以使模型尽可能附合荷载—响应路径。

最大塑性应变是在输出(Jobname.OUT)文件的子步信息中打印的。

在一个子步中,如果执行了大量的平衡迭代,或得到大于15%的塑性应变增量,则塑性将激活自动时间步选项[AUTOTS](GUI:Main Menu>Solution〉Sol”n Control:Basic Tab 或Main Menu〉Solution〉Unabridged Menu> Time /Frequenc>Time and Substps).如果取了太大的时间步,则程序将二分时间步,并重新求解。

ansys材料非线性

ansys材料非线性
– 在比例极限以下, 应力和应变线性相关.
• 另外, 在称为屈服点 的应力水平以下, 应力-应变响应为弹性.
– 在屈服点以下, 卸载后, 发生的任何应变都是完全可恢复的.
σ
屈服点 比例极限
ε
May 11, 2007 © 2007 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary
DesignModeler
等向强化 指屈服面在塑性流动期间均匀扩张。‘等向’ 一词指屈服面的均匀
扩张,和‘各向同性’屈服准则 (即材料取向)不同。
σ3
后来的屈服面
σ
σ' σy 2σ'
最初的屈服面
ε σ2
弹性
ε σ2
σ1
主应力空间
单轴应力-应变
ANSYS, Inc. Proprietary
Inventory #002496 1-12
材料非线性专题
弹塑性-综述(续)
Training Manual
DesignModeler
屈服准则:Hill 屈服准则
–它是各向异性 (von Mises 是各向同性)。 Hill 准则可看作是 von Mises 屈服准 则的延伸
主应力空间
σ2
ANSYS, Inc. Proprietary
单轴 应力-应变
Inventory #002496 1-13
材料非线性专题
弹塑性-综述(续)
Training Manual
DesignModeler
屈服准则:广义Hill屈服准则(各向异性非均质材料) –广义 Hill 势理论的屈服面可看作是在主应力空间内移动了的变形圆柱体。 –由于各向异性(不同方向屈服不同),所以圆柱屈服面变形 (Hill 准则)。 –因为屈服在拉伸和压缩中可指定为不同, 所以圆柱屈服面被初始移动。

ANSYS材料非线性分析

ANSYS材料非线性分析

【分享】ANSYS7.0超弹材料的定义-新的曲线拟合功能--摘自ansys用户专区几何非线性几何非线性不受敛主要原因1.网格质量,特别是warpage2.约束方程,少用刚性连接3.收敛准则,可适当加大容差4.荷载步设置,可适当加大步数最近碰到一个对我来说很意外的问题:如果确实如此希望大家以后小心大家知道定义接触后会自动生成一组实常数,前几天我碰到一个问题,需定义超过10组实常数,接触对很多,好像有20多处,按照常规步骤划分完所有网格,当时因为有一个实常数参数没确定,便预留了最后一组(第10组)实常数里面的参数为空,接下来就定义了所有的接触对,由于所有接触对里的设置一样,ANSYS在我保存db完重新打开后便把我所有的接触对综合成一个了!接下来我就把第十组实常数里面的参数补上了,但在求解时却提示我该实常数同时被两种单元(包括CNTACT单元)同时占用,出现错误!!检查了半天才发现自动生成的接触对实常数把第10组实常数也占用了!我实在没找到什么好的解决办法,只得把接触对删除了重新定义,那可是上百多个面的选取过程,痛苦不堪简直!ANSYS里接触对面的选取时还不能针对Component操作!ANSYS7.0超弹材料的定义-新的曲线拟合功能ANSYS7.0中的超弹材料模拟能力得到了很大的加强,在ANSYS6.1的超弹材料模型的基础上又增加了Gent, Yeoh, Blatz-Ko, and Ogden (Foam)四种超弹性材料模型,使得其超弹模拟能力得到了进一步扩展。

ANSYS7.0中对超弹能力最吸引人的增强还不在于此,而是在于其曲线拟合能力的大幅度扩展,不再像ANSYS6.1以前的版本一样曲线拟合仅仅局限于Mooney-Rivlin模型,而是将其扩展到所有的超弹模型,这样,用户可以利用实验得到的应力应变数据直接让程序自己拟合出任意一种超弹材料模型的参数,大大方便了用户的使用。

以下就ANSYS7.0的超弹拟合功能做一简单介绍。

ANSYS讲义非线性分析

ANSYS讲义非线性分析
F1
t1
t2
时间 t
XJTU
自动时间步(续)
• 自动时间步算法是 非线性求解控制 中包含的多种算法的一种。
(在以后的非线性求解控制中有进一步的讨论。) • 基于前一步的求解历史与问题的本质,自动时间步算法或者增加
或者减小子步的时间步大小。
XJTU
5) 输出文件的信息
在非线性求解过程中,输出窗口显示许多关于收敛的信息。输出 窗口包括:
子步
时间 ”相关联。
“时间
两个载荷步的求解 ”
XJTU
在非线性求解中的 “ 时间 ”
• 每个载荷步与子步都与 “ 时间 ”相关联。 子步 也叫时间步。
• 在率相关分析(蠕变,粘塑性)与瞬态分析中,“ 时间 ”代表真实 的时间。
• 对于率无关的静态分析,“ 时间 ” 表示加载次序。在静态分析中, “ 时间 ” 可设置为任何适当的值。
最终结果偏离平衡。
u 位移
XJTU
1) Newton-Raphson 法
ANSYS 使用Newton-Raphson平衡迭代法 克服了增量
求解的问题。 在每个载荷增量步结束时,平衡迭代驱 使解回到平衡状态。
载荷
F
4 3 2
1
u 位移
一个载荷增量中全 Newton-Raphson 迭代 求解。(四个迭代步如 图所示)
XJTU
非线性分析的应用(续)
宽翼悬臂梁的侧边扭转失 稳
一个由于几何非线性造 成的结构稳定性问题
XJTU
非线性分析的应用(续)
橡胶底密封 一个包含几何非线 性(大应变与大变 形),材料非线性 (橡胶),及状态 非线性(接触的例 子。
XJTU
非线性分析的应用(续)

ANSYS结构非线性分析指南(一至三章)

ANSYS结构非线性分析指南(一至三章)

ANSYS结构非线性分析指南(一到三章)屈服准则概念:1.理想弹性材料物体发生弹性变形时,应力与应变完全成线性关系,并可假定它从弹性变形过渡到塑性变形是突然的。

2.理想塑性材料(又称全塑性材料)材料发生塑性变形时不产生硬化的材料,这种材料在进入塑性状态之后,应力不再增加,也即在中性载荷时即可连续产生塑性变形。

3.弹塑性材料在研究材料塑性变形时,需要考虑塑性变形之前的弹性变形的材料这里可分两种情况:Ⅰ.理想弹塑性材料在塑性变形时,需要考虑塑性变形之前的弹性变形,而不考虑硬化的材料,也即材料进入塑性状态后,应力不再增加可连续产生塑性变形。

Ⅱ.弹塑性硬化材料在塑性变形时,既要考虑塑性变形之前的弹性变形,又要考虑加工硬化的材料,这种材料在进入塑性状态后,如应力保持不变,则不能进一步变形。

只有在应力不断增加,也即在加载条件下才能连续产生塑性变形。

4.刚塑性材料在研究塑性变形时不考虑塑性变形之前的弹性变形。

这又可分两种情况:Ⅰ.理想刚塑性材料在研究塑性变形时,既不考虑弹性变形,又不考虑变形过程中的加工硬化的材料。

Ⅱ.刚塑性硬化材料在研究塑性变形时,不考虑塑性变形之前的弹性变形,但需要考虑变形过程中的加工硬化材料。

屈服准则的条件:1.受力物体内质点处于单向应力状态时,只要单向应力大到材料的屈服点时,则该质点开始由弹性状态进入塑性状态,即处于屈服。

2.受力物体内质点处于多向应力状态时,必须同时考虑所有的应力分量。

在一定的变形条件(变形温度、变形速度等)下,只有当各应力分量之间符合一定关系时,质点才开始进入塑性状态,这种关系称为屈服准则,也称塑性条件。

它是描述受力物体中不同应力状态下的质点进入塑性状态并使塑性变形继续进行所必须遵守的力学条件,这种力学条件一般可表示为)=Cf(σij又称为屈服函数,式中C是与材料性质有关而与应力状态无关的常数,可通过试验求得。

屈服准则是求解塑性成形问题必要的补充方程。

1.1 什么是结构非线性在日常生活中,经常会遇到结构非线性。

ansys几何非线性

ansys几何非线性
几何非线性专题
May 11, 2007 © 2007 ANSYS, Inc. All rights reserved.
ANSYS, Inc. Proprietary
Inventory #002496 1-1
几何非线性专题
概述
Training Manual
DesignModeler
什么是几何非线性行为?
Inventory #002496 1-7
几何非线性专题
概述(续)
Training Manual
DesignModeler
• 改进的应变数学定义有利于大应变分析.
– 根据物理意义, 应变总是定义为对变形体的规范化度量. – 然而, 应变有许多种可能的数学定义.
• 尽管应变的数学定义有点任意性, 但它必须符合一定的要求:
ANSYS, Inc. Proprietary
Inventory #002496 1-2
几何非线性专题
概述(续)
Training Manual
DesignModeler
考虑与几何非线性有关的三种现象:
1如果单元的 形状 改变 (面积, 厚度等), 其单独的单元刚度将改变.
2如果单元的 取向 改变 (转动), 其局部刚度转化为全局分量时将发生变化.
– 没有变形时, 应变应该为零 (如纯粹刚体运动, 包括转动). – 有变形时, 应变应该不为零. – 应变应该通过材料的应力-应变关系与应力相联系.
May 11, 2007 © 2007 ANSYS, Inc. All rights reserved.
ANSYS, Inc. Proprietary
例如, 注意 SHELL63 支持应力刚 化和大挠度, 但不支持大应变 .

1-非线性分析概述【ANSYS非线性分析】

1-非线性分析概述【ANSYS非线性分析】

第一章钢筋混凝土结构非线性分析概述1.1 钢筋混凝土结构的特性1.钢筋混凝土结构由两种材料组成,两者的抗拉强度差异较大,在正常使用阶段,结构或构件就处在非线性工作阶段,用弹性分析方法分析的结构内力和变形无法反映结构的真实受力状况;2.混凝土的拉、压应力-应变关系具有较强的非线性特征;3.钢筋与混凝土间的黏结关系非常复杂,特别是在反复荷载作用下,钢筋与混凝土间会产生相对滑移,用弹性理论分析的结果不能反映实际情况;4.混凝土的变形与时间有关:徐变、收缩;5.应力-应变关系莸软化段:混凝土达到强度峰值后有应力下降段;6.产生裂缝以后成为各向异形体。

混凝土结构在荷载作用下的受力-变形过程十分复杂,是一个变化的非线性过程。

1.2 混凝土结构分析的目的和主要内容《混凝土结构设计规范》(GB50010-2002)中新增的主要内容:(1)混凝土的本构关系和多轴强度:给出了单轴受压、受拉非线性应力-应变(本构)关系,混凝土二轴强度包络图、三轴抗压强度图和三轴应力状态破坏准则;(2)结构分析:规范概括了用于混凝土结构分析的5类方法,列入了结构非线性分析方法。

一、结构分析的基本目的:计算在各类荷载作用下的结构效应——内力、位移、应力、应变根据设计的结构方案确定合理的计算简图,选择不利荷载组合,计算结构内力,以便进行截面配筋计算和采取构造措施。

二、结构分析的主要内容:(1)确定结构计算简图:考虑以下因素:(a)能代表实际结构的体形和尺寸;(b)边界条件和连接方式能反映结构的实际受力状态,并有可靠的构造措施;(c)材料性能符合结构的实际情况;(d)荷载的大小、位置及组合应与结构的实际受力吻合;(e)应考虑施工偏差、初始应力及变形位移状况对计算简图进行适当修正;(f)根据结构受力特点,可对计算简图作适当简化,但应有理论或试验依据,或有可靠的工程经验;(g)结构分析结果应1满足工程设计的精度要求。

(2)结构作用效应分析:根据结构施工和使用阶段的多种工况,分别进行结构分析,确定最不利荷载效应组合。

Ansys非线性接触分析和设置

Ansys非线性接触分析和设置

Ansys非线性接触分析和设置设置实常数和单元关键选项程序使用20个实常数和数个单元关键选项,来控制面─面接触单元的接触。

参见《ANSYS Elements Reference》中对接触单元的描述。

实常数在20个实常数中,两个(R1和R2)用来定义目标面单元的几何形状。

剩下的用来控制接触面单元。

R1和R2 定义目标单元几何形状。

FKN 定义法向接触刚度因子。

FTOLN 是基于单元厚度的一个系数,用于计算允许的穿透。

ICONT 定义初始闭合因子。

PINB 定义“Pinball"区域。

PMIN和PMAX 定义初始穿透的容许范围。

TAUMAR 指定最大的接触摩擦。

CNOF 指定施加于接触面的正或负的偏移值。

FKOP 指定在接触分开时施加的刚度系数。

FKT 指定切向接触刚度。

COHE 制定滑动抗力粘聚力。

TCC 指定热接触传导系数。

FHTG 指定摩擦耗散能量的热转换率。

SBCT 指定Stefan-Boltzman 常数。

RDVF 指定辐射观察系数。

FWGT 指定在接触面和目标面之间热分布的权重系数。

FACT 静摩擦系数和动摩擦系数的比率。

DC 静、动摩擦衰减系数。

命令:RGUI:main menu> preprocessor>real constant对实常数FKN, FTOLN, ICONT, PINB, PMAX, PMIN, FKOP 和FKT,用户既可以定义一个正值,也可以定义一个负值。

程序将正值作为比例因子,将负值作为绝对值。

程序将下伏单元的厚度作为ICON,FTOLN,PINB,PMAX 和PMIN 的参考值。

例如ICON = 表明初始闭合因子是“*下层单元的厚度”。

然而,ICON = 则表示真实调整带是单位。

如果下伏单元是超单元,则将接触单元的最小长度作为厚度。

参见图5-8。

图5-8 下层单元的厚度在模型中,如果单元尺寸变化很大,而且在实常数如ICONT, FTOLN, PINB, PMAX, PMIN 中应用比例系数,则可能会出现问题。

ANSYS非线性问题概述

ANSYS非线性问题概述

1ANSYS非线性问题概述1.1 非线性有限元基本理论从一般的角度来说,固体力学中的所有现象都是非线性的。

对于许多工程实际问题,近似地用线性理论来处理可以使计算简单可行,并符合工程上的精度要求。

但是对于工程中的许多问题,如金属材料成形过程、切削加工过程、地震作用下结构的弹塑性动力响应、高层建筑抗风、超弹性材料不可压缩、薄壁结构失稳、装配体过盈接触等问题的研究,仅仅假设为线性问题是远远满足不了实际需求的,必须进一步考虑为非线性问题。

因此,对各种工程结构的非线性分析就显得日益迫切和重要了。

非线性系统的响应不是所施加载荷的线性函数,因此不能通过叠加来获得不同载荷情况的解答。

每种载荷情况都必须作为独立的分析进行定义和求解。

通常,把非线性问题分为三种类型:(1)材料非线性。

非线性的应力应变关系是结构非线性的常见原因,如弹塑性材料、超弹性材料等,许多因素都可以影响材料的应力应变性质,包括加载历史、温度、加载时间总量等。

(2)几何非线性。

如果结构经历大变形,则变化了的几何形状可能会引起结构的非线性响应,这又可以分为两类情形。

第一种情形,大挠度或大转动问题。

例如板、壳等薄壁结构在一定载荷作用下,尽管应变很小,甚至未超过弹性极限,但是位移较大,材料元素有较大的转动。

这时的平衡方程必须建立在变形后的构形上,同时应变表达式中应包括位移的二次项,从而平衡方程和几何方程都为非线性的。

第二种情形,大应变或有限应变问题。

例如金属成形过程的有限塑性变形,处理这类大应变问题,除了非线性的平衡方程和几何关系外,还需要引入相应的应力-应变关系。

(3)状态非线性。

由于系统刚度和边界条件的性质随物体的运动发生变化所引起的非线性响应。

例如,一根只能受拉的钢索可能是松散的,也可能是绷紧的;轴承套可能是接触的,也可能是不接触的;冻土可能是冻结的,也可能是融化的。

这些系统的刚度和边界条件由于系统状态的改变在不同的值之间突然变化。

1.1.1 弹塑性本构关系按性质分类,弹塑性问题应属于材料非线性问题。

ANSYS非线性静力分析

 ANSYS非线性静力分析
第五讲 非线性静力分析
ANSYS 理论与工程应用
5-1
Material Nonlinear Static Analysis I Steel Cylinder Under Compression Parameters: E=210e9, μ=0.28, σs=200e6 (bilinear material) h=30e-3, d=20e-3 displacement load=4.5e-5
ANSYS 理论与工程应用
5-4
注意: 1.使用beam188单元进行模拟,会出 现节点载荷过大的情况,计算不能完 成。
2.使用solid单元进行模拟,将集中 力加在node上,可以完成计算。
ANSYS 理论与工程应用
5-5
节点位移
ANSYS 理论与工程应用
5-6
练习2 矩形截面简支梁跨中承受铅垂向下的集 中力F作用。E=7e4Pa, μ=0.325, h=0.5m, b=0.3m, L=5m
4 Uniaxial crushing stress (positive). (C35:16.7Mpa)
5 Biaxial crushing stress (positive).
6 Ambient hydrostatic stress state for use with constants 7 and 8.
9 Stiffness multiplier for cracked tensile condition, used if KEYOPT(7) = 1 (defaults to 0.6).
ANSYS 理论与工程应用
5-12
Strain Stress(Pa)
7.857e-4
55
5.75e-3

ansys_非线性材料的定义

ansys_非线性材料的定义
注意: 使用MP命令来定义弹性模量 弹性模量也可以是与温度相关的 切向斜率不可以是负数,也不能大于弹性模量
在使用经典的双线性随动强化时,可以分下面三步来定义材料特性。 • 1、 定义弹性模量 • 2、 激活双线性随动强化选项 • 3、 使用数据表来定义非线性特性
• 双线性等向强化(BIS0),也是使用双线性 来表示应力-应变曲线,在此选项中,等 向强化的Von Mises 屈服准则被使用,这个 选项一般用于初始各向同性材料的大应变 问题。需要输入的常数与BKIN选项相同。
• 其材料特性的定义步骤如下: • 1、 定义弹性模量 • 2、 定义MISO数据表 • 3、 为输入的应力-应变数据指定温度值 • 4、 输入应力-应变数据 • 5、 画材料的应力-应变曲线 • 与MKIN 数据表不同的是,MISO的数据表对不同的温度可以有不同
的应变值,因此,每条温度曲线有它自己的输入表。

TBTEMP,20

TBDATA,,300E6,370E6,380E6

TBTEMP,100

TBDATA,,250E6,310E6,330E6
• 多线性等向强化(MISO)使用多线性来表示使用Von Mises屈服 准则 的等向强化的应力-应变曲线,它适用于比例加载的情况和大应变分 析。
• 需要输入最多100个应力-应变曲线,最多可以定义20条不同温度下 的曲线。
屈服准则规定材料开始塑性变形的应力状态, 它是应力状态的单值度量(标量),以便与单轴状态 比较,ANSYS主要使用Von.Mises屈服准则和Hill屈 服准则。
• Mises屈服准则(也称八面体剪应力或变形能准则)
可写为:
c y 0
式中, c为等效应力; y为屈服应力。

ANSYS结构非线性分析指南

ANSYS结构非线性分析指南

ANSYS结构非线性分析指南ANSYS是一款非常强大的有限元分析软件,广泛应用于各种工程领域的结构分析。

在常规的结构分析中,通常会涉及到线性分析,但一些情况下,结构出现了非线性行为,这时就需要进行非线性分析。

非线性分析可以更准确地模拟结构的真实行为,包括材料的非线性、几何的非线性和接触非线性等。

在进行ANSYS结构非线性分析时,需要考虑以下几个方面:1.材料的非线性:在材料的应力-应变关系中,材料的性质可能会发生变化,如塑性变形、损伤、软化等。

因此在非线性分析中,需要考虑材料的非线性特性,并正确选取材料模型。

2.几何的非线性:在一些情况下,结构本身的几何形态可能会发生较大变化,如大变形、屈曲等。

这需要考虑结构的几何非线性,并在分析中充分考虑结构的形变情况。

3.接触非线性:当结构中存在接触面时,接触面之间的接触力可能是非线性的,如摩擦力、法向压力等。

在进行非线性分析时,需要考虑接触面上的非线性行为,确保接触的可靠性。

在进行ANSYS结构非线性分析时,可以按照以下步骤进行:1.建立模型:首先需要根据实际情况建立结构的有限元模型,包括几何形状、边界条件和加载条件等。

在建立模型时,需要考虑到结构的材料、几何和接触情况,并进行合理的网格划分。

2.设置分析类型:在ANSYS中,可以选择静力分析、动力分析等不同的分析类型。

在进行非线性分析时,需要选择适合的非线性分析模块,并设置相应的参数。

3.设置材料模型:根据结构的材料特性,选择合适的材料模型,如弹塑性模型、本构模型等。

根据实际情况,设置材料的材料参数,确保材料的非线性行为能够得到准确的描述。

4.设置几何非线性:考虑结构的几何非线性时,需要选择合适的几何非线性选项,并设置合适的几何参数。

在进行大变形分析时,需要选择几何非线性选项,确保结构的形变情况能够得到准确的描述。

5.设置接触非线性:当结构存在接触面时,需要考虑接触面上的非线性行为。

在ANSYS中,可以设置接触类型、摩擦系数等参数,确保接触的可靠性。

ansys 非线性分析原理

ansys 非线性分析原理

ansys 非线性分析原理ANSYS中的非线性分析是指通过考虑材料的非线性行为、几何非线性和边界条件的非线性等因素,对结构进行分析和计算。

非线性分析的原理主要包括以下几个方面。

1. 材料的非线性行为:考虑到材料在受载作用下的非线性行为,一般采用弹塑性分析方法。

弹塑性材料在受力时会出现应力-应变曲线的非线性特征,这需要使用合适的本构模型来描述。

ANSYS中常用的本构模型有弹塑性模型、弹性模型等,根据问题的实际情况选择适当的本构模型进行分析。

2. 几何的非线性效应:当结构在受载作用下出现较大的变形时,就需要考虑几何非线性效应。

一般情况下,当结构的变形较小时可以忽略几何非线性,反之则需要进行几何非线性分析。

几何非线性的分析可通过使用大变形理论来描述结构的非线性变形,并进行相应的计算。

3. 边界条件的非线性效应:非线性分析还需要考虑边界条件的非线性效应。

在实际工程中,边界条件往往是随着结构的变形而变化的,如约束条件的变化、边界载荷的变化等。

这些非线性边界条件会对结构的响应产生影响,因此需要将其考虑在内进行非线性分析。

在ANSYS中进行非线性分析时,通常需要进行以下步骤:1. 定义材料的本构模型:选择合适的弹塑性模型或弹性模型,并设置相应的参数。

2. 构建几何模型:根据实际工程要求,构建结构的几何模型,并对其进行离散化,即将结构分割成有限元网格。

3. 施加边界条件和载荷:根据实际工况,为结构施加边界条件和载荷。

4. 求解非线性方程组:通过非线性方程的迭代求解方法,求解得到结构的非线性响应。

5. 分析结果的后处理:对求解得到的结果进行分析和后处理,获取所需的工程参数和信息。

总之,非线性分析在ANSYS中是通过考虑材料的非线性行为、几何的非线性效应和边界条件的非线性效应等因素,对结构进行全面分析和计算的方法。

ansys的非线性命令解析

ansys的非线性命令解析

引用小健哥的ANSYS 非线性分析命令解析ANSYS应用基于问题物理特性的自动求解控制方法,把各种非线性分析控制参数设置到合适的值。

如果用户对这些设置不满意,还可以手工设置。

下列命令的缺省设置已进行了优化处理:AUTOTS PRED MONITORDELTIM NROPT NEQITNSUBST TINTP SSTIFCNVTOL CUTCONTROL KBCLNSRCH OPNCONTROL EQSLVARCLEN CDWRITE LSWRITE这些命令及其设置在将在后面讨论。

参见《ANSYS Commands Reference》。

如果用户选择自己的设置而不是ANSYS的缺省设置,或希望用以前版本的ANSYS的输入列表,则可用/ SOLU 模块的SOLCONTROL ,OFF命令,或在/ BATCH 命令后用/ CONFIG ,NLCONTROL,OFF命令。

参见SOLCONTROL 命令的详细描述。

ANSYS对下面的分析激活自动求解控制单场的非线性或瞬态结构以及固体力学分析,在求解自由度为UX、UY、UZ、ROTX、ROTY、ROTZ 的结合时;单场的非线性或瞬态热分析,在求解自由度为TEMP时;注意--本章后面讨论的求解控制对话框,不能对热分析做设置。

用户必须应用标准的ANSYS 求解命令或GUI来设置。

2.2 非线性静态分析步骤尽管非线性分析比线性分析变得更加复杂,但处理基本相同。

只是在非线形分析的过程中,添加了需要的非线形特性。

非线性静态分析是静态分析的一种特殊形式。

如同任何静态分析,处理流程主要由以下主要步骤组成:建模;设置求解控制;设置附加求解控制;加载;求解;考察结果。

2.2.1 建模这一步对线性和非线性分析基本上是一样的,尽管非线性分析在这一步中可能包括特殊的单元或非线性材料性质,参考§4《材料非线性分析》,和§6.1《单元非线性》。

如果模型中包含大应变效应,应力─应变数据必须依据真实应力和真实(或对数)应变表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章钢筋混凝土结构非线性分析概述1.1 钢筋混凝土结构的特性1.钢筋混凝土结构由两种材料组成,两者的抗拉强度差异较大,在正常使用阶段,结构或构件就处在非线性工作阶段,用弹性分析方法分析的结构内力和变形无法反映结构的真实受力状况;2.混凝土的拉、压应力-应变关系具有较强的非线性特征;3.钢筋与混凝土间的黏结关系非常复杂,特别是在反复荷载作用下,钢筋与混凝土间会产生相对滑移,用弹性理论分析的结果不能反映实际情况;4.混凝土的变形与时间有关:徐变、收缩;5.应力-应变关系莸软化段:混凝土达到强度峰值后有应力下降段;6.产生裂缝以后成为各向异形体。

混凝土结构在荷载作用下的受力-变形过程十分复杂,是一个变化的非线性过程。

1.2 混凝土结构分析的目的和主要内容《混凝土结构设计规范》(GB50010-2002)中新增的主要内容:(1)混凝土的本构关系和多轴强度:给出了单轴受压、受拉非线性应力-应变(本构)关系,混凝土二轴强度包络图、三轴抗压强度图和三轴应力状态破坏准则;(2)结构分析:规范概括了用于混凝土结构分析的5类方法,列入了结构非线性分析方法。

一、结构分析的基本目的:计算在各类荷载作用下的结构效应——内力、位移、应力、应变根据设计的结构方案确定合理的计算简图,选择不利荷载组合,计算结构内力,以便进行截面配筋计算和采取构造措施。

二、结构分析的主要内容:(1)确定结构计算简图:考虑以下因素:(a)能代表实际结构的体形和尺寸;(b)边界条件和连接方式能反映结构的实际受力状态,并有可靠的构造措施;(c)材料性能符合结构的实际情况;(d)荷载的大小、位置及组合应与结构的实际受力吻合;(e)应考虑施工偏差、初始应力及变形位移状况对计算简图进行适当修正;(f)根据结构受力特点,可对计算简图作适当简化,但应有理论或试验依据,或有可靠的工程经验;(g)结构分析结果应满足工程设计的精度要求。

(2)结构作用效应分析:根据结构施工和使用阶段的多种工况,分别进行结构分析,确定最不利荷载效应组合。

根据荷载工况,对结构进行整体或局部特殊部位分析,以保证结构安全。

三、混凝土结构分析的方法和手段:1、五类结构分析方法:(1)线弹性分析:以弹性本构关系和小变形为基础,利用材料力学、结构力学方法分析结构。

如框架结构内力分析。

(2)塑性内力重分布分析:建筑结构大多属超静定结构,利用结构的冗余约束以充分发挥其作用。

如肋梁楼盖的内力计算方法。

(3)塑性极限分析:将结构视为理想刚塑性,不考虑材料的的弹性性质和强化效应,求钢筋混凝土结构的极限荷载。

目的是评价钢筋混凝土结构的极限荷载,不注重结构加载的全工程。

(4)非线性分析:利用材料非线性本构关系或非线性边界条件,用有限元方法对结构进行从加载到破坏的全过程分析,能得到应力、应变状态及其发展规律、裂缝分布与发展,以揭示结构的薄弱部位和环节,改进结构设计。

(5)试验分析:2、手段:手算、计算机软件计算,借助于基本力学概念,审核判断结构分析的成果,用试验数据验证计算分析结果,以保证分析质量。

1.3 结构有限元分析结构有限元分析的基本未知量是节点位移,结构分析的其它量(应力、应变、内力)都可以通过节点位移计算出。

一、结构有限元分析的基本步骤:混凝土结构分析的目的就是求出混凝土结构的荷载效应。

有限元法求解弹塑性问题的基本步骤:1.结构的离散化:把结构划分成有限个单元体,并在单元体的指定位置设置节点,相邻单元在节点处连接,代替原来的结构。

离散程度取决于结构分析要求的精度和单元的阶数。

极限荷载值:48单元=16.73kN;432单元=6.6kN2.选择位移函数:用节点位移表示单元内任意一点的位移、应变和应力。

{}[]{}e w N f ={}f ——单元内任意一点的位移[]N ——形函数矩阵{}e w ——单元结点位移列阵3. 单元模型:结构有限元分析中,建立单元模型是关键,而建立单元模型的基本条件是:(1)材料本构关系:应力-应变关系 {}[]{}εσD ={}σ——单元应力列阵[]D ——单元材料本构关系矩阵{}ε——单元应变列阵(2)位移协调条件:由通过几何条件推导出,单元节点位移和单元应变的关系 {}[]{}e w B =ε[]B ——单元的几何关系矩阵{}e w ——单元结点位移列(3)单元平衡方程:根据虚位移原理,外力在虚位移上所作的功 = 应力在虚应变上所作的功考虑三维体系单元承受集中荷载,体系初始处于静止平衡状态,然后施加微小位移,根据虚位移原理,内势能等于外力功。

⎰=v T e T dv w }{}{}{}{σεδδp⎰=v T T e T dv D B w w }]{[][}{}{εδδp }{]][[][}{}{e v T T e e T e w dv B D B w w ⎰=δδp}{]][[][}{e v T e w dv B D B ⎰=p节点力和节点位移关系: {}[]{}e e w K p =单元刚度矩阵:⎰=v Tdv B D B K ]][[][][ 单元的类型和形状的选择依赖于结构或总体求解域的几何特点、方程的类型及求解所希望的精度等因素,而有限元的插值函数则取决于单元的形状、结点的类型和数目等因素。

4. 计算等效节点荷载:将作用在单元上的体积力、面积力、表面力,等效移植到单元节点上。

5. 结构整体分析:集合所有单元刚度,形成结构总体刚度矩阵。

结构总体平衡方程:{}[]{}w K p =6. 引入位移边界条件:消除总体刚度矩阵的奇异性7. 求解结构平衡方程:8. 计算单元应力:二.线性问题定义:a) 材料本构关系:{}[]{}εσD = —— [D]为常量 b) 位移协调条件:{}[]{}w B =ε ——[B]为常量 c) 单元平衡方程:{}[]{}w K p = ——⎰=vTdv B D B K ]][[][][为常量 1. 4 混凝土结构非线性分析工程中许多问题是“非线性”的,非线性的意思是某特性不是线性的,涉及面很广,如与时间相关的应力-应变关系非线性或与时间无关的应力-应变关系非线性;裂缝开启或闭合导致荷载-位移关系非线性;位移导致内力分布变化等等。

轻微的非线性可以直接用线性问题解决,因为在线性弹性的小挠度条件下,结构采用线性设计方法仍能保证足够的精度。

而非线性分析概念复杂、难度较大,让工程师望而却步。

尽管如此,非线性分析还是日益普及,因为精确分析与设计是结构工程师的目标,同时,有限元算法和计算机的发展也使非线性分析越来越简便。

一、非线性分析主要分三类:1.材料非线性:材料本构关系是非线性,{}[]{}εεσ)(D = 单元刚度为非线性:[][][][]v B D B K v T d )(⎰=ε(1)非线性弹性问题:材料的应力-应变关系是非线性的,卸载后所有变形都是可恢复的。

(a)弹性非线性 (b)弹塑性非线性图1-1 弹性非线性本构关系与塑性非线性本构关系(2)非线性弹塑性问题:具有不可恢复的塑性变形的材料非线性问题。

2.几何非线性:几何非线性的特点是平衡方程必须依据变形后结构的几何形状导出,而变形后的几何形状是未知的。

此时结构变形较大,位移与应变之间的协调关系是非线性的,即单元应变与单元节点位移的关系随位移而变化{}[]{}w w B )(=ε,此时,单元的平衡方程必须按变形以后的几何位置确定。

几何非线性问题用“全拉格朗日法(Total Lagrange method )”或“更新的拉格朗日法(Update Lagrange Method )”分析。

全拉格朗日法:以初始物形为基准来考虑位移、荷载、应力-应变关系,当位移较大时需要考虑非线性,在荷载-位移关系式中加入其它项,即在单元刚度矩阵中加上高阶附加矩阵。

修正的拉格朗日法:以变形后已知的当前物形为基准来考虑位移、荷载、应力-应变的增量关系,是用相对两相邻变形的前一个变形(第p 步加载的变形)来考虑下一步(第p+1步)的计算。

即第p+1次计算的变形是变形增量(p 步到p+1步)。

3. 边界非线性:由于边界条件变化产生的荷载-位移非线性关系。

此时,材料可以是弹性的,变形可以是小变形,如图1-2 σε图1-2 边界非线性问题一个结构属于那类非线性问题,具体问题具体分析,抓主要影响因素,简化次要因素。

结构非线性分析的目的是计算结构的真实效应,解决结构分析与结构设计理论中存在的基本矛盾:基本矛盾1:构件层次的极限状态设计(承认非线性)结构层次的弹性力学分析(忽略非线性)基本矛盾2:构件层次基于可靠性设计(承认存在随机性)结构层次的确定性力学分析(不承认存在随机性)结构非线性分析包括:●结构在静态可变荷载作用下非线性力学性能分析●结构在地震荷载作用下非线性分析●模拟结构实验分析—加载全过程分析结构检测的反问题非线性问题中,结构刚度[K]是位移或应力的函数—而结构位移在方程求解前是未知的,所以只能按一系列线性解逼近非线性解,以增量的形式分段逼近。

二、非线性分析的基本原则非线性分析主要指对结构整体或局部进行受力全过程分析,从而精确地反映结构从受力至破坏全过程的内力、变形和裂缝发展过程。

非线性分析的原则:(1)结构的形状、尺寸、边界条件、连接方式、材料强度和配筋数量应根据设计意图预先确定,以提供计算分析条件;(2)材料性能指标(强度、弹性模梁等)宜取平均值;(3)材料、梁柱杆件的本构关系宜由试验确定。

无试验数据时,采用经过验证的数学模型;混凝土的本构关系可采用规范附录C 建议的本构关系;(4)宜考虑几何非线性对结构作用效应的不利影响;(5)验算正常使用极限状态时,取作用效应标准组合;计算承载能力极限状态时,用作用效应基本组合,但应根据结构构件的受力特点和破坏形态进行必要的修正。

三、材料指标和荷载取值1、材料指标:非线性分析应采用准确反映结构实际情况的材料指标。

最好通过试验测定材料的实际指标,也可以用该等级材料性能指标的平均值。

由材料标准值k f 反推算其平均值m f ,fk m f f δ645.11-= 式中,f δ--变异系数 2、荷载取值:非线性分析时材料强度采用平均值。

由于剔除了材料的安全储备,计算承载能力极限状态时,应加大荷载(作用)效应的基本组合设计值,乘以大于1的修正系数,使结构恢复应有的安全储备。

修正系数根据构件受力和破坏特性确定,不宜小于下表中的值,对结构进行正常使用极限状态验算时,材料指标应采用标准值。

四、钢筋混凝土结构非线性分析的应用1.重要、复杂结构分析:求解结构在给定荷载下的位移或给定位移下的荷载,或结构的极限承载力分析;2.结构全过程分析:全过程各阶段受力性能,应力、应变分布,收缩、徐变后的内力重分布等力学特性;3.辅助实验分析:分析材料强度、钢筋种类、布筋方式、养护条件、加载条件等参数变化对结构构件的影响,以减少实验数量,降低消耗、提高效率。

相关文档
最新文档