勾股定理的证明(比较全的证明方法) PPT
勾股定理有关证明.ppt

证明十
注意: 面积 I : 面积 II : 面积 III = a2 : b2 : c2 由此得,面积 I + 面积 II = 面积 III 因此,a2 + b2 = c2 。
在从“面积到乘法公式”一章
的学习中,我们把几个图形拼成一 个新的图形,通过图形面积的计算 得到了许多有用的式子。这节课同 样地我们用多种方法拼图验证了勾 股定理,你有什么感受?
勾股定理的有关证明
编制: 姚永成
勾股定理:
直角三角形两直角边的平方和等于斜边的平方
a2+b2=c2
b2 a2
1
1
美丽的勾股树
2011年甘肃英才教育学校
早在公元3世纪,我国 数学家赵爽就用左边的图 形验证了“勾股定理”
思考:你能验证吗?
赵爽的“弦图”
C 想一想:这四个直角三角形还能怎样拼?
b (1)
试一试:
3、一个直角三角形的三边长为三个连续
偶数,则它的三边长分别为
( B)
A 2、4、6
B 6、8、10
C 4、6、8
D 8、10、12
例题分析
例 .在Rt△ABC中,∠C=90°.
(1) 已知:a=6,b=8,求c;
(2) 已知:a=40,c=41,求b;
方法 小结
(3) 已知:c=13,b=5,求a; (4) 已知: a:b=3:4, c=15,求a、b.
(1)在直角三角形中,已知两边,可求第三边; (2)可用勾股定理建立方程.
a
c
c
证
明
(2)
(a-b)2 (3)
一
(2) c
c
(3)
(a-b)2 = C2-4× 1 ab
勾股定理的证明PPT教学课件

证明二
a
bc
½(a + b)(b + a) = ½c2 + 2(½ab) ½a2 + ab + ½b2 = ½c2 + ab
\
a2 + b2 入相補
• 劉徽(生於公元三世紀) • 三國魏晉時代人。 • 魏景元四年(即 263 年)為
古籍《九章算術》作注釋。
• 在注作中,提出以「出入相 補」的原理來證明「勾股定 理」。後人稱該圖為「青朱 入出圖」。
谢谢指导!
折痕所在的直线叫做对称轴。
你能设计一个 轴对称图形吗?
作品展示
你能谈谈这节课的感受吗?
1、创作: 剪一个轴对称图形;
折一个轴对称图形;
画一个轴对称图形;
形,
用笔尖扎纸孔扎一个轴对称图
用水彩涂染一个轴对称图形;
以上任选两项完成。
2、课后上网查找关于轴对称图形的有关资 料,写写你的感受寄给老师 (liaolijie1@)记得要写上你的
沙田学校
八(10)中队
证明一
\ a2 + b2 = c2
c2
弦圖
• 趙爽
• 東漢末至三國時代吳 國人
• 為《周髀算經》作注, 並著有《勾股圓方圖 說》。
美國總統的證明
• 加菲(James A. Garfield; 1831 1881)
• 1881 年成為美國第 20 任總統
• 1876 年提出有關證明
证明三
b2
a2 \ a2 + b2 = c2
幾何原本
• 歐幾里得(Euclid of Alexandria; 約 325 B.C. 約 265 B.C.)
• 歐幾里得的《幾何原本》 是用公理方法建立演繹 數學體系的最早典範。
勾股定理的证明(最全证明)

勾股定理的证明【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即ab c ab b a 214214222⨯+=⨯++, 整理得 222c b a =+.【证法2】(邹元治证明)以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上.∵ Rt ΔHAE ≌ Rt ΔEBF ,∴ ∠AHE = ∠BEF .∵ ∠AEH + ∠AHE = 90º, ∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º.∴ 四边形EFGH 是一个边长为c 的正方形. 它的面积等于c 2. ∵ Rt ΔGDH ≌ Rt ΔHAE , ∴ ∠HGD = ∠EHA . ∵ ∠HGD + ∠GHD = 90º,∴ ∠EHA + ∠GHD = 90º. 又∵ ∠GHE = 90º,∴ ∠DHA = 90º+ 90º= 180º.∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +.∴ ()22214c ab b a +⨯=+. ∴ 222c b a =+.【证法3】(赵爽证明) 以a 、b 为直角边(b>a ), 以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状. ∵ Rt ΔDAH ≌ Rt ΔABE,∴ ∠HDA = ∠EAB .∵ ∠HAD + ∠HAD = 90º, ∴ ∠EAB + ∠HAD = 90º, ∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2. ∵ EF = FG =GH =HE = b ―a , ∠HEF = 90º.∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2a b -.∴ ()22214c a b ab =-+⨯.∴ 222c b a =+. 【证法4】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab21. 把这两个直角三角形拼成如图所示形状,使A 、E 、B三点在一条直线上.∵ Rt ΔEAD ≌ Rt ΔCBE ,∴ ∠ADE = ∠BEC .∵ ∠AED + ∠ADE = 90º, ∴ ∠AED + ∠BEC = 90º. ∴ ∠D EC = 180º―90º= 90º. ∴ ΔDEC 是一个等腰直角三角形,它的面积等于221c.又∵ ∠DAE = 90º, ∠EBC = 90º, ∴ AD ∥BC .∴ ABCD 是一个直角梯形,它的面积等于()221b a +.∴ ()222121221c ab b a +⨯=+. ∴ 222c b a =+.【证法5】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c . 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P .∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌ Rt ΔEBD , ∴ ∠EGF = ∠BED ,∵ ∠EGF + ∠GEF = 90°,∴ ∠BED + ∠GEF = 90°,∴ ∠BEG =180º―90º= 90º. 又∵ AB = BE = EG = GA = c ,∴ ABEG 是一个边长为c 的正方形. ∴ ∠ABC + ∠CBE = 90º.∵ Rt ΔABC ≌ Rt ΔEBD , ∴ ∠ABC = ∠EBD . ∴ ∠EBD + ∠CBE = 90º.即 ∠CBD= 90º.又∵ ∠BDE = 90º,∠BCP = 90º,BC = BD = a .∴ BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S ,则,21222ab S b a ⨯+=+ abS c 2122⨯+=,∴ 222c b a =+.【证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ) ,斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形,使E 、A 、C 三点在一条直线上. 过点Q 作QP ∥BC ,交AC 于点P .过点B 作BM ⊥PQ ,垂足为M ;再过点F 作FN ⊥PQ ,垂足为N . ∵ ∠BCA = 90º,QP ∥BC , ∴ ∠MPC = 90º, ∵ BM ⊥PQ , ∴ ∠BMP = 90º, ∴ BCPM 是一个矩形,即∠MBC = 90º.∵ ∠QBM + ∠MBA = ∠QBA = 90º,∠ABC + ∠MBA = ∠MBC = 90º, ∴ ∠QBM = ∠ABC ,又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c , ∴ Rt ΔBMQ ≌ Rt ΔBCA .同理可证Rt ΔQNF ≌ Rt ΔAEF . 从而将问题转化为【证法4】(梅文鼎证明).【证法7】(欧几里得证明)做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使H 、C 、B 三点在一条直线上,连结 BF 、CD . 过C 作CL ⊥DE ,交AB 于点M ,交DE 于点L .∵ AF = AC ,AB = AD , ∠FAB = ∠GAD , ∴ ΔFAB ≌ ΔGAD , ∵ ΔFAB 的面积等于221a , ΔGAD 的面积等于矩形ADLM 的面积的一半,∴ 矩形ADLM 的面积 =2a . 同理可证,矩形MLEB 的面积 =2b .∵ 正方形ADEB 的面积 = 矩形ADLM 的面积 + 矩形MLEB 的面积 ∴ 222b a c += ,即 222c b a =+.【证法8】(利用相似三角形性质证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .在ΔADC 和ΔACB 中, ∵ ∠ADC = ∠ACB = 90º, ∠CAD = ∠BAC , ∴ ΔADC ∽ ΔACB .AD ∶AC = AC ∶AB ,即 AB AD AC ∙=2. 同理可证,ΔCDB ∽ ΔACB ,从而有 AB BD BC ∙=2.∴ ()222AB AB DB AD BC AC =∙+=+,即 222c b a =+.【证法9】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形. 过A 作AF ⊥AC ,AF 交GT 于F ,AF 交DT 于R . 过B 作BP ⊥AF ,垂足为P . 过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 于H .∵ ∠BAD = 90º,∠P AC = 90º, ∴ ∠DAH = ∠BAC .又∵ ∠DHA = 90º,∠BCA = 90º, AD = AB = c ,∴ Rt ΔDHA ≌ Rt ΔBCA .∴ DH = BC = a ,AH = AC = b . 由作法可知, PBCA 是一个矩形, 所以 Rt ΔAPB ≌ Rt ΔBCA . 即PB = CA = b ,AP= a ,从而PH = b ―a . ∵ Rt ΔDGT ≌ Rt ΔBCA , Rt ΔDHA ≌ Rt ΔBCA .∴ Rt ΔDGT ≌ Rt ΔDHA . ∴ DH = DG = a ,∠GDT = ∠HDA .又∵ ∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º, ∴ DGFH 是一个边长为a 的正方形.∴ GF = FH = a . T F ⊥AF ,TF = GT ―GF = b ―a . ∴ TFPB 是一个直角梯形,上底TF=b ―a ,下底BP= b ,高FP=a +(b ―a ). 用数字表示面积的编号(如图),则以c 为边长的正方形的面积为 543212S S S S S c ++++= ①∵()[]()[]a b a a b b S S S -+∙-+=++21438 =ab b 212-, 985S S S +=,∴ 824321S ab b S S --=+=812SS b -- . ② 把②代入①,得98812212S S S S b S S c ++--++== 922S S b ++ = 22a b +. ∴ 222c b a =+.【证法10】(李锐证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上. 用数字表示面积的编号(如图).∵ ∠TBE = ∠ABH = 90º, ∴ ∠TBH = ∠ABE .又∵ ∠BTH = ∠BEA = 90º,BT = BE = b ,∴ Rt ΔHBT ≌ Rt ΔABE . ∴ HT = AE = a . ∴ GH = GT ―HT = b ―a .又∵ ∠GHF + ∠BHT = 90º,∠DBC + ∠BHT = ∠TBH + ∠∴ ∠GHF = ∠DBC .∵ DB = EB ―ED = b ―a , ∠HGF = ∠BDC = 90º,∴ Rt ΔHGF ≌ Rt ΔBDC . 即 27S S =. 过Q 作QM ⊥AG ,垂足是M . 由∠BAQ = ∠BEA = 90º,可知 ∠ABE = ∠QAM ,而AB = AQ = c ,所以Rt ΔABE ≌ Rt ΔQAM . 又Rt ΔHBT ≌ Rt ΔABE . 所以Rt ΔHBT ≌ Rt ΔQAM . 即 58S S =.由Rt ΔABE ≌ Rt ΔQAM ,又得QM = AE = a ,∠AQM = ∠BAE . ∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE , ∴ ∠FQM = ∠CAR .又∵ ∠QMF = ∠ARC = 90º,QM = AR = a , ∴ Rt ΔQMF ≌ Rt ΔARC . 即64S S =.∵ 543212S S S S S c ++++=,612S S a +=,8732S S S b ++=,又∵ 27S S =,58S S =,64S S =,∴8736122S S S S S b a ++++=+ =52341S S S S S ++++=2c ,即 222c b a =+.【证法11】(利用切割线定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 如图,以B 为圆心a 为半径作圆,交AB 及AB 的延长线分别于D 、E ,则BD = BE = BC = a . 因为∠BCA = 90º,点C 在⊙B 上,所以AC 是⊙B 的切线. 由切割线定理,得AD AE AC ∙=2=()()BD AB BE AB -+ =()()a c a c -+= 22a c -,即222a c b -=, ∴ 222c b a =+.【证法12】(利用多列米定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c (如图). 过点A 作AD ∥CB ,过点B 作BD ∥CA ,则ACBD 为矩形,矩形ACBD 内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有BD AC BC AD DC AB ∙+∙=∙, ∵ AB = DC = c ,AD = BC = a ,AC = BD = b ,∴ 222AC BC AB +=,即 222b a c +=,∴ 222c b a =+.【证法13】(作直角三角形的内切圆证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 作Rt ΔABC 的内切圆⊙O ,切点分别为D 、E 、F (如图),设⊙O 的半径为r .∵ AE = AF ,BF = BD ,CD = CE ,∴ ()()()BF AF CD BD CE AE AB BC AC +-+++=-+= CD CE += r + r = 2r,即 r c b a 2=-+, ∴ c r b a +=+2.∴ ()()222c r b a +=+,即 ()222242c rc r ab b a ++=++,∵abS ABC 21=∆, ∴ ABC S ab ∆=42,又∵ AOCBOC AOB ABC S S S S ∆∆∆∆++= = brar cr 212121++ = ()r c b a ++21= ()r c c r ++221= rc r +2,∴()ABC S rc r ∆=+442, ∴ ()ab rc r242=+,∴ 22222c ab ab b a +=++, ∴ 222c b a =+. 【证法14】(利用反证法证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .假设222c b a ≠+,即假设 222AB BC AC ≠+,则由AB AB AB ∙=2=()BD AD AB +=BD AB AD AB ∙+∙可知 AD AB AC ∙≠2,或者 BD AB BC ∙≠2. 即 AD :AC ≠AC :AB ,或者 BD :BC ≠BC :AB .在ΔADC 和ΔACB 中, ∵ ∠A = ∠A , ∴ 若 AD :AC ≠AC :AB ,则 ∠ADC ≠∠ACB . 在ΔCDB 和ΔACB 中, ∵ ∠B = ∠B ,∴ 若BD :BC ≠BC :AB ,则 ∠CDB ≠∠ACB . 又∵ ∠ACB = 90º,∴ ∠ADC ≠90º,∠CDB ≠90º.这与作法CD ⊥AB 矛盾. 所以,222AB BC AC ≠+的假设不能成立.∴ 222c b a =+.【证法15】(辛卜松证明)设直角三角形两直角边的长分别为a 、b ,斜边的长为c . 作边长是a+b 的正方形ABCD . 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为()ab b a b a 2222++=+;把正方形ABCD 划分成上方右图所示的几个部分,则正方形ABCD 的面积为 ()22214c ab b a +⨯=+ =22c ab +.∴ 22222c ab ab b a +=++,∴ 222c b a =+.【证法16】(陈杰证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做两个边长分别为a 、b 的正方形(b>a ),把它们拼成如图所示形状,使E 、H 、M 三点在一条直线上. 用数字表示面积的编号(如图).在EH = b 上截取ED = a ,连结DA 、DC ,则 AD = c .∵ EM = EH + HM = b + a , ED = a ,∴ DM = EM ―ED = ()a b +―a = b . 又∵ ∠CMD = 90º,CM = a , ∠AED = 90º, AE = b ,∴ Rt ΔAED ≌ Rt ΔDMC . ∴ ∠EAD = ∠MDC ,DC = AD = c . ∵ ∠ADE + ∠ADC+ ∠MDC =180º, ∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º,∴ ∠ADC = 90º.∴ 作AB ∥DC ,CB ∥DA ,则ABCD 是一个边长为c 的正方形. ∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º, ∴ ∠BAF=∠DAE .连结FB ,在ΔABF 和ΔADE 中,∵ AB =AD = c ,AE = AF = b ,∠BAF=∠DAE ,D∴ ΔABF ≌ ΔADE .∴ ∠AFB = ∠AED = 90º,BF = DE = a . ∴ 点B 、F 、G 、H 在一条直线上. 在Rt ΔABF 和Rt ΔBCG 中, ∵ AB = BC = c ,BF = CG = a , ∴ Rt ΔABF ≌ Rt ΔBCG .∵ 54322S S S S c +++=, 6212S S S b ++=, 732S S a +=, 76451S S S S S +===, ∴6217322S S S S S b a ++++=+ =()76132S S S S S ++++=5432S S S S +++=2c ∴ 222c b a =+.。
勾股定理9种证明(有图)

勾股定理的9种证明(有图)【证法1】(邹元治证明)以a 、b 为直角边,以c 为斜边做四个全等的直角三角形, 则每个直角三角形的面积 等于2ab .把这四个直角三角形拼成如图所示形状, 使A 、E 、B 三点在一条直线上,B 、F 、 C 三点在一条直线上,C G D 三点在一条直线上.v Rt △ HAE 坐 Rt △ EBF, ••• / AHE = / BEF.v / AEH + / AHE = 90o, • / AEH + / BEF = 90o.• / HEF = 180o — 90o= 90o.•四边形EFGH 是一个边长为c 的 正方形.它的面积等于c 2.v Rt △ GDH 坐 Rt △ HAE, • / HGD = / EHA. v / HGD + / GHD = 90o,• / EHA + / GHD = 90o. 又v / GHE = 90o, • / DHA = 90o+ 90o= 180o.2• ABCD 是一个边长为a + b 的正方形,它的面积等于(a + b ).21 2a b 4 ab c222•2. • a b = c .【证法2】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为 a 、b ,斜边长为c.把它 们拼成如图那样的一个多边形,使 D E 、F 在一条直线上.过C 作AC 的延长线交DF 于/ EGF + / GEF = 90°, / BED + / GEF = 90 ° , / BEG =18(b — 90o= 90 o. 又 v AB = BE = EG = GA = c• / ABC + / CBE = 90o.v Rt △ ABC 坐 Rt △ EBD, • / ABC = / EBD.• / EBD + / CBE = 90o. 即 / CBD= 9Gb. 又 v / BDE = 90o ,Z BCP = 90o ,D 、E 、F 在一条直线上,且Rt △ GEF 幻Rt △ EBD, ABEG 是一个边长为c 的正方形.a b HH匕DA FbaP bCBC = BD = a.••• BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCB 的面积为S,则21 b S2 ab, 2 1=S 2 ab2 ,a 2 +b 2 =c 2【证法3】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为 a 、b (b>a )c.再做一个边长为c 的正方形.把它们拼成如图所示的多边形,使 直线上. 过点Q 作QP// BC 交AC 于点P. 过点B 作BML PQ 垂足为M ;再过点 F 作FNL PQ 垂足为N.v / BCA = 90o , QP// BC • / MPC = 90o , v BM 丄 PQ• / BMP = 90o ,• BCPM 是一个矩形,即/ MBC = 90o.v / QBM + / MBA = / QBA = 90o , / ABC + / MBA = / MBC = 90o , • / QBM = / ABC又 v / BMP = 90o ,/ BCA = 90o , BQ = BA = c , • Rt △ BMQ 坐 Rt △ BCA.同理可证Rt △ QNF 幻Rt △ AEF.从而将问题转化为【证法4】(梅文鼎证明). 【证法4】(欧几里得证明)做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使 在一条直线上,连结BF CD.过 C 作 CL L DE 交AB 于点M 交DE 于点L.v AF = AC , AB = AD,/ FAB = / GAD• △ FAB 坐△ GADE 、A ,斜边长为C 三点在一条 H 、C B 三点 v △ FAB 的面积等于K△ GAD 的面积等于矩形ADLM 的面积的一半,二矩形ADLM 的面积二 同理可证,矩形 MLEE 的面积 v 正方形ADEB 勺面积 =矩形ADLM!勺面积+ /. c 2 a 2 b 2,即 a 2 -【证法5】(杨作玫证明) 做两个全等的直角三角形,设它们的两条直角边长分别为 a 、b (b>a ),斜边长为c. 再做一个边长为c 的正方形.把它们拼成如图所示的多边形.过A 作AF 丄AC AF 交GT 于F , AF 交DT 于 R.过B 作BP 丄AF,垂足为 E , DE 交 AF 于 H. v / BAD = 90o ,Z PAC = 90o , ••• / DAH = / BAC. 又 v / DHA = 90o ,Z BCA = 90o , AD = AB = c ,• Rt △ DHA 坐 Rt △ BCA. • DH = BC = a , AH = AC = b. 由作法可知,PBCA 是一个矩形, 所以 Rt △ APB 坐 Rt △ BCA.即 PB = CA = b , AP= a ,从v Rt △ DGT 坐 RtRt △ DHA 坐 Rt• Rt △ DGT 坐 Rt • DH = DG = a , 又 v / DGT = 90o ,2 a . =b 2 矩形MLEB 勺面积 b 2 =c 2. PH = b — a. △ BCA , △ BCA. △ DHA . / GDT = / HDA . / DHF = 90o ,P.过D 作DE 与CB 的延长线垂直,垂足为 / GDH = / GDT + / TDH = / HDA+Z TDH = 90o ,• DGFH 是一个边长为a 的正方形.• GF = FH = a . TF 丄AF , TF = GT — GF = b — a .• TFPB 是一个直角梯形,上底 TF=b-a ,下底BP= b ,高FP=a + (b —a ).用数字表示面积的编号(如图),则以c 为边长的正方形的面积为 c 2 = Si S 2 S 3 S 4 S 51S 8 +S 3 +S 4 =- b + (b - a )】• a + (b -a /v2S5 - S 8' S 9丄21 .S 3S 4-b 2 ab・・ 2把②代入①,得c^S iS 2b 2 -S^S 8S 8S 9①b 2 -1 ab2 ,2=bS2S 9 = b 2 川 a 2【证法6】(李锐证明)设直角三角形两直角边的长分别为 a 、b (b>a ),斜边的长为c.做三个边长分别为a 、 b 、c 的正方形,把它们拼成如图所示形状,使 A 、E 、G 三点在一条直线上.用数字表示 面积的编号(如图).v / TBE = / ABH = 900, ••• / TBH = / ABE. 又 v / BTH = / BEA = 900,BT = BE = b , • Rt △ HBT 坐 Rt △ ABE. • HT = AE = a. • GH = GT — HT = b — a. 又 v / GHF + / BHT = 900,/ DBC + / BHT = / TBH + • / GHF = / DBC.v DB = EB — ED = b — a , / HGF = / BDC = 90o , • Rt △ HGF 坐 Rt △ BDC.即 S ^ S 2.过 Q 作 QM L AG 垂足是 M.由/ BAQ = / BEA = 90o ,可知 / ABE =/ QAM 而 AB = AQ = c ,所以 Rt △ ABE 幻 Rt △ QAM .又 Rt △ HBT 幻Rt △ ABE.所以 Rt △ HBT 幻 Rt △ QAM .即 S 8 二 S 5.由 Rt △ ABE 坐 Rt △ QAM 又得 QM = AE = a ,/ AQM = / BAE.v / AQM + / FQM = 90o ,Z BAE + / CAR = 90o ,Z AQM = / BAE • / FQM = / CAR.【证法7】(利用多列米定理证明)• Rt △ QMF 坐 Rt △ ARC.即 S 4 =S6.• • c 2 =S 1 S 2 S 3 S 4 S 5 a 2 S 6又v S 7 二 S 2 S g 二 S 5 S 4 二 S 6> > >• a 2 b 2 = S ! S 6 S 3 S 7 S 8=S iS 4 S 3 S 2 S 52=c ,即a 2 + b 2 =c 2.又 v / QMF = / ARC = 90o , QM = AR = a , b^ S 3 S 7 S 8R a A在Rt △ ABC 中,设直角边 BC= a , AC= b ,斜边AB = c (如图).过点A 作AD// CB, 过点B 作BD//CA 则ACBD 为矩形,矩形ACBD 内接于一个圆.根据多列米定理,圆内接 四边形对角线的乘积等于两对边乘积之和,有AB ・DC 二 AD ・BC AC *BD ,AB = DC = c , AD = BC = a , AC = BD = b ,AB 2 =BC 2 +AC 2,即 c 2 =a 2 +b 2 a 2 +b 2 =c 2【证法8】(利用反证法证明) 如图,在Rt △ ABC 中,设直角边 AG点C 作CDL AB 垂足是D.假设a 2 b 2=c 2,即假设AC 2 BC —AB 2,则由AB^AB *AB =AB AD BD =AB ・AD AB * BD可知 AC 2 式 AB ・AD ,或者 BC 2 式 AB ・BD .即 AD : AO AG AB 或者 BD : BO BC AB. 在厶ADC 和△ ACB 中, v / A = / A,.若 AD : AW AC AB 」 / AD 字/ ACB.在厶CDB 和△ ACB 中, v / B = / B ,.若 BD BW BC AB,贝S / CDB^Z ACB. 又v / ACB = 90o ,. / AD& 90o ,Z CD 字 90o. 这与作法CDLAB 矛盾.所以,/. a 2 b 2 = c 2.【证法9](辛卜松证明)设直角三角形两直角边的长分别为 a 、b,斜边的长为c.作边长是a+b 的正方形ABCD. 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为 (a +bf =a +b +2ab ;把正方形ABCD 划分成上方右图所示的几个部分,则正方形 ABCD 勺21 2,.十.(a +b 『=4 乂一ab+c 2面积为 2= 2ab c .2 2 2.. a b 2ab 二 2ab c ,BC 的长度分别为a 、b ,斜边AB 的长为c ,过 AC 2 • BC 2 = AB 2的假设不能成立..a2+b2=c2.。
勾股定理9种证明(有图)

勾股定理的9种证明(有图)【证法1】(邹元治证明)以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上.∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF.∵ ∠AEH + ∠AHE = 90º,∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º.∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2.∵ Rt ΔGDH ≌ Rt ΔHAE,∴ ∠HGD = ∠EHA.∵ ∠HGD + ∠GHD = 90º, ∴ ∠EHA + ∠GHD = 90º. 又∵ ∠GHE = 90º,∴ ∠DHA = 90º+ 90º= 180º.∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +.∴ ()22214c ab b a +⨯=+. ∴ 222c b a =+.【证法2】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P. ∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌∴ ∠EGF = ∠BED , ∵ ∠EGF + ∠GEF = 90°,∴ ∠BED + ∠GEF = 90°,∴ ∠BEG =180º―90º= 90º. 又∵ AB = BE = EG = GA = c ,∴ ABEG 是一个边长为c 的正方形.∴ ∠ABC + ∠CBE = 90º. ∵ Rt ΔABC ≌ Rt ΔEBD, ∴ ∠ABC = ∠EBD. ∴ ∠EBD + ∠CBE = 90º. 即 ∠CBD= 90º. 又∵ ∠BDE = 90º,∠BCP = 90º,BC = BD = a.∴ BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S ,则,21222ab S b a ⨯+=+ abS c 2122⨯+=,∴ 222c b a =+.【证法3】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ) ,斜边长为c. 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形,使E 、A 、C 三点在一条直线上. 过点Q 作QP ∥BC ,交AC 于点P.过点B 作BM ⊥PQ ,垂足为M ;再过点F 作FN ⊥PQ ,垂足为N.∵ ∠BCA = 90º,QP ∥BC ,∴ ∠MPC = 90º,∵ BM ⊥PQ , ∴ ∠BMP = 90º,∴ BCPM 是一个矩形,即∠MBC = 90º.∵ ∠QBM + ∠MBA = ∠QBA = 90º,∠ABC + ∠MBA = ∠MBC = 90º, ∴ ∠QBM = ∠ABC ,又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c , ∴ Rt ΔBMQ ≌ Rt ΔBCA.同理可证Rt ΔQNF ≌ Rt ΔAEF. 从而将问题转化为【证法4】(梅文鼎证明). 【证法4】(欧几里得证明)做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使H 、C 、B 三点在一条直线上,连结BF 、CD. 过C 作CL ⊥DE , 交AB 于点M ,交DE 于点L.∵ AF = AC ,AB = AD , ∠FAB = ∠GAD ,∴ ΔFAB ≌ ΔGAD , ∵ ΔFAB 的面积等于221a ,ΔGAD 的面积等于矩形ADLM 的面积的一半,∴ 矩形ADLM 的面积 =2a .同理可证,矩形MLEB 的面积 =2b .∵ 正方形ADEB 的面积= 矩形ADLM 的面积 + 矩形MLEB 的面积 ∴ 222b a c += ,即 222c b a =+. 【证法5】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c. 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形. 过A 作AF ⊥AC ,AF 交GT 于F ,AF 交DT 于R. 过B 作BP ⊥AF ,垂足为P. 过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 于H.∵ ∠BAD = 90º,∠PAC = 90º,∴ ∠DAH = ∠BAC.又∵ ∠DHA = 90º,∠BCA = 90º, AD = AB = c , ∴ Rt ΔDHA ≌ Rt ΔBCA.∴ DH = BC = a ,AH = AC = b.由作法可知, PBCA 是一个矩形, 所以 Rt ΔAPB ≌ Rt ΔBCA. 即PB = CA = b ,AP= a ,从而PH = b ―a.∵ Rt ΔDGT ≌ Rt ΔBCA , Rt ΔDHA ≌ Rt ΔBCA.∴ Rt ΔDGT ≌ Rt ΔDHA .∴ DH = DG = a ,∠GDT = ∠HDA . 又∵ ∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º, ∴ DGFH 是一个边长为a 的正方形.∴ GF = FH = a . TF ⊥AF ,TF = GT ―GF = b ―a .∴ TFPB 是一个直角梯形,上底TF=b ―a ,下底BP= b ,高FP=a +(b ―a ). 用数字表示面积的编号(如图),则以c 为边长的正方形的面积为543212S S S S S c ++++= ①∵()[]()[]a b a a b b S S S -+∙-+=++21438 =ab b 212-, 985S S S +=,∴ 824321S ab b S S --=+= 812S S b -- . ②把②代入①,得98812212S S S S b S S c ++--++== 922S S b ++ = 22a b +. ∴ 222c b a =+.【证法6】(李锐证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c. 做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上. 用数字表示面积的编号(如图).∵ ∠TBE = ∠ABH = 90º, ∴ ∠TBH = ∠ABE. 又∵ ∠BTH = ∠BEA = 90º,BT = BE = b , ∴ Rt ΔHBT ≌ Rt ΔABE. ∴ HT = AE = a. ∴ GH = GT ―HT = b ―a.又∵ ∠GHF + ∠BHT = 90º,∠DBC + ∠BHT = ∠TBH + ∠∴ ∠GHF = ∠DBC.∵ DB = EB ―ED = b ―a ,∠HGF = ∠BDC = 90º,∴ Rt ΔHGF ≌ Rt ΔBDC. 即 27S S =.过Q 作QM ⊥AG ,垂足是M. 由∠BAQ = ∠BEA = 90º,可知 ∠ABE = ∠QAM ,而AB = AQ = c ,所以Rt ΔABE ≌ Rt ΔQAM . 又Rt ΔHBT ≌ Rt ΔABE. 所以Rt ΔHBT ≌ Rt ΔQAM . 即 58S S =.由Rt ΔABE ≌ Rt ΔQAM ,又得QM = AE = a ,∠AQM = ∠BAE.∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE , ∴ ∠FQM = ∠CAR.又∵ ∠QMF = ∠ARC = 90º,QM = AR = a ,∴ Rt ΔQMF ≌ Rt ΔARC. 即64S S =.∵ 543212S S S S S c ++++=,612S S a +=,8732S S S b ++=,又∵ 27S S =,58S S =,64S S =,∴8736122S S S S S b a ++++=+ =52341S S S S S ++++=2c , 即 222c b a =+.【证法7】(利用多列米定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c (如图). 过点A 作AD ∥CB ,过点B 作BD ∥CA ,则ACBD 为矩形,矩形ACBD 内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有BD AC BC AD DC AB ∙+∙=∙,∵ AB = DC = c ,AD = BC = a , AC = BD = b ,∴ 222AC BC AB +=,即 222b a c +=, ∴ 222c b a =+.【证法8】(利用反证法证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D.假设222c b a ≠+,即假设 222AB BC AC ≠+,则由AB AB AB ∙=2=()BD AD AB +=BD AB AD AB ∙+∙可知 AD AB AC ∙≠2,或者 BD AB BC ∙≠2. 即 AD :AC ≠AC :AB ,或者 BD :BC ≠BC :AB.在ΔADC 和ΔACB 中,∵ ∠A = ∠A ,∴ 若 AD :AC ≠AC :AB ,则∠ADC ≠∠ACB. 在ΔCDB 和ΔACB 中, ∵ ∠B = ∠B , ∴ 若BD :BC ≠BC :AB ,则 ∠CDB ≠∠ACB. 又∵ ∠ACB = 90º,∴ ∠ADC ≠90º,∠CDB ≠90º.这与作法CD ⊥AB 矛盾. 所以,222AB BC AC ≠+的假设不能成立.∴ 222c b a =+. 【证法9】(辛卜松证明)设直角三角形两直角边的长分别为a 、b ,斜边的长为c. 作边长是a+b 的正方形ABCD. 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为()ab b a b a 2222++=+;把正方形ABCD 划分成上方右图所示的几个部分,则正方形ABCD 的面积为 ()22214c ab b a +⨯=+ =22c ab +.∴ 22222c ab ab b a +=++,∴ 222c b a =+.。
勾股定理证明课件

股b
弦c
勾a
= 6×
+
∵ c × c+4÷2ab=8÷2ab+(b-a)(b-a)
∴ a2 b2 c2
返回
方法四:毕达哥拉斯“拼图”
毕达哥拉斯(公元前572—前497年),古希腊著名的哲学家、数学家、天 文学家.
图1
图2
A
B
b
a
b
a
D
C
将4个全等的直角三角形拼成边长为(a+b) 的正方形ABCD,使中间留下边长c的一个正方 形洞.画出正方形ABCD.移动三角形至图2所 示的位置中,于是留下了边长分别为a与b的两 个正方形洞.则图1和图2中的白色部分面积必 定相等。
即S正方形ADEB=S正方形ACHK+S正方形
CBFG ,
E
也就是 a2+b2=c2.
返回
方法二:加菲尔德“总统证明法”
谁说总统就是在国家领导,每天忙于外交的工作,然而有一个人他在 1876年4月1日,在《新英格兰教育日志》上发表了他对勾股定理的这一 证法。1881年,伽菲尔德就任美国第二十任总统。后来,人们为了纪念 他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总 统”证法。我们不要说自己忙忙于时间去做,任何事情,他就是我们的
a2 b2 c2
返回
其它的证明方法:
刘徽“青朱出入图” 达·芬奇的证明 五巧板“拼图” 在印度、阿拉伯和欧洲出现的拼图证明
从Rt△ABC的三边向外各作一个正方形(如 图),作CN⊥DE交AB于M,那么正方ABED 被分成两个矩形.连结CD和KB
∵由于矩形ADNM和△ADC同底(AD),等 高(即平行线AD和CN间的距离), ∴S矩形ADNM=2S△ADC.
勾股定理的16种证明方法

【证法I)(课本的证明)做8个全等的宜角三角形•设它们的两条直角边长分別为」b •斜边长为c・再做三个边长分别为黑b. c的正方形.把它们像上图那样拼成衲个正方形.从图上可以石到•这两个正方形的边长都是a + b.所以面积相等・即(=+4x 丄ab »2 •整理得卅+尸二代【证法2】(邹元治证明)以a、b为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角•把这四个直角三角形拼成如图所示形状,使A、E. B三点形0勺面积等于严在一条直线上,B、F、C三点在一条亘线上,C、G、D三点在一条直线上.VRt A HAE 竺Rf A EBF, :.ZAHE= ZBEF.I ZAEH+ ZAHE = 90°, ••• ZAEH+ ZBEF = 90°. ••ZHEF= 180°-90°= 90° ••・四边形EFGH是一个边长为c的正方形・它的血积等于•R“GDH 竺Rt A HAE,•ZHGD= ZEHA.•ZHGD+ ZGHD = 90°,•ZEHA+ ZGHD = 90°.•ZGHE = 90°f•ZDHA=90°+90°= 180°.• ABCD是一个边长为a + b的正方形,它的面积等于G +疔.(a + 方)+ c 22【证法3】(赵爽证明)以a 、b 为直角边(b>a ),以c 为斜边作 四个全等的直角三角形,则每个直角成如图所示形状.I Rt A DAH 今 Rt A ABE,:.ZHDA= ZE AB.…ZHAD+ ZHAD = 90°,••• ABCD 是一个边长为c 的正方形,它的血积等于心••• EF = FG =GH =HE = b-a,ZHEF 二 90°.・・・EFGH 是一个边长为b ・a 的正方形,它的面积等于直一切[4xga/> + (〃一 G] ;2一 V【证法4] (1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角•把 这两个直角三角形拼成如图所示形状,使A> E 、CB 三点•“ ZADE= ZBEC.••• ZAED+ ZADE = 90°, ••• ZAED+ ZBEC = 90°.•“ ZDEC= 180°-90°= 90°.-A DEC 是个等腰・酬三角形,乂 I ZDAE = 90°, ZEBC = 90°, : • AD 〃 它的面积等于2BC.三角形的面积等于2 •把这四个直角三勿形拼AbEaB【证法5】(梅文鼎证明)做四个全等的N 角三角形•设它们的两条自旳边长分别为a 、b •斜边长为c. 把它们拼成如图那样的一个名边形•使IX E. F 在一条直线上•过C 作AC 的延长线 交DF 于点P.• • • D. E. F 在一条玄线上,fl. Rf A GEF Q ROEPD :.ZEGF= ZBED.V ZEGF+ ZGEF-9O 0,:.ZBED+ ZGEF = 9()a •••• ZBEG=180o -90°=90°< 又 I AB 二 BE = EG = GA = c •••• ABEG 是一个边长为c 的iE 方形.••• ZABC+ ZCBE = 90n .V Rt A ABC £ Rt A EBD,:.ZABC= ZEBD.••• ZEBD+ ZCBE = 90°<即 ZCBD= 90n .XV ZBDE = 90° • ZBCP = 9 (r •BC ■ BD ■ a.:BDPC 是一个边长为a 的正方形• 同理・HPFG 是一个边长为b 的止方形. 设多边形GHCBE 的面积为S.则a 2+b 2 =5 + 2x 丄”九2【证法6】(顶明达证明)做两个全等的耳用三角形•设它们的两条玄角边长分别为a 、b (b>a>・斜边长为 G 再做■个边长为c 的正方形•把它们拼成如图所示的多边形•使E.A. C 三点在一条直线上.过点Q 作QP 〃BC •交 AC于点P.过点?作15\1丄PQ.垂定头JM :再过点…ABCD 是■个直角梯形, 丄 它的面积等于㊁FA C BF作FN丄PQ・垂足为N.V ZBCA = 90° . QP 〃BC • ZMPC = 90° ・V BM 丄PQ -:.ZBMP = 9fT ・BCPM 是一个矩形.HI1ZMBC = 90°.V ZQBM+ ZMBA・ ZQBA * 90°・ ZABC+ZMBA= ZMBC = 9(T •••• ZQBM・ ZABC.乂IZBMP = 9(r・ ZBCA = 9(r ・ BQ = BA=c ・【证法7】(欧几里得证明)做三个边长分别为氛b、c的正方形・把它们拼成如图所示形状•使Fk C、B三点在一条宜线上•连结BF ・ CD.过 C 作CL 丄DE.交AB于点交DE于点H /V AF= AC. AB = AD. yZFAB二ZGAD< cZ 来、/A FAB 今AGAD.丄a,V AFAB的面积等丁込“AGAD的面积等弓矩形ADLM的面积的一半.・・•矩形ADLM的面八同理可证•矩形MLEB的面积L・・・正方形ADEB的血积二矩形ADLM的啲枳+矩形MLEB的面积c2 = ♦ b1 . l!|l a2 + = c'.【证法《〕(利用相似三介形性质证如图•在RtAABC中,设直角边AC. BC的长度分别为a. b •斜边AB的长为c・过点C作CD丄AB・垂足是D.在AADC和’ACB中・I ZADC= Z ACB = 90° . ZCAD・ ZBAC.:.A ADC s A ACB.AD : AC = AC : AB.即AC2 =同理町证'ACDB s & ACB.从而竹BC—BD.AB.:.AC1 + HC l = (JD+ DB)A AB・A” 即a,【证法9】(杨作玫证明〉做两个全零的直角三和形•设它们的两条直角边K分别为a、bvb>a) ■斜边长为c •再做■个边长为c的肪0形.把它们拼成如图所示的多边形•过A作AF丄AC. AF交GT于F・AF空2)T于R.过B作BP丄AF.乖足为P.过D作DE与CB的证长线垂直•垂足为E. DE交AF于H.V ZBAD-9 (r\ ZPAC ・ 90匕••• ZDAH= ZB AC.又:・ZDHA = 90°. ZBCA = 90° .AD = AB = c •Rt \ DHA £Rt A BCA<•: DH = BC = a. AH = AC = b.Lh作法可矩.PBCA是一个矩形. 所以RtAAPB 耳Rt A BCA. UP PB = CA = b< AP= a •从而PH = b一a.V Rt A DGT 9 R1 A BCA ■ Rt \ DHA 今RtA BCA. RMDGT 竺Rt DHA.••• DH = DG = a. ZGDT= ZHDA.又I ZDGT-9O0. ZDHF ・ 90卜•ZGDH= ZGDT+ ZTDH = ZHDA+ ZTDH = 90°.••• DGFH定一个边长为a的正方形.••• GF=FH = a.TF 丄AF. TF = GT-GF = b-a.TFPB是一个直角梯形•上底TF-b-a・卞底BPf高FP-a+ (b-a).用数字表示面积的编号(如图片则以c为边长的正方形的面积为=Sn + S人=5, +S、+/>2U +5:+Sqa2 =c2S ' + Sy + 54 =-[/> + (/>・a)] • [a + (b _ a)] Ir•丄a”2 =2 a把②代入①.W【证法10)(李稅证明)设直角三角形两直角边的长分别为a、b (b>a).斜边的长为c •做三个边长分别为a、b、c的正方形•把它们拼成如图所示形状•使A. E. G三点在•条亢线上•用数字农示面积的编号(如图)・IZTBE 工ZABHf.••• ZTBH= ZABE.又・・・ZBTH・ ZBEA・ 90°.BT=BE = b.:.R( AHBT 竺R( A ABE.••• HT = AE =〜••• GH = GT-HT=b-x XV ZGHE+ ZBHT = 90°.ZDBC + ZBHT= ZTBH+ ZBHT = 90%••• ZGHF= ZDBC ・VDB = EB-ED = b-a.ZHGE= ZBDC = 90°.••• RtAHGF 丝RtABDC.即w2.过QftQM 丄AG •垂足是M. rf]ZBAQ= ZBEA = 90°.町知ZABE ZQAM. rtl AB-AQ-c.所以RfAABE 幻RcAQAM. X Rt \ HBT £Rt A ABE.所以Rt A HBT 0 Rt A QAM ・即ft] Rt A ABE 旦Rt AQAM.又QM = AE = a. ZAQM = ZBAE.•: ZAQM+ ZFQM ・ W . ZBAE + ZCAR ・ VX)U. ZAQM ・ ZBAE. :.ZFQM=ZCAR.又I ZQMF- Z ARC ・90° • QM • AR • a •:.Rt AQMF9Rt A ARC.g卩•: c*=£ + S, + +S.+ S,.X = S ' 七 S&.b° = S、七 S=± S* =&令+s? + s》+即cr =c2.【证法11】(利用切割线定理证明)在R1AABC中•设垃角边BC = a. AC = b •斛边AB = c.如图•以B为圆心3为半径作例•交AB及AB的延长线分別于D E • WJ BD = BE = BC = a.因为ZBCA = 9(T.点C在0B上•所以AC是OB的切线・由切割线定理•得AC2 =AE^ADA cT =t\【证法12](利用多列米定理证明)在Rt A ABC中•设口角边BC = a. AC = b •料边AB = c •过点A作AD // CB •过点B作BD 〃CA・则ACBD为炉形.炉形ACBD内接丁一个阕. 根据£列米定理・岡内接阿边形对如线的乘积等丁两对边乘枳之和.冇NB • DC=AD • BC*C • BL>.I AB-DC-c. AD-BC-a.AC = BD = b.AB2 ^BC2 + AC29即c2 =a2+Z>\【证法13】(作直角三角形的内切圆证明)在Rt A ABC中•设宜如边BC • a • AC-b V斜边AB・c・\\ Rt A ADC“勺内切風OCX切点分别为D. E.F (如图)•设OO的半径为「・V AE = AF. BF = BD. CD = CE.:.AC+ BC・ J5 = (JE + CE) + (BD + CD) - (JF + BF)CE + CD = r + r = 2r,HP <J + /) -c = 2r.:,a 4- b-2r + c.• .(€/A Z?y = (2r + c)\ 即 a 2 +62 + lab = 4 (r 2 + rc)+ c 2...s.w r*ny (2r+ c + c)r.・・.・.4(r ? 4-rc)= lab.•: a 2 +/> + 2ab = lab + c 2,【证法14](利用反证法证明)如图•在R ( A ABC 中.设口角边AC. BC 的K 度分别为a. b •斜边AB 的 长为 c •过点C 作CD 丄AB •垂足是D.假设/+» 斗 '・即假设AC 2 + B^AB 2・则由可如 AC 2 AB^AD 9 或者 BC • BD. Ull AD : AC A AC : AB.或者 BD : BC A BC : AB.在A ADC 和A ACB 中.I ZA= ZA.・••若 AD : ACHAC : AB.则ZADCAZACB.在 ACDB 和 AACB 中.V ZB= ZB. ・・・若BD : BCHBC : AB.则 ZCDBHZACB.乂 IZACB-W. 3 (” + b + “AB 2 = AB •AB 二”(初 + BD)AB^AD + AB^ BD A d A• • ZADC A 90 ・形ABCD 把疋方形ABCD 划分成上方左图所示的儿个部分・则匸方形ABCD 的面 枳为© + 6)、二/「+2“;把jE 方形ABCD 划分成上方右图所示的儿个部分•则正方形ABCD 的向积为:+ />" + lab = 2ab + c 2.:.a 2 +b 2 =c\ (« + 疔=4x —ab + c 2 , 2 =2血+ "・【证法16](陈杰证明)设H 角三角形两胃角边的长分别为a 、b vb>a ).斜边的长为c.做两个边长分别为冬b 的正方形(b>a ).把它们拼成如图所示形状•使E. H. M 三点在一条直线上•用数字表示面积的编号(如图〉・ 在EH = b 」.祓取ED = a •连结DA. DC.则 AD = c-I EM = EH + HM = b + a • ED = a ・••• DM -EM-ED = (b + °)-a = b •又 I ZCMD * 90”. CM • a • ZAED = 90°.AE=b. :.Rt A AED 丝 Rt ADMC./. ZEAD= ZMDC • DC = AD = c.VZADE+”DC 十 ZMDC =180°.这与作法CD 丄AB 矛曲・所以・+ 的假设不能成立.【证法15】(辛卜松证明)BZADE+ ZMDC= ZADE+ ZEAD = 90°・••• ZADC = 9 (r.・・・作AB//DC*.CB〃DA •则ABCD是一个边K为c的正方形.V ZBAF+ ZFAD= ZDAE + ZEAD = 90°.••• ZBA F=ZDAE •连纟吉FB・在AABF禾口 A ADE中.V AB =AD = c. AE = AF = b. ZBAF=ZDAE.••• A ABF 也A ADE.:.ZAFB 二ZAED = 90°. BF = DE = a.•…点B、F. G. H在一条直线上.在R( A ABF和Rt A BCG中・T AB * BC * c • BF - CG ・ a.:.Rt A ABF 耳Rt A BCG.•: c2 = S? + + S. + Sq. b2 = S、+S2 + 56. a2 = S=、$ 話=S4 =56+S.•+ />* = S§ + S= + + 5, + 56■s?+S3+s]+ 仅+S?)。
《勾股定理》数学教学PPT课件(10篇)

=BD·
CD.
D
B
E
C
课堂小
结
利用勾股定理解
决实际问题
勾股定理
的应用
构造直角三角形
解决实际问题
第十七章 勾股定理
17.1 勾股定理
第3课时
利用勾股定理作图和计算
知识要点
1.勾股定理与数轴、坐标系
2.勾股定理与网格
3.勾股定理与几何图形
新知导入
想一想:
我们知道数轴上的点有的表示有理数,有的表示无理数,你
能在数轴上画出表示 13 的点吗?
如果能画出长为 13 的线段,就能在数轴上画出表示 13 的
2
点.容易知道,长为
的线段是两条直角边的长都为1的直角三
角形的斜边.
长为 13 的线段能是直角边的长为正整数的直角三角形的
斜边吗?
新知导入
想一想:
利用勾股定理,可以发现,直角边的长为正整数2, 3
知识
的直角三角形的斜边长为
AC2+BC2=AB2
由上面的例子,我们猜想:
命题1 如果直角三角形的两条直角边长分别为a,b,斜边
长为c,那么a2+b2=c2.两直角边的平方和等于斜边的平方.
a
c
b
课程讲授
1
勾股定理
下面让我们跟着以前的数学家们用拼图法来证明这一猜想.
c
证明:∵S大正方形=c2,
S小正方形=(b-a)2,
b
a
b-a
例 如图是由4个边长为1的正方形构成的“田字格”,只用没有刻
度的直尺在这个“田字格”中最多可以作出长度为
8
_____条.
《勾股定理》PPT课件精选全文

化简得: a2 b2 c2
方法三:
c
b b-a c
a c
c
S正
c2
4
1 2
ab
(b
a)2
,
化简得: a2 b2 c2
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
①
②
③
2.求下列直角三角形中未知边的长:
比
5
一
比8
17
看
x
16
x 12
看
x
谁
20
算
得
4 个单位面积.
C
正方形C的面积是
A
8 个单位面积.
B
(图中每个小方格代表图一2个单位面积)
SA+SB=SC在图3中还成立吗?
2.观察右边两个图 并填写下表:
A
A的面积 B的面积 C的面积
图3
16 9
25
即:两条直 角边上的正
C B
图3
方法
(1)式子SA+SB=SC能用直角三角形 的三边a、b、c来表示吗?
17.1勾股定理
复习提问
1、任意三角形三边满足怎样的关系?
2、对于等腰三角形,三边之间存在 怎样的特殊关系?等边三角形呢?
3、对于直角三角形,三边之间存在 怎样的特殊关系?
2002年在北京召开了第24届国际数学家大 会,它是最高水平的全球性数学科学学术 会议,被誉为数学界的“奥运会”,这就 是本届大会会徽的图案。
C A
B
C A
B
SA SB SC
a2 b2 c2
(2)你能发现直角三角形三边长度之间存在什么 关系吗?
勾股定理的九种证明方法(附图)

勾股定理的九种证明方法(附图)勾股定理的证明方法一、传说中毕达哥拉斯的证法(图1)左边的正方形是由1个边长为的正方形和1个边长为的正方形以及4个直角边分别为、,斜边为的直角三角形拼成的。
右边的正方形是由1个边长为的正方形和4个直角边分别为、,斜边为的直角三角形拼成的。
因为这两个正方形的面积相等(边长都是),所以可以列出等式,化简得。
二、美国第20任总统茄菲尔德的证法(图3)这个直角梯形是由2个直角边分别为、,斜边为 的直角三角形和1个直角边为的等腰直角三角形拼成的。
因为3个直角三角形的面积之和等于梯形的面积,所以可以列出等式,化简得。
三、相似三角形的证法:4.相似三角形的方法:在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个三直角角形与原三角形相似。
CAD∴ BCPM是一个矩形,即∠MBC = 90°.∵∠QBM + ∠MBA = ∠QBA =90 °,∠ABC + ∠MBA = ∠MBC = 90°,∴∠QBM = ∠ABC,又∵∠BMP = 90°,∠BCA = 90°,BQ = BA = c,∴ RtΔBMQ ≌ RtΔBCA.同理可证RtΔQNF ≌ RtΔAEF.即a^2+b^2=c^2六、欧几里德射影定理证法:如图,Rt△ABC中,∠ABC=90°,AD是斜边BC上的高,通过证明三角形相似则有射影定理如下:1)(BD)^2;=AD·DC,(2)(AB)^2;=AD·AC ,(3)(BC)^2;=CD·AC 。
由公式(2)+(3)得:(AB)^2;+(BC)^2;=AD·AC+CD·AC =(AD+CD)·AC=(AC)^2;,即(AB)^2;+(BC)^2;=(AC)^2七、杨作玫证法:做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形. 过A作AF⊥AC,AF交GT于F,AF交DT于R. 过B作BP⊥AF,垂足为P. 过D 作DE与CB的延长线垂直,垂足为E,DE交AF于H.∵∠BAD = 90º,∠PAC = 90º,∴∠DAH = ∠BAC.又∵∠DHA = 90º,∠BCA = 90º,AD = AB = c,∴RtΔDHA ≌RtΔBCA.∴DH = BC = a,AH = AC = b.由作法可知,PBCA 是一个矩形,所以RtΔAPB ≌RtΔBCA. 即PB = CA = b,AP= a,从而PH = b―a.987654321PQR HG Dabcaccc∵ Rt ΔDGT ≌ Rt ΔBCA , Rt ΔDHA ≌ Rt ΔBCA. ∴ Rt ΔDGT ≌ Rt ΔDHA .∴ DH = DG = a ,∠GDT = ∠HDA . 又∵ ∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º, ∴ DGFH 是一个边长为a 的正方形.∴ GF = FH = a . TF ⊥AF ,TF = GT ―GF = b ―a . ∴ TFPB 是一个直角梯形,上底TF=b ―a ,下底BP= b ,高FP=a +(b ―a ). 用数字表示面积的编号(如图),则以c 为边长的正方形的面积为 543212S S S S S c ++++= ① ∵()[]()[]a b a a b b S S S -+•-+=++21438 =ab b 212-, 985S S S +=,∴ 824321S ab b S S --=+=812SS b -- . ② 把②代入①,得98812212S S S S b S S c ++--++== 922S S b ++ = 22a b +. ∴ 222c b a =+.八、陈杰证法:设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c. 做两个边长分别为a 、b 的正方形(b>a ),把它们拼成如图所示形状,使E 、H 、M 三点在一条直线上. 用数字表示面积的编号(如图).在EH = b 上截取ED = a ,连结DA 、DC , 则 AD = c. ∵ EM = EH + HM = b + a , ED = a , ∴ DM = EM ―ED = ()a b +―a = b. 又∵ ∠CMD = 90º,CM = a , ∠AED = 90º, AE = b , ∴ Rt ΔAED ≌ Rt ΔDMC. ∴ ∠EAD = ∠MDC ,DC = AD = c.∵ ∠ADE + ∠ADC+ ∠MDC =180º, ∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º, ∴ ∠ADC = 90º.∴ 作AB ∥DC ,CB ∥DA ,则ABCD 是一个边长为c 的正方形. ∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º, ∴ ∠BAF=∠DAE.连结FB ,在ΔABF 和ΔADE 中,∵ AB =AD = c ,AE = AF = b ,∠BAF=∠DAE , ∴ ΔABF ≌ ΔADE.BD F Gab ca b cac a b c 1234567∴ ∠AFB = ∠AED = 90º,BF = DE = a. ∴ 点B 、F 、G 、H 在一条直线上. 在Rt ΔABF 和Rt ΔBCG 中, ∵ AB = BC = c ,BF = CG = a , ∴ Rt ΔABF ≌ Rt ΔBCG.∵ 54322S S S S c +++=, 6212S S S b ++=, 732S S a +=, 76451S S S S S +===, ∴6217322S S S S S b a ++++=+ =()76132S S S S S ++++=5432S S S S +++=2c ∴ 222c b a =+.九、辛卜松证法:设直角三角形两直角边的长分别为a 、b ,斜边的长为c. 作边长是a+b 的正方形ABCD. 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为 ()ab b a b a 2222++=+;把正方形ABCD 划分成上方右图所示的几个部分,则正方形ABCD 的面积为 ()22214c ab b a +⨯=+ =22c ab +.∴ 22222c ab ab b a +=++,∴ 222c b a =+.ab 21ab 21ab 21ab 212c 2b 2aAD B Bab aba bb a ccccb a ab ab ba b a。
勾股定理的九种证明方法附图

勾股定理的九种证明方法附图This manuscript was revised on November 2& 2020勾股定理的证明方法一、传说中毕达哥拉斯的证法(图1)左边的正方形是山1个边长为。
的正方形和1个边长为心的正方形以及4个直角边分别为么、X斜边为匕的直角三角形拼成的。
右边的正方形是山1个边长为c的正方形和4个直角边分别为么、“,斜边为亡的直角三角形拼成的。
因为这两个正方形的面积a2 +沪+4 X—= c2 + 4x—相等(边长都是負+巧,所以可以列出等式 2 2 ,化简得O二、美国第20任总统茄菲尔德的证法(图3)这个直角梯形是山2个直角边分别为文、* 斜边为Q的直角三角形和1个直角边为的等腰直角三角形拼成的。
因为3个直角三角形的面积之和等于梯形的面积,所以可三、相似三角形的证法:4.相似三角形的方法:在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个三直角角形与原三角形相似。
如图,RtAABC中,ZACB二90°。
作CD丄AB,垂足为D。
贝ijABCD^ABAC, ACAD^ABAColllABCD^ABAC 可得BC‘二BDXBA,①由△CADsABAC 可得AC:=ADXABo ②我们发现,把①、②两式相加可得BC'+AC'二AB (AD+BD),而AD+BD二AB,因此有BC'+AdAB',这就是&+b-二c~。
这也是一种证明勾股定理的方法,而且也很简洁。
它利用了相似三角形的知识。
四、古人的证法:如图,将图中的四个直角三角形涂上深红色,把中间小正方形涂上白色,,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。
即“勾股各自乘,并之为弦实,开方除之,即弦也”。
赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明:从Rt△ABC的三边向外各作一个正方形(如图),作CN⊥DE 交AB于M,那么正方形ABED被分成两个矩形.连结CD和KB.
∵由于矩形ADNM和△ADC同底(AD),等高(即平行线AD和CN间的距离),
∴S矩形ADNM=2S△ADC. 又∵正方形ACHK和△ABK同底(AK)、等高(即
G
平行线AK和BH间的距离), ∴S正方形ACHK=2S△ABK.
的意思就是说:当直角三角形的两条直角边分别为3(短边)和4
(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事
实说成“勾三股四弦五”。由于勾股定理的内容最早见于商高的
话中,所以人们就把这个定理叫作"商高定理"。
毕达哥拉斯(Pythagoras)是古希腊数学家,他是公元前五
世纪的人,比商高晚出生五百多年。希腊另一位数学家欧几
在这数百种证明方法中,有的 十分精彩,有的十分简洁,有的 因为证明者身份的特殊而非常著 名。
现在在网络上看到较多的是 16种,包括前面的6种,还有:
6
返回
A
B
这棵树漂亮吗?如果在树上挂上 几串彩色灯泡,再挂上些小铃铛、小 彩球、小礼盒、小的圣诞老人,是不 是更像一棵圣诞树.
也许有人会问:“它与勾股定理 有什么关系吗?”
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
9
数
也角友
学
来三家 观角作 相
故
察形客 传 下三, 两
事 链
面边发 千
探 的 的 现 五
图某朋 百 案种友 年
接
索 , 数 家 前
看量用 ,
勾 看 关 砖 一
你系铺 次
股 能 , 成 毕
发同的 达 现学地 哥
定 什 们 面 拉
么,反 斯
理 ? 我 映 去 们 直 朋 10
数学家毕达哥拉斯的发现:
A
B
探
C
索
勾
股 A、B、C的面积有什么关系?
SA+SB=SC 定 理11
设:直角三角形的三边长分别是a、b、c
猜想:两直角边a、b与斜边c 之间的关系? 返回
C Aa c
b B
SA+SB=SC探 SA=a2 索 SB=b2 勾 SC=c2 股
a2+b2=c2 定
理12
传说中毕达哥拉斯的证法
文字资料是欧几里得(公元前300年左右)所著的《几
何原本》第一卷中的命题47:“直角三角形斜边上的正方
形等于两直角边上的两个正方形之和”.其证明是用面积
来进行的.
G
已知:如图,以在Rt△ABC中,
H
F
∠ACB=90°,分别以a、b、c 为边向外作正方形.
C
K
ba
c
A
B
求证:a2 +b2=c2.
D
E
8
H C
∵AD=AB,AC=AK,∠CAD=∠KAB, K
b
a
∴△ADC≌△ABK.
A Mc
由此可得S矩形ADNM=S正方形ACHK .
同理可证S矩形MNEB=S正方形CBFG.
∴S矩形ADNM+S矩形MNEB=S正方形ACHK+S正方形CBFG. 即S正方形ADEB=S正方形ACHK+S正方形CBFG ,
朱实 中黄实 b (b-a)2 a
返回
那么: c2 4 ab(ba)2 2
DN
也就是 a2+b2=c2.
F B
E
13
返回
刘徽的证法
刘徽在《九章算术》中对勾股定理的证明:
勾自乘为朱方,股自乘为青方,令出入相补,各
从其类,因就其余不移动也.合成弦方之幂,开 方除之,即弦也.
I
令正方形ABCD为朱方,正方
形BEFG为青方.在BG间取一点H,
E
使AH=BG,裁下△ADH,移至
D
里德(Euclid,是公元前三百年左右的人)在编著《几何原本》
时,认为这个定理是毕达哥达斯最早发现的,所以他就把这个
定理称为“毕达哥拉斯定理”,以后就流传开了。(为了庆祝这一定理
的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百
牛定理”.)
3
走
进
数
学
史
4
勾股定理的证明
两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人 们的生活实际,以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨 和研究它的证明.因此不断出现关于勾股定理的新证法.
仔细看看,你会发现,奥妙在树 干和树枝上,整棵树都是由下方的这 个基本图形组成的:一个直角三角形 以及分别以它的每边为一边向外所作 的正方形.
这个图形有什么作用呢?不要小看它哦!古希腊的数学家毕达 哥拉斯就是利用这个图形验证了勾股定理.
7
传说中毕达哥拉斯的证法
关于勾股定理的证明,现在人类保存下来的最早的
1.传说中毕达哥拉斯的证法 2.赵爽弦图的证法 3.刘徽的证法 4.美国第20任总统茄菲尔德的证法 5.其他证法
5
勾股定理是几何学中的明珠, 所以它充满魅力,千百年来,人 们对它的证明趋之若骛,其中有 著名的数学家,也有业余数学爱 好者,有普通的老百姓,也有尊 贵的政要权贵,甚至有国家总统。 也许是因为勾股定理既重要又简 单,更容易吸引人,才使它成百 次地反复被人炒作,反复被人论 证。有资料表明,关于勾股定理 的证明方法已有500余种,仅我 国清末数学家华蘅芳就提供了二 十多种精彩的证法。
斯定理”。为什么一个定理有这么多名称呢?商高是公元前十一世
纪的中国人。当时中国的朝代是西周,是奴隶社会时期。
在中国古代大约是战国时期西汉的数学著作《周髀算经》中记录
着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,
经隅五。“什么是”勾、股“呢?在中国古代,人们把弯曲成直角
的手臂的上半部分称为“勾”,半部分称为“股”。商高那段话
美妙的勾股定理
——数形结合之美
32
42
52
1
勾 股
勾股弦的定义
在中国古代,人们把弯曲成直角的手臂的上半部分称为
"勾",下半部分称为"股"。我国古代学者把直角三角形
较短的直角边称为“勾”,较长的直角边称为“股”,
斜边称为“弦”.
2
勾股定理的由来
走 进 数 学 史
这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉
C
F
△CDI,裁下△HGF,移至△IEF,
是为“出入相补,各从其类”,其
余不动,则形成弦方正方形
A
BH
G
DHFI.勾股定理由此得证.
返回
14
赵爽弦图的证法
我国对勾股定理的证明采取的是 割补法,最早的形式见于公元三、四 世纪赵爽的《勾股圆方图注》.在这 篇短文中,赵爽画了一张他所谓的 c “弦图”,其中每一个直角三角形称 为“朱实”,中间的一个正方形称为 “中黄实”,以弦为边的大正方形叫 “弦实”,所以,如果以a、b、c分别 表示勾、股、弦之长,