图的遍历性
图的遍历算法
1图的遍历问题在实践中常常遇到这样的问题:给定n个点,从任一点出发对所有的点访问一次并且只访问一次。
如果用图中的顶点表示这些点,图中的边表示可能的连接,那么这个问题就可以表示成图的遍历问题,即从某个顶点出发,沿着某条搜索路径对图中每个顶点各做一次且仅做一次访问。
图的遍历操作和树的遍历操作功能相似,是图的一种基本操作,图的许多其它操作都是建立在遍历操作的基础上。
由于图结构本身的复杂性,所以图的遍历操作也比较复杂,主要表现在以下几个方面:(1) 在图结构中,没有一个确定的首结点,图中任意一个顶点都可以作为第一个被访问的结点。
(2) 在非连通图中,从一个顶点出发,只能够访问它所在的连通分量上的所有顶点,因此,还需要考虑如何选取下一个出发点以访问图中其余的连通分量。
(3) 在图结构中,如果有回路存在,那么一个顶点被访问后,有可能沿回路又回到该顶点。
⑷在图结构中,一个顶点可以和其它多个顶点相连,当这样的顶点访问过后,存在如何选取下一个要访问的顶点的问题。
基于以上分析,图的遍历方法目前有深度优先搜索(DFS)和广度优先搜索(BFS)两种算法。
下面将介绍两种算法的实现思路,分析算法效率并编程实现。
1.1深度优先搜索算法深度优先搜索算法是树的先根遍历的推广,它的实现思想是:从图G的某个顶点V o出发,访问V o,然后选择一个与V o相邻且没被访问过的顶点V i访问,再从V i出发选择一个与V i相邻且未被访问的顶点V j进行访问,依次继续。
如果当前被访问过的顶点的所有邻接顶点都已被访问,贝U退回已被访问的顶点序列中最后一个拥有未被访问的相邻顶点的顶点W,从W出发按同样的方法向前遍历,直到图中所有顶点都被访问。
其递归算法如下:Boolean visited[MAX_VERTEX_NUM]; // 访问标志数组Status (*VisitFunc)(int v); //VisitFunc是访问函数,对图的每个顶点调用该函数void DFSTraverse (Graph G Status(*Visit)(i nt v)){VisitF unc = Visit;for(v=0; vvG.vex num; ++v)visited[v] = FALSE; //访问标志数组初始化for(v=0; v<G .vex num; ++v)if(!visited[v])DFS(G v); //对尚未访问的顶点调用DFS}void DFS(Graph G int v){ //从第v个顶点出发递归地深度优先遍历图Gvisited[v]=TRUE; VisitFunc(v); // 访问第v 个顶点for(w=FirstAdjVex(G ,v); w>=0;w=NextAdjVex(G ,v,w))//FirstAdjVex返回v的第一个邻接顶点,若顶点在G中没有邻接顶点,则返回空(0)。
第15讲图的遍历
V6
V8
V8
V7
V5 深度优先生成树
V8 V1
V2
V3
V4 V5 V6 V7
V8 广度优先生成树
27
例A
B
CD E
F
GH
I
K
J
L
M
A
D
G
LCF
KI E
H M
JB
深度优先生成森林
28
二、图的连通性问题
▪1、生成树和生成森林
▪ 说明
G
▪ 一个图可以有许多棵不同的生成树
KI
▪ 所有生成树具有以下共同特点:
g.NextAdjVex(v, w))
{
if (g.GetTag(w) == UNVISITED)
{
g.SetTag(w, VISITED);
g.GetElem(w, e);
Visit(e);
q.InQueue(w);
}
}}}
24
一、图的遍历 两种遍历的比较
V0
V1 V4
V0
V1 V4
V3
V2 V5
16
一、图的遍历
广度优先遍历序列?入队序列?出队序列?
V1
V2
V3
V1
V4
V5 V6
V7
V8
遍历序列: V1
17
一、图的遍历
广度优先遍历序列?入队序列?出队序列?
V1
V2
V3
V2 V3
V4
V5 V6
V7
V8
遍历序列: V1 V2 V3
18
一、图的遍历
广度优先遍历序列?入队序列?出队序列?
V1
V2
数据结构实验报告图的遍历讲解
数据结构实验报告图的遍历讲解一、引言在数据结构实验中,图的遍历是一个重要的主题。
图是由顶点集合和边集合组成的一种数据结构,常用于描述网络、社交关系等复杂关系。
图的遍历是指按照一定的规则,挨次访问图中的所有顶点,以及与之相关联的边的过程。
本文将详细讲解图的遍历算法及其应用。
二、图的遍历算法1. 深度优先搜索(DFS)深度优先搜索是一种常用的图遍历算法,其基本思想是从一个顶点出发,沿着一条路径向来向下访问,直到无法继续为止,然后回溯到前一个顶点,再选择此外一条路径继续访问。
具体步骤如下:(1)选择一个起始顶点v,将其标记为已访问。
(2)从v出发,选择一个未被访问的邻接顶点w,将w标记为已访问,并将w入栈。
(3)如果不存在未被访问的邻接顶点,则出栈一个顶点,继续访问其它未被访问的邻接顶点。
(4)重复步骤(2)和(3),直到栈为空。
2. 广度优先搜索(BFS)广度优先搜索是另一种常用的图遍历算法,其基本思想是从一个顶点出发,挨次访问其所有邻接顶点,然后再挨次访问邻接顶点的邻接顶点,以此类推,直到访问完所有顶点。
具体步骤如下:(1)选择一个起始顶点v,将其标记为已访问,并将v入队。
(2)从队首取出一个顶点w,访问w的所有未被访问的邻接顶点,并将这些顶点标记为已访问,并将它们入队。
(3)重复步骤(2),直到队列为空。
三、图的遍历应用图的遍历算法在实际应用中有广泛的应用,下面介绍两个典型的应用场景。
1. 连通分量连通分量是指图中的一个子图,其中的任意两个顶点都是连通的,即存在一条路径可以从一个顶点到达另一个顶点。
图的遍历算法可以用来求解连通分量的个数及其具体的顶点集合。
具体步骤如下:(1)对图中的每一个顶点进行遍历,如果该顶点未被访问,则从该顶点开始进行深度优先搜索或者广度优先搜索,将访问到的顶点标记为已访问。
(2)重复步骤(1),直到所有顶点都被访问。
2. 最短路径最短路径是指图中两个顶点之间的最短路径,可以用图的遍历算法来求解。
图的遍历 实验报告
图的遍历实验报告一、引言图是一种非线性的数据结构,由一组节点(顶点)和节点之间的连线(边)组成。
图的遍历是指按照某种规则依次访问图中的每个节点,以便获取或处理节点中的信息。
图的遍历在计算机科学领域中有着广泛的应用,例如在社交网络中寻找关系紧密的人员,或者在地图中搜索最短路径等。
本实验旨在通过实际操作,掌握图的遍历算法。
在本实验中,我们将实现两种常见的图的遍历算法:深度优先搜索(DFS)和广度优先搜索(BFS),并比较它们的差异和适用场景。
二、实验目的1. 理解和掌握图的遍历算法的原理与实现;2. 比较深度优先搜索和广度优先搜索的差异;3. 掌握图的遍历算法在实际问题中的应用。
三、实验步骤实验材料1. 计算机;2. 编程环境(例如Python、Java等);3. 支持图操作的相关库(如NetworkX)。
实验流程1. 初始化图数据结构,创建节点和边;2. 实现深度优先搜索算法;3. 实现广度优先搜索算法;4. 比较两种算法的时间复杂度和空间复杂度;5. 比较两种算法的遍历顺序和适用场景;6. 在一个具体问题中应用图的遍历算法。
四、实验结果1. 深度优先搜索(DFS)深度优先搜索是一种通过探索图的深度来遍历节点的算法。
具体实现时,我们可以使用递归或栈来实现深度优先搜索。
算法的基本思想是从起始节点开始,选择一个相邻节点进行探索,直到达到最深的节点为止,然后返回上一个节点,再继续探索其他未被访问的节点。
2. 广度优先搜索(BFS)广度优先搜索是一种逐层遍历节点的算法。
具体实现时,我们可以使用队列来实现广度优先搜索。
算法的基本思想是从起始节点开始,依次遍历当前节点的所有相邻节点,并将这些相邻节点加入队列中,然后再依次遍历队列中的节点,直到队列为空。
3. 时间复杂度和空间复杂度深度优先搜索和广度优先搜索的时间复杂度和空间复杂度如下表所示:算法时间复杂度空间复杂度深度优先搜索O(V+E) O(V)广度优先搜索O(V+E) O(V)其中,V表示节点的数量,E表示边的数量。
图的遍历的实验报告
图的遍历的实验报告图的遍历的实验报告一、引言图是一种常见的数据结构,它由一组节点和连接这些节点的边组成。
图的遍历是指从图中的某个节点出发,按照一定的规则依次访问图中的所有节点。
图的遍历在许多实际问题中都有广泛的应用,例如社交网络分析、路线规划等。
本实验旨在通过实际操作,深入理解图的遍历算法的原理和应用。
二、实验目的1. 掌握图的遍历算法的基本原理;2. 实现图的深度优先搜索(DFS)和广度优先搜索(BFS)算法;3. 比较并分析DFS和BFS算法的时间复杂度和空间复杂度。
三、实验过程1. 实验环境本实验使用Python编程语言进行实验,使用了networkx库来构建和操作图。
2. 实验步骤(1)首先,我们使用networkx库创建一个包含10个节点的无向图,并添加边以建立节点之间的连接关系。
(2)接下来,我们实现深度优先搜索算法。
深度优先搜索从起始节点开始,依次访问与当前节点相邻的未访问过的节点,直到遍历完所有节点或无法继续访问为止。
(3)然后,我们实现广度优先搜索算法。
广度优先搜索从起始节点开始,先访问与当前节点相邻的所有未访问过的节点,然后再访问这些节点的相邻节点,依此类推,直到遍历完所有节点或无法继续访问为止。
(4)最后,我们比较并分析DFS和BFS算法的时间复杂度和空间复杂度。
四、实验结果经过实验,我们得到了如下结果:(1)DFS算法的时间复杂度为O(V+E),空间复杂度为O(V)。
(2)BFS算法的时间复杂度为O(V+E),空间复杂度为O(V)。
其中,V表示图中的节点数,E表示图中的边数。
五、实验分析通过对DFS和BFS算法的实验结果进行分析,我们可以得出以下结论:(1)DFS算法和BFS算法的时间复杂度都是线性的,与图中的节点数和边数呈正比关系。
(2)DFS算法和BFS算法的空间复杂度也都是线性的,与图中的节点数呈正比关系。
但是,DFS算法的空间复杂度比BFS算法小,因为DFS算法只需要保存当前路径上的节点,而BFS算法需要保存所有已访问过的节点。
图的遍历实验报告
1.问题描述:不少涉及图上操作的算法都是以图的遍历操作为基础的。
试写一个程序,演示在连通的无向图上访问全部结点的操作。
2.基本要求:以邻接表为存储结构,实现连通无向图的深度优先和广度优先遍历。
以用户指定的结点为起点,分别输出每种遍历下的结点访问序列和相应生成树的边集。
3.测试数据:教科书图7.33。
暂时忽略里程,起点为北京。
4.实现提示:设图的结点不超过30个,每一个结点用一个编号表示(如果一个图有n个结点,则它们的编号分别为1,2,…,n)。
通过输入图的全部边输入一个图,每一个边为一个数对,可以对边的输入顺序作出某种限制,注意,生成树的边是有向边,端点顺序不能颠倒。
5.选作内容:(1) .借助于栈类型(自己定义和实现),用非递归算法实现深度优先遍历。
(2) .以邻接表为存储结构,建立深度优先生成树和广度优先生成树,再按凹入表或者树形打印生成树。
1.为实现上述功能,需要有一个图的抽象数据类型。
该抽象数据类型的定义为:ADT Graph{V 是具有相同特性的数据元素的集合,称为顶点集。
R={VR}VR={<v,w> | v ,w v 且P(v,w),<v,w>表示从v 到w 得弧,谓词P(v,w)定义了弧<v,w>的意义或者信息}} ADT Graph2.此抽象数据类型中的一些常量如下:#define TRUE 1#define FALSE 0#define OK 1#define max_n 20 //最大顶点数typedef char VertexType[20];typedef enum{DG, DN, AG, AN} GraphKind;enum BOOL{False,True};3.树的结构体类型如下所示:typedef struct{ //弧结点与矩阵的类型int adj; //VRType为弧的类型。
图--0,1;网--权值int *Info; //与弧相关的信息的指针,可省略}ArcCell, AdjMatrix[max_n][max_n];typedef struct{VertexType vexs[max_n]; //顶点AdjMatrix arcs; //邻接矩阵int vexnum, arcnum; //顶点数,边数}MGraph;//队列的类型定义typedef int QElemType;typedef struct QNode{QElemType data;struct QNode *next;}QNode, *QueuePtr;typedef struct{QueuePtr front;QueuePtr rear;}LinkQueue;4.本程序包含三个模块1).主程序模块void main( ){创建树;深度优先搜索遍历;广度优先搜索遍历;}2).树模块——实现树的抽象数据类型3).遍历模块——实现树的深度优先遍历和广度优先遍历各模块之间的调用关系如下:主程序模块树模块遍历模块#include "stdafx.h"#include<iostream>using namespace std;#define TRUE 1#define FALSE 0#define OK 1#define max_n 20 //最大顶点数typedef char VertexType[20];typedef enum{DG, DN, AG, AN} GraphKind;enum BOOL{False,True};typedef struct{ //弧结点与矩阵的类型int adj; //VRType为弧的类型。
图的遍历算法实验报告
图的遍历算法实验报告图的遍历算法实验报告一、引言图是一种常用的数据结构,用于描述事物之间的关系。
在计算机科学中,图的遍历是一种重要的算法,用于查找和访问图中的所有节点。
本实验旨在探究图的遍历算法,并通过实验验证其正确性和效率。
二、实验目的1. 理解图的基本概念和遍历算法的原理;2. 实现图的遍历算法,并验证其正确性;3. 比较不同遍历算法的效率。
三、实验方法1. 实验环境:使用Python编程语言进行实验;2. 实验步骤:a. 构建图的数据结构,包括节点和边的定义;b. 实现深度优先搜索(DFS)算法;c. 实现广度优先搜索(BFS)算法;d. 验证算法的正确性,通过给定的图进行遍历;e. 比较DFS和BFS的效率,记录运行时间。
四、实验结果1. 图的构建:我们选择了一个简单的无向图作为实验对象,包含6个节点和7条边。
通过邻接矩阵表示图的关系。
```0 1 1 0 0 01 0 1 1 0 01 1 0 0 1 10 1 0 0 0 00 0 1 0 0 00 0 1 0 0 0```2. DFS遍历结果:从节点0开始,遍历结果为0-1-2-4-5-3。
3. BFS遍历结果:从节点0开始,遍历结果为0-1-2-3-4-5。
4. 算法效率比较:我们记录了DFS和BFS算法的运行时间。
经实验发现,在这个图的规模下,DFS算法的运行时间为0.001秒,BFS算法的运行时间为0.002秒。
可以看出,DFS算法相对于BFS算法具有更高的效率。
五、讨论与分析1. 图的遍历算法能够帮助我们了解图中的节点之间的关系,有助于分析和解决实际问题。
2. DFS算法和BFS算法都可以实现图的遍历,但其遍历顺序和效率有所不同。
DFS算法会优先访问深度较大的节点,而BFS算法会优先访问离起始节点最近的节点。
3. 在实验中,我们发现DFS算法相对于BFS算法具有更高的效率。
这是因为DFS算法采用了递归的方式,遍历过程中不需要保存所有节点的信息,而BFS 算法需要使用队列保存节点信息,导致额外的空间开销。
图的遍历实验报告
图的遍历实验报告图的遍历实验报告一、引言图是一种常见的数据结构,广泛应用于计算机科学和其他领域。
图的遍历是指按照一定规则访问图中的所有节点。
本实验通过实际操作,探索了图的遍历算法的原理和应用。
二、实验目的1. 理解图的遍历算法的原理;2. 掌握深度优先搜索(DFS)和广度优先搜索(BFS)两种常用的图遍历算法;3. 通过实验验证图的遍历算法的正确性和效率。
三、实验过程1. 实验环境准备:在计算机上安装好图的遍历算法的实现环境,如Python编程环境;2. 实验数据准备:选择合适的图数据进行实验,包括图的节点和边的信息;3. 实验步骤:a. 根据实验数据,构建图的数据结构;b. 实现深度优先搜索算法;c. 实现广度优先搜索算法;d. 分别运行深度优先搜索和广度优先搜索算法,并记录遍历的结果;e. 比较两种算法的结果,分析其异同点;f. 对比算法的时间复杂度和空间复杂度,评估其性能。
四、实验结果与分析1. 实验结果:根据实验数据和算法实现,得到了深度优先搜索和广度优先搜索的遍历结果;2. 分析结果:a. 深度优先搜索:从起始节点出发,一直沿着深度方向遍历,直到无法继续深入为止。
该算法在遍历过程中可能产生较长的路径,但可以更快地找到目标节点,适用于解决一些路径搜索问题。
b. 广度优先搜索:从起始节点出发,按照层次顺序逐层遍历,直到遍历完所有节点。
该算法可以保证找到最短路径,但在遍历大规模图时可能需要较大的时间和空间开销。
五、实验总结1. 通过本次实验,我们深入理解了图的遍历算法的原理和应用;2. 掌握了深度优先搜索和广度优先搜索两种常用的图遍历算法;3. 通过实验验证了算法的正确性和效率;4. 在实际应用中,我们需要根据具体问题的需求选择合适的遍历算法,权衡时间复杂度和空间复杂度;5. 进一步研究和优化图的遍历算法,可以提高算法的性能和应用范围。
六、参考文献[1] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms (3rd ed.). MIT Press.[2] Sedgewick, R., & Wayne, K. (2011). Algorithms (4th ed.). Addison-Wesley Professional.。
图的遍历算法实验报告
图的遍历算法实验报告
《图的遍历算法实验报告》
在计算机科学领域,图的遍历算法是一种重要的算法,它用于在图数据结构中
访问每个顶点和边。
图的遍历算法有两种常见的方法:深度优先搜索(DFS)
和广度优先搜索(BFS)。
在本实验中,我们将对这两种算法进行实验,并比较
它们的性能和应用场景。
首先,我们使用深度优先搜索算法对一个简单的无向图进行遍历。
通过实验结
果可以看出,DFS算法会首先访问一个顶点的所有邻居,然后再递归地访问每
个邻居的邻居,直到图中所有的顶点都被访问到。
这种算法在一些应用场景中
非常有效,比如寻找图中的连通分量或者寻找图中的环路。
接下来,我们使用广度优先搜索算法对同样的无向图进行遍历。
通过实验结果
可以看出,BFS算法会首先访问一个顶点的所有邻居,然后再按照距离递增的
顺序访问每个邻居的邻居。
这种算法在一些应用场景中也非常有效,比如寻找
图中的最短路径或者寻找图中的最小生成树。
通过对比实验结果,我们可以发现DFS和BFS算法各自的优势和劣势。
DFS算
法适合用于寻找图中的连通分量和环路,而BFS算法适合用于寻找最短路径和
最小生成树。
因此,在实际应用中,我们需要根据具体的需求来选择合适的算法。
总的来说,图的遍历算法是计算机科学中非常重要的算法之一,它在许多领域
都有着广泛的应用。
通过本次实验,我们对DFS和BFS算法有了更深入的了解,并且对它们的性能和应用场景有了更清晰的认识。
希望通过这篇实验报告,读
者们也能对图的遍历算法有更深入的理解和认识。
离散数学中的图论与图的遍历
离散数学中的图论与图的遍历离散数学是数学中的一个重要分支,研究离散对象以及离散结构的性质和关系。
图论作为离散数学中的一个重要分支,主要研究图及其相关的性质和算法。
图的遍历是图论中的重要概念,通过遍历可以发现图的全部节点,并且按照一定规则访问每个节点。
本文将介绍离散数学中的图论以及图的遍历算法。
一、图论的基本概念在图论中,图由节点和边组成,节点表示对象,边表示节点之间的关系。
图可以分为有向图和无向图,有向图的边有方向,无向图的边没有方向。
对于图中的节点,我们称之为顶点,边可以连接两个顶点。
图的遍历算法主要分为深度优先搜索(DFS)和广度优先搜索(BFS)两种。
深度优先搜索从一个节点开始,沿着一条路径访问直到末端,然后回溯并访问其他路径。
广度优先搜索从一个节点开始,先访问所有邻接节点,然后逐层遍历。
二、图的遍历算法1. 深度优先搜索(DFS)深度优先搜索的过程类似于树的先序遍历,从一个节点开始,递归访问其邻接节点,直到遇到没有未访问过的邻接节点为止。
然后回溯到上一个节点,继续遍历其他未访问过的节点。
深度优先搜索的实现可以通过递归或者栈来实现。
对于递归实现,可以通过标记节点的方法来避免重复访问,对于栈实现,可以将当前节点入栈,并将其标记为已访问,然后遍历其邻接节点,直到栈为空。
2. 广度优先搜索(BFS)广度优先搜索的过程类似于树的层次遍历,从一个节点开始,先访问其邻接节点,然后逐层遍历其他节点。
使用队列来实现广度优先搜索,将起始节点入队列,然后依次访问队列中的节点的邻接节点,同时将访问过的节点标记为已访问,直到队列为空。
三、图论的应用领域图论作为离散数学的一个重要分支,在实际应用中有着广泛的应用。
以下是图论的一些主要应用领域:1. 社交网络分析:通过图论分析社交网络中的关系,可以推断用户之间的联系、社区结构等信息。
2. 路径规划:通过图论的遍历算法,可以找到两个节点之间的最短路径,应用于导航系统、物流路径规划等领域。
数据结构实验报告图的遍历
数据结构实验报告图的遍历数据结构实验报告:图的遍历引言在计算机科学中,图是一种重要的数据结构,它由节点和边组成,用于表示不同实体之间的关系。
图的遍历是一种重要的操作,它可以帮助我们了解图中节点之间的连接关系,以及找到特定节点的路径。
在本实验中,我们将讨论图的遍历算法,并通过实验验证其正确性和效率。
深度优先搜索(DFS)深度优先搜索是一种常用的图遍历算法,它通过递归或栈的方式来遍历图中的节点。
在实验中,我们实现了深度优先搜索算法,并对其进行了测试。
实验结果表明,深度优先搜索算法能够正确地遍历图中的所有节点,并找到指定节点的路径。
此外,我们还对算法的时间复杂度进行了分析,验证了其在不同规模图上的性能表现。
广度优先搜索(BFS)广度优先搜索是另一种常用的图遍历算法,它通过队列的方式来遍历图中的节点。
在实验中,我们也实现了广度优先搜索算法,并对其进行了测试。
实验结果显示,广度优先搜索算法同样能够正确地遍历图中的所有节点,并找到指定节点的路径。
我们还对算法的时间复杂度进行了分析,发现其在不同规模图上的性能表现与深度优先搜索算法相近。
实验结论通过本次实验,我们深入了解了图的遍历算法,并验证了其在不同规模图上的正确性和效率。
我们发现深度优先搜索和广度优先搜索算法都能够很好地应用于图的遍历操作,且在不同情况下都有良好的性能表现。
这些算法的实现和测试为我们进一步深入研究图的相关问题提供了重要的基础。
总结图的遍历是图算法中的重要操作,它为我们提供了了解图结构和节点之间关系的重要手段。
本次实验中,我们实现并测试了深度优先搜索和广度优先搜索算法,验证了它们的正确性和效率。
我们相信这些算法的研究和应用将为我们在图相关问题的研究中提供重要的帮助。
图的遍历的概念
图的遍历的概念图的遍历是指通过遍历图中的所有节点,访问图中的每个节点一次且仅一次的过程。
在图的遍历过程中,我们会将节点标记为已访问,以确保不重复访问节点。
图的遍历是解决许多图相关问题的基础,如查找路径、遍历连通图、检测图的连通性等。
常用的图遍历算法有深度优先搜索(Depth-First Search,DFS)和广度优先搜索(Breadth-First Search,BFS)。
深度优先搜索(DFS):DFS是一种先访问节点的深层节点,再回溯访问较浅层节点的遍历方式。
DFS通过递归或者使用栈来实现。
从图的某个起始节点开始,沿着一条路径访问到尽头,再回溯返回上一个节点,继续向另一条路径遍历。
DFS的过程可以看作是沿着树的深度进行遍历的过程。
DFS的一个经典应用是在迷宫中找到一条路径。
广度优先搜索(BFS):BFS是一种先访问离起始节点最近的节点,再逐渐扩展访问离起始节点更远节点的遍历方式。
BFS通过使用队列实现。
从图的某个起始节点开始,先将该节点加入队列中,然后逐个访问队列中的节点,把与当前节点相邻且未访问过的节点加入队列。
BFS的过程可以看作是树的层次遍历的过程。
BFS的一个经典应用是在社交网络中寻找两个人之间的最短路径。
在图的遍历中,我们除了记录已访问节点外,还可能需要记录节点的前驱节点,以便在找到目标节点后,能够回溯找到从起始节点到目标节点的路径。
在实际应用中,图的遍历可以用来解决许多问题。
比如在地图应用中,我们可以用图的遍历算法来查找最短路径。
在社交网络中,我们可以用图的遍历算法来查找两个人之间的路径或者关系的强度。
在编译器设计中,我们可以用图的遍历算法来检查代码的连通性。
在迷宫问题中,我们可以用图的遍历算法来找到一条通往出口的路径。
然而,图的遍历并不是一个简单的任务,尤其是针对大规模的图。
在处理大规模图的遍历时,我们需要考虑空间复杂度、时间复杂度以及算法的效率。
为了提高图的遍历的速度和效率,我们可以借助剪枝等优化技巧,以减少搜索空间。
图的遍历操作实验报告
图的遍历操作实验报告一、实验目的本次实验的主要目的是深入理解图的遍历操作的基本原理和方法,并通过实际编程实现,掌握图的深度优先遍历(DepthFirst Search,DFS)和广度优先遍历(BreadthFirst Search,BFS)算法,比较它们在不同类型图中的性能和应用场景。
二、实验环境本次实验使用的编程语言为 Python,开发环境为 PyCharm。
实验中使用的数据结构为邻接表来表示图。
三、实验原理(一)深度优先遍历深度优先遍历是一种递归的图遍历算法。
它从起始节点开始,沿着一条路径尽可能深地访问节点,直到无法继续,然后回溯到上一个未完全探索的节点,继续探索其他分支。
(二)广度优先遍历广度优先遍历则是一种逐层访问的算法。
它从起始节点开始,先访问起始节点的所有相邻节点,然后再依次访问这些相邻节点的相邻节点,以此类推,逐层展开。
四、实验步骤(一)数据准备首先,定义一个图的邻接表表示。
例如,对于一个简单的有向图,可以使用以下方式创建邻接表:```pythongraph ={'A':'B','C','B':'D','E','C':'F','D':,'E':,'F':}```(二)深度优先遍历算法实现```pythondef dfs(graph, start, visited=None):if visited is None:visited = set()visitedadd(start)print(start)for next_node in graphstart:if next_node not in visited:dfs(graph, next_node, visited)```(三)广度优先遍历算法实现```pythonfrom collections import deque def bfs(graph, start):visited ={start}queue = deque(start)while queue:node = queuepopleft()print(node)for next_node in graphnode:if next_node not in visited:visitedadd(next_node)queueappend(next_node)```(四)测试与分析分别使用深度优先遍历和广度优先遍历算法对上述示例图进行遍历,并记录遍历的顺序和时间开销。
第8章图第3讲-图的遍历 - 副本
19/21
图搜索算法设计一般方法 图搜索算法设计
转化
DFS或BFS算法求解 提示:两个遍历算法是图搜索算法的基础,必须熟练掌sited[i]
10/21
采用邻接表的BFS算法:
void BFS(AdjGraph *G,int v) { int w, i; ArcNode *p; SqQueue *qu; InitQueue(qu); int visited[MAXV]; for (i=0;i<G->n;i++) visited[i]=0; printf("%2d",v); visited[v]=1; enQueue(qu,v);
1 初始点 2 3
4
0
DFS:1→2 →4 …
2 1
用栈保存访问过的顶点
栈
如何确定一个顶点是否访问过? 设置一个visited[] 全局数组, visited[i]=0表示顶点i没有访问; visited[i]=1表示顶点i已经访 问过。
i visited[i]
5/21
采用邻接表的DFS算法:
void DFS(AdjGraph *G,int v) { ArcNode *p; int w; visited[v]=1; //置已访问标记
} }
该算法的时间复杂度为O(n+e)。
6/21
深度优先遍历过程演示
0 1 2 3 4
v0
v1 v2 v3 v4
1 2 3 4
1 0 1 0 0
3 2 3 1 2
4 3 4 2 3
∧ ∧ ∧
4
∧
∧
0
v=2的DFS序列: 2 1 0 遍历过程结束
3
《图的遍历和连通性》课件
目录 CONTENTS
• 图的遍历 • 图的连通性 • 图的遍历和连通性之间的关系 • 图遍历和连通性的实际应用 • 图遍历和连通性的算法复杂度分析
01
图的遍历
深度优先遍历
深度优先遍历是一种用于遍历或搜索树或图的算法。这个算法会尽可能深地搜索 树的分支。当节点v的所在边都己被探寻过,搜索将回溯到发现节点v的那条边的 起始节点。
计算机视觉和图像处理
图像分割
目标检测
图像拼接
图像增强
在计算机视觉和图像处理领 域,图遍历算法被广泛应用 于图像分割。通过图遍历算 法,可以将图像划分为不同 的区域或对象,便于后续的
识别和分析。
利用图遍历算法,可以对图 像中的目标进行检测和定位 ,为后续的目标跟踪、行为
分析等提供基础数据。
通过图遍历算法,可以将多 张图像拼接成一张完整的图 像,便于全景图的生成和展
关键节点和最短路径等重要信息。
输入 交通标拥题堵优
化
利用图遍历算法,可以分析交通拥堵的原因,找到拥 堵瓶颈路段,为交通管理部门提供优化建议,提高路 网的通行效率和运输能力。
交通路网分 析
路径规划
在物流配送领域,图遍历算法可以帮助企业找到最优 的配送路径,降低运输成本和提高配送效率。
物流配送优 化
通过图遍历算法,可以找到两点之间的最短路径或最 少拥堵路径,为出行者提供路线建议,提高出行效率 和舒适度。
THANK YOU FOR YOUR WATCHING
01
时间复杂度为O(V^3),用于计算所有顶点对之间的最短路径。
Johnson算法
02
时间复杂度为O((V+E)logV),适用于稀疏图,通过预处理计算
7图的遍历
数据结构
广度优先搜索算法
void BFSTraverse(Graph G, Status (* visit)(int v)) { for(v=0; v<G.vexnum; ++v) visited[v] = FALSE; IntiQueque(Q); for(v=0; v<G.vexnum; ++v) if(!visited[v]) { visited[v] = TRUE; Visit (v); EnQueue(Q,v); while(!QueueEmpty(Q)){ DeQueue(Q,u); for(w=FirstAdjVex(G, u);w;w = NextAdjVex(G,u,w)) if(!visited[w]) {visited[w]=TRUE; visited(w); EnQueue(G,w); } } } 7 数据结构 }
void DFSTree(Graph G,int v ,CSTree &T) { //从第 个顶点出发深度优先遍历图G 建立以T //从第v个顶点出发深度优先遍历图G,建立以T为根的生成 从第v 树 visited[v]=TRUE; first=TRUE; for(w=FirstAdjVex(G,v);w>=0; w=NextAdjVex(G,v,w)) if(!visited[w]) p=(CSTree)malloc(sizeof)CSNode));//分配孩子结点 { p=(CSTree)malloc(sizeof)CSNode));//分配孩子结点 *p={GetVex(G,w),NULL,NULL}; //w 的第一个未被访问的邻接顶点, if (first) //w是v的第一个未被访问的邻接顶点,作 为 根的左孩子结点 T{ T->lchild=p; first=FALSE; } //w 的其它未被访问的邻接顶点, else { //w是v的其它未被访问的邻接顶点,作为上一 邻 接顶点的右兄弟 q->nextsibling=p; } q=p; D 从第w //从第 DFSTree(G,w,q); //从第w个顶点出发深度优先遍历 A 图 G,建立生成子树q 建立生成子树q 12 数据结构 B C E }
2017唐班数据结构-13_2图的遍历
v=Q.delete(); /* 出队 */ cout<<v; for ( p = Head[v]->adjacent ; p ; p = p->link ) .
图的连通性:非连通图中,从一个顶点出发,只能访 问它所在的连通分量上的所有顶点。用户指定下一个 出发点访问其它连通分量。
重复访问:访问完某个顶点后可能沿着某些边又回到 曾经访问过的顶点。避免重复,用标识数组visited[ ]。 初值为0,标识未访问。如果顶点 i 被访问,则置 visited[i]为1.
✓ 下推上: 显然 ✓ 上推下: 数学归纳法
应用1 求无向图的连通分支数
思想:每遍历一个连通分支,计数加1 遍历用深搜和广搜均可
应用2 判断图中是否有环
方法非常多;下面考虑用图的遍历求解
思想:深搜时,每个结点有两个状态,标记是 否被访问过(0未访问,1已访问过)。判环时, 多引入一个状态,标记结点正在访问中(-1正 在访问中)。如果一个结点正在访问中,又遍 历到该接点,那个存在环路。这种状况是由于 出现了反向边,即后代指向祖先的边。
如果使用邻接矩阵,则对于每一个被访问的顶 点,循环要检测矩阵中的 n 个元素,总的时间 代价为O(n2)。
定理5.1
DFS每次遍历一个连通分支 Vs = { v | v ∈ V 且 s ->E* v } Vs = { v | v ∈ V 且 visited[v] = 1 }
图的遍历和连通性
基本思想:——类似于树的先根遍历过程。 1、连通图的深度优先搜索遍历 步骤: • 访问起始点 v; • 依次从v的未被访问的邻接点出发深度优先遍历 图直至图中所有和v有路径相通的顶点都被访问 到。
2
例 1:
起点 v1
DFS 结果:
v2
v4 v8 v5 v6
v3
v1→ v2→ v4 →v8 → v5 → v3 →v6 →v7
14
例1 :画出下图的生成树。
v0 v2 v3 v4 v4 DFS v1
0 邻 1 接 2 表 3 4
v0 v3 v4
v0 v1
v2 v3 v4 v0
3
4 4 4 3
1
2 3 2 2
^
0 1 0 1 ^ ^ ^ ^
v0
v1
v2
v3 v4
生 成 树
v1
BFS
v2
v3 v4 v4
生 成 树
v4
v0
v3 v1 v2 15
v7
应退回到V8,因为 V2已有标记
void DFS(Graph G, int v) {// 从顶点v出发,深度优先遍历G visited[v] = TRUE; VisitFunc(v); for(w=FirstAdjVex(G, v);w!=0; w=NextAdjVex(G,v,w)) if (!visited[w]) DFS(G, w);
8
例 1:
v2 v4 v8 例 2:
v1
起点
v3
BFS 结果:
v5
v6
v7
v1→ v2→ v3 → v4→v5→v6 →v7→v8
起点 BFS 结果:
v3 →v2 → v1 → v6 → v4 → v5 → v9 → v8 → v7
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 旅行售货员问题
• 求解TSP问题的近似算法: • (1)最小生成树算法(缺点:在节点数较 大时,实现十分困难,复杂度骤升)。 • (2)分枝定界法,动态规划法。 • (3)稳态遗传算法 • (4)蚁群算法 • (5)基于神经网络的近似算法:模拟退火 法,弹性网法。
一个可行的办法 :
是先求一个H圈,然后适当 修改,以得到具有较小权的另 一个H圈.
欧拉回路——基本概念
欧拉回路
欧拉通路
无欧拉通路
Euler图充要条件
• • • • 定理 对于非空连通图G,下列命题等价: (1)G是Euler图; (2)G无奇次数顶点; (3)G的边集能划分为圈。
• 定理 图G是Euler图的充分必要条件是: 图G连通且所有顶点的次数均为偶次。 • 可见,七桥问题中,每个顶点都是奇 次的,由上述定理知,七桥问题不是 Euler图,所以不存在Euler迹,此图 不可以“一笔画”。
环游世界与Hamiltຫໍສະໝຸດ n问题• 十二面体的20个顶点代表世界上20个城市, 能否从某个城市出发在十二面体上依次经 过每个城市恰好一次最后回到出发点?
Hamilton圈(环球旅行游戏)
• 实际上,是在以12面体的顶点为顶点,以 其棱为边的图上寻求一条Hamilton圈,其 答案是很多的。
3 Hamilton图
边在原图上画出,权与原边一样(这种边称为双倍边 法或重复边法),使原图变成Euler图,但希望的所有 添加的重复边的权的总和为最小。
2 中国邮递员问题
u 1 2 x 6 3 3 v
u
4 y 2 z
5
1 2 2 w x
1
1 2 3
4 y 2
2
5 1 1 2 2 2 w
6
z 3 v
怎样添加一些重复边,使得原图变为Euler图,并 且重复边的权和达到最小?
桥问题)
七桥问题与一笔画
A B C
D
是否可从某处出发经过每座桥恰只一次, 然后再回到起点?
瑞士数学家Euler在1736年证明此问题无解 Euler——图论之父
定义 经过 G 的每条边的迹叫做 G 的 Euler 迹(通路);闭的 Euler 迹叫做 Euler 回路或 Euler 环游;含 Euler 回路的 图叫做Euler图。 直观地讲, Euler 图就是从一顶点 出发每边恰通过一次能回到出发点的那 种图,即不重复地行遍所有的边再回到 出发点。
1 Euler图
Fleury算法: (1)任取v0 V,令P0 v0;
(2)设P0 v0e1v1e2 E e1 , e2 , , ei 中选取ei 1: ei vi,按下面的方法从
a ) ei 1与vi 相关联;
b) 除非无别的边可选取,否则ei 1不该为 G G e1 , e2 , , ei 中的割边;
下面仅给出几个简单的必要或充分条件。
3 Hamilton图
• 定理 设无向图G = (V,E)是哈密顿图的必要 条件是:对于V的任意非空子集S,均有: ω(G \S) ≤ |S| • 其中ω(G\S)是从G中删除S中的顶点之后所 得到的连通子图的个数。 • 定理 设G=(V,E)是具有n ≥3个顶点的简单无 向图。如果对任意两个顶点u, v∈V,均有 d(u)+d(v)≥n-1 • 则G中存在Hamilton路;若有 d(u)+d(v)≥n, 则G中存在Hamilton圈。
2 中国邮递员问题
• 以v4,v7,v8,v9为顶点,它们之间的距离为边 权构造完备图G1,如图 2。 v • 3 9 3 •
8
v7 6 v9 图2
5
v4 6
2 中国邮递员问题
• 求出G1的最小权完美匹配M={(v4,v7),(v8,v9)}. • 在G中沿v4到v7的最短路径添加重复边,沿 v8到v9的最短路径添加重复边,得 Euler图 v v 2 v 4 G2,如图3. 2 5 1
i 1 n
示边ei的权。赋权图中权最小的环游称为最优环游。
2 中国邮递员问题 一、Euler图中的最优环游 显然这时任意一个Euler环游都是最优环游。可以用 Fleury算法找出。
二、非Euler图中的最优环游
邮递员要完成任务,某些边经过的次数超过一次, 即图G不是Euler图。
解决这类问题的一般方法是,把邮递员重复走过的
图的遍历性
1) Euler环游 2) 中国邮递员问题 3) Hamilton图 4) 旅行售货员问题
1) Euler环游 2) 中国邮递员问题 3) Hamilton图 4) 旅行售货员问题
图论的起源
• 第一个图论问题
– Könisberg’s seven bridge problem(哥尼斯堡七
• 解答 此人行遍v8时犯了能不走割边就不走 割边的错误,因而他没行遍出欧拉回路。 当他走到v8时,e9为该图中的割边,而 e7,e11均不是割边,他不应该走e9,而应 该走e7或e11,他没有走,所以犯了错误。 注意,此人在行遍中,在v3遇到过割边e3, v1处遇到过割边e8,但当时除割边外他无 别的边可走,所以当时均走了割边,这是 不会犯错误的。
1 2 3
1
v7 1 v6
9
v8 3 v9 10 图3
3
v4 8 v5 1
6
多邮递员问题: 邮局有 k (k 2) 位投递员,同时投递信件,全城街道都要投递, 完成任务返回邮局,如何分配投递路线,使得完成投递任务的时 间最早?我们把这一问题记成 kPP。 kPP 的数学模型如下:
G (V , E ) 是连通图,v0 V (G ) ,求 G 的回路 C1 ,, Ck ,使得
2 中国邮递员问题
• 情形2 图G有2n个奇次顶点(n≥2)
• Edmonds算法的基本思想:先将奇次顶点 配对,要求最佳配对,即点对之间距离总 和最小,再沿点对之间的最短路径添加重 复边得Euler图G*, G*的Euler环游便是原 图的最佳环游。
2 中国邮递员问题
• Edmonds最小对集算法: • (1)用Floyd算法求出所有奇次顶点之间的最短 路径和距离。 • (2)以G的所有奇次顶点为顶点集(个数为偶 数),作一完备图,边上的权为两端点在原图G 中的最短距离,将此完备加权图记为G1。 • (3)用Edmonds算法求出G1的最小权理想匹配 M,得到奇次顶点的最佳配对。 • (4)在G中沿配对顶点之间的最短路径添加重复 边得Euler图G*. • (5)用Fleury算法求出G*的Euler环游,这就是G的 最佳环游。
• 方法一、奇偶点图上作业法; 缺陷:回路太多时计算困难 • 方法二、 Edmonds 算法; 1973年, Edmonds和Johnson提出。
2 中国邮递员问题
• 情形1 G正好有两个奇次顶点。 • 设G正好有两个奇次顶点u和v,求G的最佳 环游的算法如下: • (1)用Dijkstra(迪克斯特拉)算法求出顶 点u和v之间的最短路径P。 • (2)令G*=G∪P,则G*为Euler图。 • (3)用Fleury算法求出G*的Euler环游,这 就是G的最佳环游。
Hamilton回路——基本概念和定理
(1)(2)是Hamilton图 (3)是Hamilton通路 (4)既不是Hamilton图也不是Hamilton 通路
3 Hamilton图
• 注:要判断一个图是否含有H圈是NP完全 问题,要求出一个图的H圈也没有多项式时 间算法。 • NP就是Non-deterministic Polynomial的 问题,也即是多项式复杂程度的非确定性 问题。
(i) v0 V (Ci ) , i 1,2,, k ,v0 为公共出发点; (ii) max w(e) min , 1i k
eE ( Ci )
(iii) E (Ci ) E (G )
i 1
k
1) Euler环游 2) 中国邮递员问题 3) Hamilton图 4) 旅行售货员问题
c ) 当b)不能再进行时,算法结束。
1 Euler图
Fleury算法
• 下图是给定的欧拉图G。某人用Fleury算 法求G中的欧拉环游时,走了简单回路 v2e2v3e3v4e14v9e10v2e1v1e8v8e9v2之后(观看 他的错误走法),无法行遍了,试分析在 哪步他犯了错误?
欧拉回路——Fleury算法求解
e E (G)
1 Euler图
• 确定Euler图中Euler环游的方法 • Fleury算法解决了这一问题。 • Fleury算法的基本思想:从任一点出发, 每当访问一条边时,先要进行检查。如果可 供访问的边不止一条,则应选一条不是未访 问的边集的导出子图的割边作为访问边,直 到没有边可选为止。 e E(G) • 注:割边的定义:设G连通, ,若从 G中删除边e后,图G-{e}不连通,则称边e 为图G的割边。也称为桥。
设找到一个初始 H 圈 C v1v2 vnv1,则对所 有适合1 i 1 j 的 i 和 j , 总可得到一个新的 H 圈: Cij v1v2 vi v j v j 1 vi 1v j 1v j 2 vnv1 ,它是 由 C 删去边 vi vi 1和 v j v j 1, 以及添加边 vi v j 和 vi 1v j 1 而得到,如右图所示。
1) Euler环游 2) 中国邮递员问题 3) Hamilton图 4) 旅行售货员问题
旅行售货员问题
一个旅行售货员想去访问若干城镇,然后回 到出发地.给定各城镇之间的距离后,应怎样计划 他的旅行路线,使他能对每个城镇恰好经过一次 而总距离最小? 旅行售货员问题(Traveling Salesman Problerm,简称TSP)或货郎担问题
1) Euler环游 2) 中国邮递员问题 3) Hamilton图 4) 旅行售货员问题