选修2-3.2.1离散型随机变量及其分布列

合集下载

高中数学人教A版选修2-3_第二章_随机变量及其分布_211_离散型随机变量(2)

高中数学人教A版选修2-3_第二章_随机变量及其分布_211_离散型随机变量(2)

高中数学人教A版选修2-3 第二章随机变量及其分布 2.1.1 离散型随机变量(2)一、单选题1. 抛掷一枚质地均匀的硬币一次,随机变量为()A.掷硬币的次数B.出现正面向上的次数C.出现正面向上或反面向上的次数D.出现正面向上与反面向上的次数之和2. 下列随机变量是离散型随机变量的是()抛5颗骰子得到的点数和;某人一天内接收到的电话次数;某地一年内下雨的天数;某机器生产零件的误差数.A.(1)(2)(3)B.(4)C.(1)(4)D.(2)(3)3. 已知下列随机变量:①10件产品中有2件次品,从中任选3件,取到次品的件数X;②一位射击手对目标进行射击,击中目标得1分,未击中目标得0分,用X表示该射击手在一次射击中的得分;③刘翔在一次110米跨栏比赛中的成绩X;④在体育彩票的抽奖中,一次摇号产生的号码数X.其中X是离散型随机变量的是()A.①②③B.②③④C.①②④D.③④4. 下列变量中不是随机变量的是().A.某人投篮6次投中的次数B.某日上证收盘指数C.标准状态下,水在100时会沸腾D.某人早晨在车站等出租车的时5. 下列随机变量中不是离散型随机变量的是().A.掷5次硬币正面向上的次数MB.某人每天早晨在某公共汽车站等某一路车的时间TC.从标有数字1至4的4个小球中任取2个小球,这2个小球上所标的数字之和YD.将一个骰子掷3次,3次出现的点数之和X6. 下列随机变量中,不是离散型随机变量的是()A.某无线寻呼台1分钟内接到的寻呼次数XB.某水位监测站所测水位在(0, 18]这一范围内变化,该水位监测站所测水位HC.从装有1红、3黄共4个球的口袋中,取出2个球,其中黄球的个数ξD.将一个骰子掷3次,3次出现的点数和X参考答案与试题解析高中数学人教A版选修2-3 第二章随机变量及其分布 2.1.1 离散型随机变量(2)一、单选题1.【答案】B【考点】二次函数的应用函数的最值及其几何意义勾股定理【解析】出现正面向上的次数为0或1,是随机变量【解答】此题暂无解答2.【答案】A【考点】离散型随机变量及其分布列【解析】由离散型随机变量的定义知((1)(2)(3)均是离散型随机变量,而(4)不是,由于这个误差数几乎都是在0附近的实数,无法——列出.【解答】此题暂无解答3.【答案】C【考点】离散型随机变量及其分布列【解析】③中X的值可在某一区间内取值,不能——列出,故不是离散型随机变量【解答】此题暂无解答4.【答案】C【考点】二次函数的应用函数的最值及其几何意义勾股定理【解析】由随机变量的概念可知.标准状态下,水在100∘C时会沸腾不是随机变量【解答】此题暂无解答5.【答案】B【考点】二次函数的应用函数的最值及其几何意义勾股定理【解析】f】由随机变量的概念可知.某人每天早晨在某公共汽车站等某一路车的时间T不能——举出,故不是离散型随机变量【解答】此题暂无解答6.【答案】B【考点】离散型随机变量及其分布列【解析】利用离散型随机变量的定义直接求解.【解答】解:水位在(0,18]内变化,不能一一举出,故不是离散型随机变量.其余都可以一一举出,故是离散型随机变量.故选B.。

选修2-3:2.1.2离散型随机变量分步列——邻水中学

选修2-3:2.1.2离散型随机变量分步列——邻水中学

P ( 5) 0.14

P10.920.1 0.93
0.12 0.9
4
0.13 0.9
5
0.14
练习6.某射手有5发子弹,射击一次命中的概率为0.9.
⑵如果命中2次就停止射击,否则一直射击到子弹用完, 求耗用子弹数 的分布列.
解:⑵ 的所有取值为:2、3、4、5
" 3" 表示前二次恰有一次射中,第三次射中,∴
3
1 若 P ( x ) 12
则实数 x 的取值范围是 5,6 .
5.一袋中装有6个同样大小的小球,编号为1、2、 3、4、5、6,现从中随机取出3个小球,以 表示 取出球的最大号码,求 的分布列.
随机变量
的分布列为:
3
1 20

4
3 20
5
3 10
6
1 2
P
练习6.某射手有5发子弹,射击一次命中的概率为0.9, ⑴如果命中了就停止射击,否则一直射击到子弹用完, 求耗用子弹数 的分布列; ⑵如果命中2次就停止射击,否则一直射击到子弹用完, 求耗用子弹数 的分布列. 解:⑴ 的所有取值为:1、2、3、4、5
2
1 3
2
0
1 3
1
1 3
4
1 4
9
1 12
P
1 i 1, 2, 3 3.设随机变量 的分布列为 P( i ) a ,
i
则 a 的值为
27 13

3
4.设随机变量 只能取5、6、7、· · · 、16这12个值,且取 每一个值的概率均相等,则P ( 8) 2 ,
6 6
2
36

数学选修2-3讲义:第2章2.12.1.1 离散型随机变量含答案

数学选修2-3讲义:第2章2.12.1.1 离散型随机变量含答案

2.1离散型随机变量及其分布列2.1.1离散型随机变量学习目标:1.理解随机变量及离散型随机变量的含义.(重点)2.了解随机变量与函数的区别与联系.(易混点)3.会用离散型随机变量描述随机现象.(难点)教材整理离散型随机变量阅读教材P40练习以上部分,完成下列问题.1.随机变量(1)定义:在试验中,试验可能出现的结果可以用一个变量X来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X叫做一个随机变量.(2)表示:随机变量常用大写字母X,Y,…表示.2.离散型随机变量如果随机变量X的所有可能的取值都能一一列举出来,则称X为离散型随机变量.判断(正确的打“√”,错误的打“×”)(1)随机变量的取值可以是有限个,也可以是无限个.()(2)在抛掷一枚质地均匀的硬币试验中,“出现正面的次数”为随机变量.()(3)随机变量是用来表示不同试验结果的量.()(4)试验之前可以判断离散型随机变量的所有值.()(5)在掷一枚质地均匀的骰子试验中,“出现的点数”是一个随机变量,它有6个取值.()【解析】(1)√因为随机变量的每一个取值,均代表一个试验结果,试验结果有限个,随机变量的取值就有有限个,试验结果有无限个,随机变量的取值就有无限个.(2)√因为掷一枚硬币,可能出现的结果是正面向上或反面向上,以一个标准如正面向上的次数来描述这一随机试验,那么正面向上的次数就是随机变量ξ,ξ的取值是0,1.(3)√因为由随机变量的定义可知,该说法正确.(4)√因为随机试验所有可能的结果是明确并且不只一个,只不过在试验之前不能确定试验结果会出现哪一个,故该说法正确.(5)√因为掷一枚质地均匀的骰子试验中,所有可能结果有6个,故“出现的点数”这一随机变量的取值为6个.【答案】(1)√(2)√(3)√(4)√(5)√随机变量的概念【例1】判断下列各个量,哪些是随机变量,哪些不是随机变量,并说明理由.(1)北京国际机场候机厅中2019年5月1日的旅客数量;(2)2019年5月1日至10月1日期间所查酒驾的人数;(3)2019年6月1日济南到北京的某次动车到北京站的时间;(4)体积为1 000 cm3的球的半径长.【精彩点拨】利用随机变量的定义判断.【解】(1)旅客人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(2)所查酒驾的人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(3)动车到达的时间可在某一区间内任取一值,是随机的,因此是随机变量.(4)球的体积为1 000 cm3时,球的半径为定值,不是随机变量.随机变量的辨析方法1.随机试验的结果具有可变性,即每次试验对应的结果不尽相同.2.随机试验的结果具有确定性,即每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.如果一个随机试验的结果对应的变量具有以上两点,则该变量即为随机变量.1.(1)下列变量中,不是随机变量的是()A.一射击手射击一次命中的环数B.标准状态下,水沸腾时的温度C.抛掷两枚骰子,所得点数之和D.某电话总机在时间区间(0,T)内收到的呼叫次数(2)10件产品中有3件次品,从中任取2件,可作为随机变量的是()A.取到产品的件数B.取到正品的概率C.取到次品的件数D.取到次品的概率【解析】(1)B项中水沸腾时的温度是一个确定值.(2)A中取到产品的件数是一个常量不是变量,B,D也是一个定值,而C中取到次品的件数可能是0,1,2,是随机变量.【答案】(1)B(2)C离散型随机变量的判定【例2】指出下列随机变量是否是离散型随机变量,并说明理由.(1)某座大桥一天经过的车辆数X;(2)某超市5月份每天的销售额;(3)某加工厂加工的一批某种钢管的外径与规定的外径尺寸之差ξ;(4)江西九江市长江水位监测站所测水位在(0,29]这一范围内变化,该水位站所测水位ξ.【精彩点拨】随机变量的实际背景→判断取值是否具有可列性→得出结论【解】(1)车辆数X的取值可以一一列出,故X为离散型随机变量.(2)某超市5月份每天销售额可以一一列出,故为离散型随机变量.(3)实际测量值与规定值之间的差值无法一一列出,不是离散型随机变量.(4)不是离散型随机变量,水位在(0,29]这一范围内变化,不能按次序一一列举.“三步法”判定离散型随机变量1.依据具体情境分析变量是否为随机变量.2.由条件求解随机变量的值域.3.判断变量的取值能否被一一列举出来,若能,则是离散型随机变量;否则,不是离散型随机变量.2.一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数为ξ.(1)列表说明可能出现的结果与对应的ξ的值;(2)若规定抽取3个球中,每抽到一个白球加5分,抽到黑球不加分,且最后结果都加上6分,求最终得分η的可能取值,并判定η是否为离散型随机变量.【解】(1)(2)由题意可得:η=5ξ+6,而ξ可能的取值范围为{0,1,2,3},所以η对应的各值是:5×0+6,5×1+6,5×2+6,5×3+6.故η的可能取值为6,11,16,21.显然,η为离散型随机变量.随机变量的可能取值及试验结果[探究问题]1.抛掷一枚质地均匀的硬币,可能出现正面向上、反面向上两种结果.这种试验结果能用数字表示吗?【提示】 可以.用数字1和0分别表示正面向上和反面向上.2.在一块地里种10棵树苗,设成活的树苗数为X ,则X 可取哪些数字?【提示】 X =0,1,2,3,4,5,6,7,8,9,10.3.抛掷一枚质地均匀的骰子,出现向上的点数为ξ,则“ξ≥4”表示的随机事件是什么?【提示】 “ξ≥4”表示出现的点数为4点,5点,6点.【例3】 写出下列随机变量可能取的值,并说明随机变量所取的值和所表示的随机试验的结果.(1)袋中有大小相同的红球10个,白球5个,从袋中每次任取1个球,直到取出的球是白球为止,所需要的取球次数;(2)从标有1,2,3,4,5,6的6张卡片中任取2张,所取卡片上的数字之和.【精彩点拨】分析题意→写出X可能取的值→分别写出取值所表示的结果【解】(1)设所需的取球次数为X,则X=1,2,3,4,…,10,11,X=i表示前i-1次取到红球,第i次取到白球,这里i=1,2, (11)(2)设所取卡片上的数字和为X,则X=3,4,5, (11)X=3,表示“取出标有1,2的两张卡片”;X=4,表示“取出标有1,3的两张卡片”;X=5,表示“取出标有2,3或标有1,4的两张卡片”;X=6,表示“取出标有2,4或1,5的两张卡片”;X=7,表示“取出标有3,4或2,5或1,6的两张卡片”;X=8,表示“取出标有2,6或3,5的两张卡片”;X=9,表示“取出标有3,6或4,5的两张卡片”;X=10,表示“取出标有4,6的两张卡片”;X=11,表示“取出标有5,6的两张卡片”.用随机变量表示随机试验的结果问题的关键点和注意点1.关键点:解决此类问题的关键是明确随机变量的所有可能取值,以及取每一个值时对应的意义,即一个随机变量的取值可能对应一个或多个随机试验的结果.2.注意点:解答过程中不要漏掉某些试验结果.3.写出下列各随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)在2018年北京大学的自主招生中,参与面试的5名考生中,通过面试的考生人数X;(2)射手对目标进行射击,击中目标得1分,未击中目标得0分,该射手在一次射击中的得分用ξ表示.【解】(1)X可能取值0,1,2,3,4,5,X=i表示面试通过的有i人,其中i=0,1,2,3,4,5.(2)ξ可能取值为0,1,当ξ=0时,表明该射手在本次射击中没有击中目标;当ξ=1时,表明该射手在本次射击中击中目标.1.给出下列四个命题:①15秒内,通过某十字路口的汽车的数量是随机变量;②在一段时间内,某候车室内候车的旅客人数是随机变量;③一条河流每年的最大流量是随机变量;④一个剧场共有三个出口,散场后某一出口退场的人数是随机变量.其中正确的个数是()A.1B.2C.3D.4【解析】由随机变量定义可以直接判断①②③④都是正确的.故选D.【答案】 D2.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为ξ,则{ξ=5}表示的试验结果是()A第5次击中目标B.第5次未击中目标C.前4次均未击中目标D.第4次击中目标【解析】{ξ=5}表示前4次均未击中,而第5次可能击中,也可能未击中,故选C.【答案】 C3.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量X,则X所有可能取值的个数是________.【解析】由于抽球是在有放回条件下进行的,所以每次抽取的球号均可能是1,2,3,4,5中某个.故两次抽取球号码之和可能为2,3,4,5,6,7,8,9,10,共9种.【答案】94.甲进行3次射击,甲击中目标的概率为12,记甲击中目标的次数为ξ,则ξ的可能取值为________.【解析】甲可能在3次射击中,一次也未中,也可能中1次,2次,3次.【答案】0,1,2,35.写出下列各随机变量可能的取值,并说明这些值所表示的随机试验的结果.(1)从一个装有编号为1号到10号的10个球的袋中,任取1球,取出的球的编号为X;(2)一个袋中装有10个红球,5个白球,从中任取4个球,其中所含红球的个数为X;(3)投掷两枚骰子,所得点数之和是偶数X.【解】(1)X的可能取值为1,2,3, (10)X=k(k=1,2,…,10)表示取出第k号球.(2)X的可能取值为0,1,2,3,4.X=k表示取出k个红球,4-k个白球,其中k=0,1,2,3,4.(3)X的可能取值为2,4,6,8,10,12.X=2表示(1,1);X=4表示(1,3),(2,2),(3,1);…;X=12表示(6,6).X的可能取值为2,4,6,8,10,12.。

高二数学选修2-3第二章 随机变量及其分布

高二数学选修2-3第二章  随机变量及其分布

§2.1.1离散型随机变量一、教学目标1.复习古典概型、几何概型有关知识。

2.理解离散型随机变量的概念,学会区分离散型与非离散型随机变量。

3. 理解随机变量所表示试验结果的含义,并恰当地定义随机变量.重点:离散型随机变量的概念,以及在实际问题中如何恰当地定义随机变量.难点:对引入随机变量目的的认识,了解什么样的随机变量便于研究.二、复习引入:1.试验中不能的随机事件,其他事件可以用它们来,这样的事件称为。

所有基本事件构成的集合称为,常用大写希腊字母表示。

2.一次试验中的两个事件叫做互斥事件(或称互不相容事件)。

互斥事件的概率加法公式。

3. 一次试验中的两个事件叫做互为对立事件,事件A的对立事件记作,对立事件的概率公式4.古典概型的两个特征:(1) .(2) .5.概率的古典定义:P(A)= 。

6.几何概型中的概率定义:P(A)= 。

三、预习自测:1.在随机试验中,试验可能出现的结果,并且X是随着试验的结果的不同而的,这样的变量X叫做一个。

常用表示。

2.如果随机变量X的所有可能的取值,则称X为。

四、典例解析:例1写出下列各随机变量可能取得值:(1)抛掷一枚骰子得到的点数。

(2)袋中装有6个红球,4个白球,从中任取5个球,其中所含白球的个数。

(3)抛掷两枚骰子得到的点数之和。

(4)某项试验的成功率为0.001,在n次试验中成功的次数。

(5)某射手有五发子弹,射击一次命中率为0.9,若命中了就停止射击,若不命中就一直射到子弹耗尽.求这名射手的射击次数X的可能取值例2随机变量X为抛掷两枚硬币时正面向上的硬币数,求X的所有可能取值及相应概率。

变式训练一只口袋装有6个小球,其中有3个白球,3个红球,从中任取2个小球,取得白球的个数为X,求X的所有可能取值及相应概率。

例3△ABC中,D,E分别为AB,AC的中点,向△ABC内部随意投入一个小球,求小球落在△ADE 中的概率。

五、当堂检测1.将一颗均匀骰子掷两次,不能作为随机变量的是:()(A)两次出现的点数之和;(B)两次掷出的最大点数;(C)第一次减去第二次的点数差;(D)抛掷的次数。

高中数学选修2-3 第二章随机变量及其分布 2-1-1离散型随机变量

高中数学选修2-3 第二章随机变量及其分布 2-1-1离散型随机变量

一区间内的一切值,无法一一列出,故不是离散型随机变
量.
答案: B
2.某人练习射击,共有5发子弹,击中目标或子弹打完 则停止射击,射击次数为X,则“X=5”表示的试验结果为 ()
A.第5次击中目标 B.第5次未击中目标 C.前4次均未击中目标 D.前5次均未击中目标 解析: 射击次数X是一随机变量,“X=5”表示试验 结果“前4次均未击中目标”. 答案: C
(4)体积为64 cm3的正方体的棱长. [思路点拨] 要根据随机变量的定义考虑所有情况.
(1)接到咨询电话的个数可能是0,1,2,…出现 哪一个结果都是随机的,因此是随机变量.
(2)该运动员在某场比赛的上场时间在[0,48]内,是随机 的,故是随机变量.
(3)获得的奖次可能是1,2,3,出现哪一个结果都是随机 的,因此是随机变量.
人教版高中数学选修2-3 第二章 随机变量及其分布
第二章 随机变量及其分布
2.1 离散型随机变量及其分布列 2.1.1 离散型随机变量
课前预习
1.在一块地里种下10颗树苗,成活的树苗棵树为X. [问题1] X取什么数字? [提示] X=0,1,2…10.
2.掷一枚硬币,可能出现正面向上,反面向上两种结 果.
3.一个袋中装有5个白球和5个红球,从中任取3个.其 中所含白球的个数记为ξ,则随机变量ξ的值域为________.
解析: 依题意知,ξ的所有可能取值为0,1,2,3,故ξ的 值域为{0,1,2,3}.
答案: {0,1,2,3}
4.写出下列随机变量ξ可能取的值,并说明随机变量ξ =4所表示的随机试验的结果.
[问题2] 这种试验的结果能用数字表示吗? [提示] 可以,用数1和0分别表示正面向上和反面向 上. [问题3] 10件产品中有3件次品,从中任取2件,所含次 品个数为x,试写出x的值. [提示] x=0,1,2.

新人教版选修2-3第2章第3节离散型随机变量的分布列

新人教版选修2-3第2章第3节离散型随机变量的分布列

那么上表称为离散型随机变量X的 概率分布列 ,简称为 X的分布列 .
( 2 )离散型随机变量分布列的表示方法: ①表格法. ②解析法:P(ξ=xi)=pi,ቤተ መጻሕፍቲ ባይዱ=1、2、„、n. 特别注意下标i的取值范围. ③图象法.
(3)性质:离散型随机变量的分布列具有如 下性质: ①pi ≥ 0,i=1,2,„,n; ② =1. (4)求离散型随机变量的分布列的步骤: ①找出随机变量ξ的所有可能取值xi(i=1、 2、3、„、n); pi ② 求出取各值的概率P(X=xi)= ; ③列成表格.
3.某同学计算得一离散型随机变量 ξ 的分布列如下表: ξ P -1 1 2 0 1 4 1 1 6
试说明该同学的计算结果是 ________ 的 ( 填“正确”或 “错误”).
2.一个特殊分布列 (1)两点分布列 如果随机变量X的分布列是
X 0 1 P 1-p p 这样的分布列叫做 两点分布列 . 如 果 随 机 变量X的分布列为两点分布列,就称X服从 两点分布 .而称p=P(X=1)为 成功概率 .
1 η= 0
掷出点数小于4 掷出点数不小于4
显然 η 只取 0,1 两个值. 3 1 且 P(η=1)=P(掷出点数小于 4)=6=2,故 η 的分布列为 η P 0 1 2 1 1 2
三、解答题 6.设随机变量 ξ 的分布列为: i P(ξ=i)=10(i=1,2,3,4),求: (1)P(ξ=1 或 ξ=2);
ξ 1 2 3 4 5 6 1 1 5 7 1 11 P 36 12 36 36 4 36
一批产品分一,二,三级品,每个外观都 一样,但一经使用便知道其是在哪个品级 上.已知其中一级品的数量是二级品的数 量的二倍;三级品的数量又是二级品的数 量的一半.从中随机抽取一个检查其品级 为ξ,试写出它的分布列.

数学人教A选修2-3讲义:第二章 随机变量及其分布2.1.2 离散型随机变量的分布列(一) (最新)

数学人教A选修2-3讲义:第二章 随机变量及其分布2.1.2 离散型随机变量的分布列(一) (最新)

2.1.2 离散型随机变量的分布列(一)学习目标 1.理解取有限个值的离散型随机变量及其分布列的概念.2.了解分布列对于刻画随机现象的重要性.3.掌握离散型随机变量分布列的表示方法和性质.知识点 离散型随机变量的分布列思考 掷一枚骰子,所得点数为X ,则X 可取哪些数字?X 取不同的值时,其概率分别是多少?你能用表格表示X 与P 的对应关系吗? 答案 (1)x =1,2,3,4,5,6,概率均为16.(2)X 与P 的对应关系为梳理 (1)离散型随机变量的分布列的概念一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下:此表称为离散型随机变量X 的概率分布列,简称为X 的分布列. (2)离散型随机变量的分布列的性质 ①p i ≥0,i =1,2,3,…,n ;② i =1np i =1.1.在离散型随机变量分布列中每一个可能值对应的概率可以为任意的实数.( × ) 2.在离散型随机变量分布列中,在某一范围内取值的概率等于它取这个范围内各值的概率之积.( × )3.在离散型随机变量分布列中,所有概率之和为1.( √ )类型一 离散型随机变量分布列的性质例1 设随机变量X 的分布列为P ⎝⎛⎭⎫X =k5=ak (k =1,2,3,4,5). (1)求常数a 的值; (2)求P ⎝⎛⎭⎫X ≥35; (3)求P ⎝⎛⎭⎫110<X <710. 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率解 (1)由a +2a +3a +4a +5a =1,得a =115.(2)∵P ⎝⎛⎭⎫X =k 5=115k (k =1,2,3,4,5), ∴P ⎝⎛⎭⎫X ≥35=P ⎝⎛⎭⎫X =35+P ⎝⎛⎭⎫X =45+P (X =1)=315+415+515=45. (3)当110<X <710时,只有X =15,25,35时满足,故P ⎝⎛⎭⎫110<X <710 =P ⎝⎛⎭⎫X =15+P ⎝⎛⎭⎫X =25+P ⎝⎛⎭⎫X =35 =115+215+315=25. 反思与感悟 利用分布列及其性质解题时要注意以下两个问题 (1)X 的各个取值表示的事件是互斥的.(2)不仅要注意∑i =1np i =1,而且要注意p i ≥0,i =1,2,…,n .跟踪训练1 (1)设随机变量ξ只能取5,6,7,…,16这12个值,且取每一个值概率均相等,若P (ξ<x )=112,则x 的取值范围是________.(2)设随机变量X 的分布列为P (X =i )=k2i (i =1,2,3),则P (X ≥2)=________.考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 (1)(5,6] (2)37解析 (1)由条件知P (ξ=k )=112,k =5,6,…,16, P (ξ<x )=112,故5<x ≤6.(2)由已知得随机变量X 的分布列为∴k 2+k 4+k 8=1,∴k =87. ∴P (X ≥2)=P (X =2)+P (X =3)=k 4+k 8=27+17=37.类型二 求离散型随机变量的分布列命题角度1 求离散型随机变量y =f (ξ)的分布列 例2 已知随机变量ξ的分布列为分别求出随机变量η1=12ξ,η2=ξ2的分布列.考点 离散型随机变量分布列的性质及应用 题点 两个相关的随机变量分布列的求法解 由η1=12ξ知,对于ξ取不同的值-2,-1,0,1,2,3时,η1的值分别为-1,-12,0,12,1,32, 所以η1的分布列为由η2=ξ2知,对于ξ的不同取值-2,2及-1,1,η2分别取相同的值4与1,即η2取4这个值的概率应是ξ取-2与2的概率112与16的和,η2取1这个值的概率应是ξ取-1与1的概率14与112的和,所以η2的分布列为反思与感悟 (1)若ξ是一个随机变量,a ,b 是常数,则η=aξ+b 也是一个随机变量,推广到一般情况有:若ξ是随机变量,f (x )是连续函数或单调函数,则η=f (ξ)也是随机变量,也就是说,随机变量的某些函数值也是随机变量,并且若ξ为离散型随机变量,则η=f (ξ)也为离散型随机变量.(2)已知离散型随机变量ξ的分布列,求离散型随机变量η=f (ξ)的分布列的关键是弄清楚ξ取每一个值时对应的η的值,再把η取相同的值时所对应的事件的概率相加,列出概率分布列即可.跟踪训练2 已知随机变量ξ的分布列为分别求出随机变量η1=-ξ+12,η2=ξ2-2ξ的分布列.考点 离散型随机变量分布列的性质及应用 题点 两个相关随机变量分布列的求法解 由η1=-ξ+12,对于ξ=-2,-1,0,1,2,3,得η1=52,32,12,-12,-32,-52,相应的概率值为112,14,13,112,16,112.故η1的分布列为由η2=ξ2-2ξ,对于ξ=-2,-1,0,1,2,3,得η2=8,3,0,-1,0,3. 所以P (η2=8)=112,P (η2=3)=14+112=13,P (η2=0)=13+16=12,P (η2=-1)=112.故η2的分布列为命题角度2 利用排列、组合求分布列例3 某班有学生45人,其中O 型血的有10人,A 型血的有12人,B 型血的有8人,AB 型血的有15人.现从中抽1人,其血型为随机变量X ,求X 的分布列. 考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列解 将O ,A ,B ,AB 四种血型分别编号为1,2,3,4, 则X 的可能取值为1,2,3,4.P (X =1)=C 110C 145=29,P (X =2)=C 112C 145=415,P (X =3)=C 18C 145=845,P (X =4)=C 115C 145=13.故X 的分布列为反思与感悟 求离散型随机变量分布列的步骤 (1)首先确定随机变量X 的取值; (2)求出每个取值对应的概率; (3)列表对应,即为分布列.跟踪训练3 一袋中装有5个球,编号分别为1,2,3,4,5.在袋中同时取3个球,以X 表示取出的3个球中的最小号码,写出随机变量X 的分布列. 考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列 解 随机变量X 的可能取值为1,2,3.当X =1时,即取出的3个球中最小号码为1,则其他2个球只能在编号为2,3,4,5的4个球中取,故有P (X =1)=C 24C 35=610=35;当X =2时,即取出的3个球中最小号码为2,则其他2个球只能在编号为3,4,5的3个球中取,故有P (X =2)=C 23C 35=310;当X =3时,即取出的3个球中最小号码为3,则其他2个球只能是编号为4,5的2个球,故有P (X =3)=C 22C 35=110.因此,X 的分布列为类型三 离散型随机变量的分布列的综合应用例4 袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,……,取后不放回,直到两人中有一人取到白球时终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.(1)求袋中原有的白球的个数; (2)求随机变量ξ的分布列; (3)求甲取到白球的概率.考点 离散型随机变量分布列的性质及应用 题点 排列、组合知识在分布列中的应用 解 (1)设袋中原有n 个白球,由题意知 17=C 2nC 27=n (n -1)27×62=n (n -1)7×6, 可得n =3或n =-2(舍去),即袋中原有3个白球. (2)由题意,ξ的可能取值为1,2,3,4,5. P (ξ=1)=37;P (ξ=2)=4×37×6=27;P (ξ=3)=4×3×37×6×5=635;P (ξ=4)=4×3×2×37×6×5×4=335;P (ξ=5)=4×3×2×1×37×6×5×4×3=135.所以ξ的分布列为(3)因为甲先取,所以甲只有可能在第一次、第三次和第五次取到白球,记“甲取到白球”为事件A ,则P (A )=P (ξ=1)+P (ξ=3)+P (ξ=5)=2235.反思与感悟 求离散型随机变量的分布列,首先要根据具体情况确定ξ的取值情况,然后利用排列、组合与概率知识求出ξ取各个值的概率,即必须解决好两个问题,一是求出ξ的所有取值,二是求出ξ取每一个值时的概率.跟踪训练4 北京奥运会吉祥物由5个“中国福娃”组成,分别叫贝贝、晶晶、欢欢、迎迎、妮妮.现有8个相同的盒子,每个盒子中放一只福娃,每种福娃的数量如下表:从中随机地选取5只.(1)求选取的5只恰好组成完整的“奥运会吉祥物”的概率;(2)若完整的选取奥运会吉祥物记100分;若选出的5只中仅差一种记80分;差两种记60分;以此类推,设X 表示所得的分数,求X 的分布列. 考点 离散型随机变量分布列的性质及应用 题点 排列、组合知识在分布列中的应用解 (1)选取的5只恰好组成完整的“奥运会吉祥物”的概率P =C 12·C 13C 58=656=328.(2)X 的取值为100,80,60,40.P (X =100)=C 12·C 13C 58=328,P (X =80)=C 23(C 22·C 13+C 12·C 23)+C 33(C 22+C 23)C 58=3156, P (X =60)=C 13(C 22·C 23+C 12·C 33)+C 23·C 33C 58=1856=928, P (X =40)=C 22·C 33C 58=156.所以X 的分布列为1.已知随机变量X 的分布列如下:则P (X =10)等于( ) A.239 B.2310 C.139D.1310 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 C解析 P (X =10)=1-23-…-239=139.2.已知随机变量X 的分布列如下表所示,其中a ,b ,c 成等差数列,则P (|X |=1)等于( )A.13 B.14 C.12D.23考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 D解析 ∵a ,b ,c 成等差数列,∴2b =a +c . 由分布列的性质得a +b +c =3b =1,∴b =13.∴P (|X |=1)=P (X =1)+P (X =-1) =1-P (X =0)=1-13=23.3.已知随机变量X 的分布列如下表(其中a 为常数):则下列计算结果错误的是( ) A .a =0.1 B .P (X ≥2)=0.7 C .P (X ≥3)=0.4 D .P (X ≤1)=0.3考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 C解析 易得a =0.1,P (X ≥3)=0.3,故C 错误. 4.设ξ是一个离散型随机变量,其分布列为则P (ξ≤0)=________.考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案2-12解析 由分布列的性质,得1-2q ≥0,q 2≥0, 12+(1-2q )+q 2=1, 所以q =1-22,q =1+22(舍去). P (ξ≤0)=P (ξ=-1)+P (ξ=0) =12+1-2×⎝⎛⎭⎫1-22=2-12. 5.将一枚骰子掷两次,求两次掷出的最大点数ξ的分布列. 考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列 解 由题意知ξ=i (i =1,2,3,4,5,6), 则P (ξ=1)=1C 16C 16=136;P(ξ=2)=3C16C16=336=112;P(ξ=3)=5C16C16=5 36;P(ξ=4)=7C16C16=7 36;P(ξ=5)=9C16C16=936=14;P(ξ=6)=11C16C16=1136.所以抛掷两次掷出的最大点数构成的分布列为1.离散型随机变量的分布列,不仅能清楚地反映其所取的一切可能的值,而且能清楚地看到取每一个值时的概率的大小,从而反映了随机变量在随机试验中取值的分布情况.2.一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.一、选择题1.设随机变量X等可能取值1,2,3,…,n,如果P(X<4)=0.3,那么()A.n=3 B.n=4C.n=10 D.n=9考点离散型随机变量分布列的性质及应用题点由分布列的性质求参数答案 C解析由题意知P(X<4)=3P(X=1)=0.3,∴P(X=1)=0.1,又nP(X=1)=1,∴n=10.2.若随机变量η的分布列如下:则当P(η<x)=0.8时,实数x的取值范围是()A.x≤1 B.1≤x≤2C .1<x ≤2D .1≤x <2考点 离散型随机变量分布列的性质及应用 题点 由分布列的性质求参数 答案 C解析 由分布列知,P (η=-2)+P (η=-1)+P (η=0)+P (η=1) =0.1+0.2+0.2+0.3=0.8, ∴P (η<2)=0.8,故1<x ≤2.3.若随机变量X 的概率分布列为P (X =n )=an (n +1)(n =1,2,3,4),其中a 是常数,则P ⎝⎛⎭⎫12<X <52的值为( ) A.23 B.34 C.45 D.56考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 D解析 ∵P (X =1)+P (X =2)+P (X =3)+P (X =4) =a ⎝⎛⎭⎫1-15=1,∴a =54. ∴P ⎝⎛⎭⎫12<X <52=P (X =1)+P (X =2)=a 1×2+a 2×3=a ⎝⎛⎭⎫1-13=54×23=56. 4.随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,则函数f (x )=x 2+2x +ξ有且只有一个零点的概率为( ) A.16 B.13 C.12 D.56考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 B解析 由题意知⎩⎪⎨⎪⎧2b =a +c ,a +b +c =1,解得b =13.∵f (x )=x 2+2x +ξ有且只有一个零点, ∴Δ=4-4ξ=0,解得ξ=1, ∴P (ξ=1)=13.5.设离散型随机变量X 的分布列为若随机变量Y =X -2,则P (Y =2)等于( ) A .0.3 B .0.4 C .0.6 D .0.7考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 A解析 由0.2+0.1+0.1+0.3+m =1,得m =0.3. 又P (Y =2)=P (X =4)=0.3.6.抛掷2枚骰子,所得点数之和X 是一个随机变量,则P (X ≤4)等于( ) A.16 B.13 C.12 D.23考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 A解析 根据题意,有P (X ≤4)=P (X =2)+P (X =3)+P (X =4).抛掷两枚骰子,按所得的点数共36个基本事件,而X =2对应(1,1),X =3对应(1,2),(2,1),X =4对应(1,3),(3,1),(2,2). 故P (X =2)=136,P (X =3)=236=118,P (X =4)=336=112,所以P (X ≤4)=136+118+112=16.7.已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列的公差的取值范围是( ) A.⎣⎡⎦⎤0,13 B.⎣⎡⎦⎤-13,13 C .[-3,3]D .[0,1] 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求参数 答案 B解析 设随机变量ξ取x 1,x 2,x 3的概率分别为a -d ,a ,a +d ,则由分布列的性质,得(a -d )+a +(a +d )=1,故a =13.由⎩⎨⎧13-d ≥0,13+d ≥0,解得-13≤d ≤13.二、填空题8.一批产品分为一、二、三级,其中一级品是二级品的两倍,三级品为二级品的一半,从这批产品中随机抽取一个检验,其级别为随机变量ξ,则P ⎝⎛⎭⎫13≤ξ≤53=________. 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 47解析 设二级品有k 个,则一级品有2k 个,三级品有k 2个,总数为72k 个.∴ξ的分布列为∴P ⎝⎛⎭⎫13≤ξ≤53=P (ξ=1)=47. 9.由于电脑故障,使得随机变量X 的分布列中部分数据丢失,以□代替,其表如下:根据该表可知X 取奇数值时的概率是________. 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 0.6解析 由离散型随机变量的分布列的性质,可求得P (X =3)=0.25,P (X =5)=0.15,故X 取奇数值时的概率为P (X =1)+P (X =3)+P (X =5)=0.20+0.25+0.15=0.6.10.把3枚骰子全部掷出,设出现6点的骰子个数是X ,则有P (X <2)=________. 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案2527解析 P (X <2)=P (X =0)+P (X =1)=5363+C 13×5263=2527.11.将3个小球任意地放入4个大玻璃杯中,一个杯子中球的最多个数记为X ,则X 的分布列是________.考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列 答案解析 由题意知X =1,2,3. P (X =1)=A 3443=38;P (X =2)=C 23A 2443=916;P (X =3)=A 1443=116.∴X 的分布列为三、解答题12.设S 是不等式x 2-x -6≤0的解集,整数m ,n ∈S .(1)设“使得m +n =0成立的有序数组(m ,n )”为事件A ,试列举事件A 包含的基本事件; (2)设ξ=m 2,求ξ的分布列. 考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列 解 (1)由x 2-x -6≤0, 得-2≤x ≤3, 即S ={x |-2≤x ≤3}.由于m ,n ∈Z ,m ,n ∈S 且m +n =0, 所以事件A 包含的基本事件为(-2,2),(2,-2),(-1,1),(1,-1),(0,0). (2)由于m 的所有不同取值为-2,-1,0,1,2,3, 所以ξ=m 2的所有不同取值为0,1,4,9,且有 P (ξ=0)=16,P (ξ=1)=26=13,P (ξ=4)=26=13,P (ξ=9)=16.故ξ的分布列为13.将一枚骰子掷两次,第一次掷出的点数减去第二次掷出的点数的差为X ,求X 的分布列. 考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列解 第一次掷出的点数与第二次掷出的点数的差X 的可能取值为-5,-4,-3,-2,-1,0,1,2,3,4,5, 则P (X =-5)=136,P (X =-4)=236=118,…, P (X =5)=136.故X 的分布列为四、探究与拓展14.袋中有4个红球,3个黑球,从袋中任取4个球,取到1个红球得1分,取到1个黑球得3分,记得分为随机变量ξ,则P (ξ≤6)=________. 考点 离散型随机变量分布列的性质及应用 题点 排列、组合知识在分布列中的应用 答案1335 解析 取出的4个球中红球的个数可能为4,3,2,1,相应的黑球个数为0,1,2,3,其得分ξ=4,6,8,10,则P (ξ≤6)=P (ξ=4)+P (ξ=6)=C 44×C 03C 47+C 34×C 13C 47=1335. 15.在一次购物抽奖活动中,假设某10张奖券中有一等奖奖券1张,可获价值50元的奖品;有二等奖奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求: (1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X 的分布列,并求出P (5≤X ≤25)的值.考点 离散型随机变量分布列的性质及应用 题点 排列、组合知识在分布列中的应用 解 (1)该顾客中奖的概率P =1-C 26C 210=1-13=23.(2)X 的可能取值为0,10,20,50,60. P (X =0)=C 26C 210=13,P (X =10)=C 13C 16C 210=25,P (X =20)=C 23C 210=115,P (X =50)=C 11C 16C 210=215,P (X =60)=C 11C 13C 210=115.故随机变量X 的分布列为所以P (5≤X ≤25)=P (X =10)+P (X =20)=25+115=715.。

人教版A版高中数学选修2-3:2.1.1 离散型随机变量(3)

人教版A版高中数学选修2-3:2.1.1 离散型随机变量(3)

4.二项分布的均值: 若X~B(n,p),则EX=np
例3.一次单元测验由20个选择题构成,每个选择题有4个选 项,其中有且仅有一个选项是正确答案,每题选择正确答 案得5分,不作出选择或选错不得分,满分100分.学生甲 选对任一题的概率为0.9,学生乙则在测验中对每题都从4个 选项中随机地选择一个.求学生甲和学生乙在这次英语单 元测验中的成绩的均值.
xi

P
p1
p2

pi

则称 EX=x1 p1+x2 p2+…+xi pi+… 为X的均值或数 学期望,数学期望又简称为期望.
2.离散型随机变量的均值的性质: E(aX+b)=aEX+b
3.两点分布的均值: 若X服从两点分布,则EX=p
4.二项分布的均值: 若X~B(n,p),则EX=np
六、布置作业
方法二:先求解解答一个选择题的得分的均值,再 乘以20即可.
思考7:甲同学一定能得90分吗?
90分代表什么呢?
四、针对性训练
1、随机变量ξ的分布列是
ξ
1
3
5
P 0.5 0.3 0.2
(1)则Eξ= 2.4 .
(2)若η=2ξ+1,则Eη= 5.8.
2、随机变量ξ的分布列是
ξ 4 7 9 10 P 0.3 a b 0.2
Eξ=7.5,则a= 0.1 b= 0.4.
3、 一个袋子里装有大小相同的3 个红 球和2个黄球,从中有放回地取每次一个, 共取5次,则取到红球次数的期望 是 3.
五、小结巩固
掌握离散型随机变量的均值的概念、性质及计算: 1.离散型随机变量的均值 一般地,若离散型随机变量X的分布列为
X
x1
x2

高中数学选修2-3 第二章随机变量及其分布 2-1-2离散型随机变量的分布列

高中数学选修2-3 第二章随机变量及其分布 2-1-2离散型随机变量的分布列

所以随机变量ξ的分布列为:
ξ3
4
5
6
P
1 20
3 20
3 10
1 2
[规律方法] 1.确定离散型随机变量ξ的分布列的关键是 要搞清ξ取每一个值对应的随机事件,进一步利用排列、组 合知识求出ξ取每一个值的概率.对于随机变量ξ取值较多或 无穷多时,应由简单情况先导出一般的通式,从而简化过 程.
2.一般分布列的求法分三步:(1)首先确定随机变量ξ的 取值有哪些;(2)求出每种取值下的随机事件的概率;(3)列 表对应,即为分布列.
人教版高中数学选修2-3 第二章 随机变量及其分布
2.1.2 离散型随机变量的分布列
课前预习
1.抛掷一个骰子,用X表示骰子向上一面的点数. [问题1] X的可能取值是什么? [提示] X=1、2、3、4、5、6. [问题2] X取不同值时,其概率分别是多少? [提示] 都等于16.
2.一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3 只,以ξ表示取出的3只球中的最小号码.
特别提醒: 两点分布的试验结果只有两个可能性,且 其概率之和为1.
2.解决超几何分布问题的关注点 (1)超几何分布是概率分布的一种形式,一定要注意公 式中字母的范围及其意义,解决问题时可以直接利用公式求 解,但不能机械地记忆; (2)超几何分布中,只要知道M,N,n就可以利用公式 求出X取不同m的概率P(X=m),从而求出X的分布列.
课堂练习
1.下列表中能成为随机变量X的分布列的是( )
A. X -1
0
1
P -0.1 0.5 0.6
B. X -1
0
1
P 0.3 0.7 -0.1
C. X
-1
0

2014年人教A版选修2-3课件 2.1 离散随机变量及其分布

2014年人教A版选修2-3课件 2.1  离散随机变量及其分布

练习: (课本45页) 第 1、 2 题 .
练习: (课本45页)
1. 下列随机试验的结果能否用离散型随机变量表示? 若能, 请写出各随机变量可能的取值, 并说明这些值所表 示的随机试验的结果. (1) 抛掷两枚骰子, 所得点数之和; (2) 某足球队在 5 次点球中射进的球数; (3) 任意抽取一瓶某种标有 2500 ml 的饮料, 其实际量 与规定量之差. 解: (1) 能用离散型随机变量表示. 随机变量的可能取 值为 X{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. {X=2} 表示两枚都出现 1 点. {X=3} 表示一枚出现 1 点, 另一枚出现 2 点. {X=4} 表示一枚出现 1 点, 另一枚出现 3 点; 或两枚 都出现 2 点.
2. 什么是离散型随机变量? 变量的取值是 否有一个确定的范围? 每一个取值表示怎样的 一个试验结果?
问题 1. 你能说出下列各试验的结果吗? 各试验 结果是否能用数量表示? (1) 掷一枚骰子; (2) 掷一枚硬币; (3) 测一病人体温.
(1) 掷一枚骰子的试验结果有: 1 点向上, 2 点向上, 3 点向上, 4 点向上, 5 点向上, 6 点向上. 可分别用
出现点数
1 2 3 4 5 6
1 2 3 4 5 6
正面 向上 反面 向上
1
正常 低热 高烧
0 1 2
0
随机变量也是一种映射, 与函数比较, 函数是把 实数映射为实数, 随机变量是把试验结果映射为实数. 试验结果的范围相当于函数的定义域, 随机变量的取 值范围相当于函数的值域.
出现点数
1 2 3 4 5 6
数字 1, 2, 3, 4, 5, 6 表示上面的六个试验结果.

人教a版数学【选修2-3】2.1.2《离散型随机变量的分布列》ppt课件

人教a版数学【选修2-3】2.1.2《离散型随机变量的分布列》ppt课件

离散型随机变量的分布列 温故知新 回顾复习古典概型的特点及概率计算、离散型随机变量的 特点.
第二章
2.1
2.1.2
第1课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
思维导航 1 .想一想,投掷一颗骰子,所得点数记为 ξ ,则 ξ 可取哪 些数字?ξ取各个数字的概率分别是多少?可否用列表法表示ξ 的取值与其概率的对应关系?投掷两颗骰子,将其点数之和记
X P0Βιβλιοθήκη 1-p1 p这样的分布列叫做两点分布列.如果随机变量 X的分布列 两点分布 .而称 p = P(X = 1) 为 为两点分布列,就称 X 服从 __________ 成功概率 . __________
第二章
2.1
2.1.2
第1课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
若其中所含教师人数记为ξ,则ξ可能的取值有哪些?怎样求其
概率?你能将这一问题一般化表达,并再找出类似的例子吗? 其一般概率公式如何推导?
第二章
2.1
2.1.2
第1课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
新知导学 2.两个特殊分布列
(1)两点分布列
如果随机变量X的分布列是
为ξ,则ξ可能的取值有哪些,你能列表表示ξ取各值的概率与ξ
取值的对应关系吗?
第二章
2.1
2.1.2
第1课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
新知导学
1.离散型随机变量的分布列 (1)定义:一般地,若离散型随机变量X可能取的不同值为 x1、x2、„、xi、„、xn,X取每一个值xi(i=1,2,„,n)的概率 P(X=xi)=pi,以表格的形式表示如下: X P x1 p1 x2 p2 „ „ xi pi „ „ xn pn

数学:2.1《离散型随机变量及其分布列-离散型随机变量分布列》课件(新人教A版-选修2-3)

数学:2.1《离散型随机变量及其分布列-离散型随机变量分布列》课件(新人教A版-选修2-3)
P 1 p, P 0 q, 0 p, q 1,
p q 1.
想一想
X 2 5 是两点分布吗? P 0.3 0.7 提示:不是.两点分布的X的取值只能是0,1. 分布列
什么是超几何分布? 先思考一个例子: 思考 1.在含有 5 件次品的 100 件产品中,任取 3 件,求:(1)取到的次品数 X 的分布列.
例1
甲、乙两人参加一次数学知识竞赛 , 已知在备
选的 10 道试题中 , 甲能答对其中的 6 道试题 , 乙能答
对其中的8道试题.规定每次考试都从备选试题中
随机抽出3题进行测试,答对一题得5分,答错一题得 0分.求: (1)甲答对试题数X的分布列; (2)乙所得分数Y的分布列.
【解】
(1)X 的可能取值为 0,1,2,3. C3 4 1 4 P(X=0)= 3 = = ,2 分 C10 120 30 1 C2 36 3 4C6 P(X=1)= 3 = = 3分 C10 120 10 2 C1 60 1 4C6 P(X=2)= 3 = = ,4 分 C10 120 2 C3 20 1 6 P(X=3)= 3 = = .5 分 C10 120 6 所以甲答对试题数 X 的分布列为 X 0 1 1 3 P 30 10 6分
设摸出的红球的个数为 X k n k CM CN M 则 P( X k ) (k 0,1, 2 , m), m min M , n n CN
C
1分
2 1 2
3 1 6
(2)乙答对试题数可能为 1,2,3,所以乙所得分数 Y=5,10,15. 1 C2 C 8 1 2 8 P(Y=5)= 3 = = ,9 分 C10 120 15 2 C1 C 56 7 2 8 P(Y=10)= 3 = = ,10 分 C10 120 15 C3 56 7 8 P(Y=15)= 3 = = .11 分 C10 120 15 所以乙所得分数 Y 的分布列为 Y 5 10 15 1 7 7 P 15 15 15 12 分

北师大版数学【选修2-3】练习:2.1 离散型随机变量及其分布列(含答案)

北师大版数学【选修2-3】练习:2.1 离散型随机变量及其分布列(含答案)

第二章 §1一、选择题1.若随机变量X 的分布列如下表所示,则表中a =( )A.12 B.16 C.56 D .0[答案] B[解析] 根据随机变量的分布列的性质可得a =1-12-16-16=16.2.离散型随机变量ξ所有可能值的集合为{-2,0,3,5},且P (ξ=-2)=14,P (ξ=3)=12,P (ξ=5)=112,则P (ξ=0)的值为( )A .0 B.14 C.16 D.18 [答案] C[解析] 根据离散型随机变量分布列的性质有P (ξ=-2)+P (ξ=0)+P (ξ=3)+P (ξ=5)=1,所以14+P (ξ=0)+12+112=1.解得P (ξ=0)=16.3.随机变量ξ的概率分布规律为P (ξ=n )=a n (n +1)(n =1,2,3,4),其中a 是常数,则P (12<ξ<52)的值为( )A.23B.34C.45D.56 [答案] D[解析] 因为P (ξ=n )=a n (n +1)(n =1,2,3,4),所以a 2+a 6+a 12+a 20=1,所以a =54,因为P (12<ξ<52)=P (ξ=1)+P (ξ=2)=54×12+54×16=56.故选D.4.设随机变量ξ的可能取值为5,6,7,…,16这12个值,且取每个值的概率均相同,则P (ξ>8)=________,P (6<ξ≤14)=________.[答案] 23 23[解析] 因为P (ξ=5)+P (ξ=6)+…+P (ξ=16)=1,且P (ξ=5)=P (ξ=6)=…=P (ξ=16),所以P (ξ=5)=P (ξ=6)=…=P (ξ=16)=112,则P (ξ>8)=P (ξ=9)+P (ξ=10)+…+P (ξ=16)=112×8=23.P (6<ξ≤14)=p (ξ=7)+P (ξ=8)+…+P (ξ=14)=112×8=23.5.设随机变量ξ的分布列为则m =________,η=ξ[答案] 14[解析] 首先由P (ξ=1)+P (ξ=2)+P (ξ=3)+P (ξ=4)=1,得m =14.再由随机变量ξ和η=ξ-3表示的试验结果是相同的,可以求出η=ξ-3对应的概率,列出分布列.三、解答题6.旅游公司为3个旅游团提供4条旅游线路,每个旅游团任选其中一条线路. (1)求3个旅游团选择3个不同线路的概率; (2)求选择甲线路的旅游团数的分布列.[解析] (1)3个旅游团选择3条不同线路的概率为A 3443=38.(2)设选择甲线路的旅游团数为ξ,则ξ=0,1,2,3.P (ξ=0)=3343=2764,P (ξ=1)=C 13·3243=2764,P (ξ=2)=C 23·343=964,P (ξ=3)=C 3343=164.所以ξ的分布列为1.已知离散型随机变量X 的分布列为则k 的值为( ) A.12 B .1 C .2 D .3[答案] B[解析] 由分布列的性质可知nkn=1,∴k =1.2.设离散型随机变量X 的分布列P (X =k )=k 15,k =1,2,3,4,5,则P (12<X <52)等于( )A.12 B.19 C.16 D.15[答案] D[解析] P (12<X <52)=P (X =1)+P (X =2)=115+215=15.3.某人练习射击,共有5发子弹,击中目标或子弹打完则停止射击,射击次数为X ,则“X =5”表示的试验结果为( )A .第5次击中目标B .第5次未击中目标C .前4次均未击中目标D .前5次均未击中目标[答案] C[解析] 本题易错选为A ,其实“X =5”只能说明前4次均未击中目标,而第5次射击有可能击中目标,也有可能子弹打完而未击中目标.4.设某项试验的成功率是失败率的2倍,用随机变量ξ去描述1次试验的成功次数,P (ξ=0)等于( )A .0 B.12 C.13 D.23[答案] C[解析] 设ξ的分布列为则“ξ=0”表示试验失败,“ξ=1”表示试验成功,设失败率为p ,则成功率为2p . ∴由p +2p =1得p =13.应选C.5.设X 是一个离散型随机变量,则下列不能够成为X 的概率分布列的一组数是( ) A .0,0,0,1,0 B .0.1,0.2,0.3,0.4 C .p,1-p (p 为实数)D.11×2,12×3,…,1(n -1)·n ,1n (n ∈N +) [答案] C[解析] 随机变量的分布列具有两个性质:①非负性;②概率之和为1.可以根据这两个性质解决.A 、B 显然满足性质,适合.C 中,设p =3,显然1-p =-2<0不满足非负性.D 中有11×2+12×3+…+1(n -1)·n +1n=1-12+12-13+…+1n -1-1n +1n =1,故选C.[点评] 在处理随机变量分布列的有关问题时,应充分利用分布列的性质求解. 二、填空题6.已知离散型随机变量X 的概率分布列如下:则m 的值为________[答案] 0.1[解析] 由分布列的性质(2),可得m +0.3+32m +0.45=1,解得m =0.1.[点评] 根据概率分布求参数的值(范围),是离散型随机变量的分布列的性质的重要应用之一,主要是根据分布列的性质列出方程,通过解方程求出参数即可.7.设随机变量ξ的分布列为P (ξ=k )=ck (k +1)(c 为常数),k =1,2,3,则P (0.5<ξ<2.5)=________.[答案] 89[解析] 由P (ξ=1)+P (ξ=2)+P (ξ=3)=1,得c =43,P (0.5<ξ<2.5)=1-P (ξ=3)=1-433×4=89. 三、解答题8.设随机变量X 的分布列为P (X =k5)=ak ,(k =1,2,3,4,5).(1)求常数a 的值; (2)求P (X ≥35);(3)P (110<X <710).[分析] 分布列有两条重要的性质:P i ≥0,i =1,2,…;P 1+P 2+…+P n =1利用这两条性质可求a 的值.(2)(3)由于X 的可能取值为15、25、35、45、1.所以满足X ≥35或110<X <710的X值,只能是在15、25、35、45、1中选取,且它们之间在一次实验中没有联系,只要求得满足条件各概率之和即可.[解析] (1)由a ·1+a ·2+a ·3+a ·4+a ·5=1得a =115.(2)因为分布列为P (X =k 5)=115k (k =1、2、3、4、5)解法一:P (X ≥35)=P (X =35)+P (X =45)+P (X =1)=315+415+515=45.解法二:P (X ≥35)=1-[P (X =15)+P (X =25)]=1-[115+215]=45.(3)因为110<X <710,只有X =15、25、35时满足,故P (110<X <710)=P (X =15)+P (X =25)+P (X =35)=115+215+315=25. [点评] 随机变量并不一定要取整数值.它的取值一般来源于实际问题,且有其特定的含义,因此,可以是R 中的任意值.但这并不意味着可以取任何值.它只能取分布列中的值.而随机变量取某值时,其所表示的某一实验发生的概率值,必须符合性质.9.设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量X 表示方程x 2+bx +c =0的实根的个数(重根按一个计),求X 的分布列.[分析] 用随机变量X 表示方程x 2+bx +c =0的实根的个数,易知X 有0,1,2三个可能取值,随机变量对应的随机事件可用Δ=b 2-4c 与0的大小表示.[解析] 由题意,X 的可能取值为0,1,2.随机试验的所有可能结果构成的集合为{(b ,c )|b ,c =1,2,…,6},元素总个数为36.X =0对应的结果构成的集合为{(b ,c )|b 2-4c <0,b ,c =1,2,…,6},元素个数为17; X =1对应的结果构成的集合为{(b ,c )|b 2-4c =0,b ,c =1,2,…,6},元素个数为2; X =2对应的结果构成的集合为{(b ,c )|b 2-4c >0,b ,c =1,2,…,6},元素个数为17. 由此可知,P (X =0)=1736,P (X =1)=118,P (X =2)=1736,故X 的分布列为[点评] 验的所有基本事件数以及随机事件所包含的基本事件数.比如方程实根个数为1,则Δ=0,利用它找到骰子之间的关系.10.(2014·福州模拟)某学院为了调查本校学生2014年9月“健康上网”(健康上网是指每天上网不超过两个小时)的天数情况,随机抽取了40名本校学生作为样本,统计他们在该月30天内健康上网的天数,并将所得的数据分成以下六组:[0,5],(5,10],(10,15],…,(25,30],由此画出样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求这40名学生中健康上网天数超过20天的人数;(2)现从这40名学生中任取2名,设Y 为取出的2名学生中健康上网天数超过20天的人数,求Y 的分布列.[解析] (1)由图可知,健康上网天数未超过20天的频率为(0.01+0.02+0.03+0.09)×5=0.15×5=0.75,所以健康上网天数超过20天的学生人数是40×(1-0.75)=40×0.25=10. (2)随机变量Y 的所有可能取值为0,1,2.P (Y =0)=C 230C 240=2952;P (Y =1)=C 110C 130C 240=513;P (Y =2)=C 210C 240=352.所以Y 的分布列为:。

人教版高中数学选修2-3课件:2.1 离散型随机变量及其分布列(共52张PPT)

人教版高中数学选修2-3课件:2.1 离散型随机变量及其分布列(共52张PPT)

预习探究
[探究] 以下随机变量是离散型随机变
量的是
.
①某部手机一小时内收到短信的次数
ξ;
②电灯泡的寿命ξ; ③某超市一天中的顾客量ξ; ④将一颗骰子掷两次出现的点数之和
ξ.
⑤连续不断地射击,首次命中目标所需
要的射击次数ξ.
④将一颗骰子掷两次出现点数之和ξ的取
值为2,3,…,12,是离散型随机变量;
三维目标
3.情感、态度与价值观 使学生感悟数学与生活的和谐之美,学会合作探讨,体验成功,提 高学习数学的兴趣.
重点难点
[重点] (1)随机变量、离散型随机变量的意义; (2)离散型随机变量的分布列的概念.
[难点] (1)随机变量、离散型随机变量的意义; (2)求简单的离散型随机变量的分布列.
教学建议
例1 指出下列变量中,哪些是随机变量, 哪些不是随机变量,并说明理由. (1)任意掷一枚质地均匀的硬币5次,出 现正面向上的次数; (2)投一颗质地均匀的骰子出现的点数 (最上面的数字); (3)某个人的属相随年龄的变化; (4)在标准状况下,水在0℃时结冰.
(3)属相是出生时便确定的,不随年龄的变化 而变化,不是随机变量. (4)标准状况下,水在0℃时结冰是必然事件, 不是随机变量.
P
分别求出随机变量η1=2ξ1,η2=ξ2的分布列.
当ξ取-1与1时,η2=ξ2取相同的值,故η2的分布 列为 η2 0 1 4 9
考点类析
例2 指出下列随机变量是不是离散型 随机变量,并说明理由. (1)从10张已编好号码的卡片(从1号到 10号)中任取1张,被取出的卡片的号数; (2)一个袋中装有5个白球和5个黑球,从 中任取3个,其中所含白球的个数; (3)某林场树木最高达30 m,则此林场中 树木的高度; (4)某加工厂加工的某种铜管的外径与 规定的外径尺寸之差.

高中数学人教A版选修2-3教案-2.1 离散型随机变量及其分布列_教学设计_教案_1

高中数学人教A版选修2-3教案-2.1 离散型随机变量及其分布列_教学设计_教案_1

教学准备
1. 教学目标
离散型随机变量的分布列
2. 教学重点/难点
离散型随机变量的分布列
3. 教学用具
4. 标签
教学过程
一、基本知识概要:
1. 随机变量:随机试验的结果可以用一个变量来表示,这样的变量的随机变量,记作;
说明:若是随机变量,,其中是常数,则也是随机变量。

2. 离散型随机变量:随机变量可能取的值,可以按一定顺序一一列出
连续型随机变量:随机变量可以取某一区间内的一切值。

说明:①分类依据:按离散取值还是连续取值。

②离散型随机变量的研究内容:随机变量取什么值、取这些值的多与少、所取值的平均值、稳定性等。

说明:放回抽样时,抽到的次品数为独立重复试验事件,即。

例2:一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3只,以表示取出的三只球中的最小号码,写出随机变量的分布列。

剖析:因为在编号为1,2,3,4,5的球中,同时取3只,所以小号码可能是1或2或3,即可以取1,2,3。

三、课堂小结
1会根据实际问题用随机变量正确表示某些随机试验的结果与随机事件;2熟练应用分布列的两个基本性质;
3能熟练运用二项分布计算有关随机事件的概率。

四、作业布置:教材P193页闯关训练。

新课程标准数学选修2-3第二章课后习题解答[唐金制]

新课程标准数学选修2-3第二章课后习题解答[唐金制]

新课程标准数学选修2—3第二章课后习题解答第二章 随机变量及其分布2.1离散型随机变量及其分布列 练习(P45) 1、(1)能用离散型随机变量表示. 可能的取值为2,3,4,5,6,7,8,9,10,11,12. (2)能用离散型随机变量表示. 可能的取值为0,1,2,3,4,5. (3)不能用离散型随机变量表示.说明:本题的目的是检验学生是否理解离散型随机变量的含义. 在(3)中,实际值与规定值之差可能的取值是在0附近的实数,既不是有限个值,也不是可数个值. 2、可以举的例子很多,这里给出几个例子: 例1 某公共汽车站一分钟内等车的人数; 例2 某城市一年内下雨的天数;例3 一位跳水运动员在比赛时所得的分数; 例4 某人的手机在1天内接收到电话的次数.说明:本题希望学生能观察生活中的随机现象,知道哪些量是随机变量,哪些随机变量又是离散型随机变量. 练习(P49)1、设该运动员一次罚球得分为X说明:这是一个两点分布的例子,投中看作试验成功,没投中看作试验失败. 通过这样的例子可以使学生理解两点分布是一个很常用的概率模型,实际中大量存在. 虽然离散型随机变量的分布列可以用解析式的形式表示,但当分布列中的各个概率是以数值的形式给出时,通常用列表的方式表示分布列更为方便.2、抛掷一枚质地均匀的硬币两次,其全部可能的结果为{正正,正反,反正,反反}. 正面向上次数X 是一个离散型随机变量, 1(0)({})0.254P X P ====反反2(1)({}{})0.54P X P ==== 正反反正1(2)({})0.254P X P ====正正因此X 的分布列为说明:这个离散型随机变量虽然简单,但却是帮助学生理解随机变量含义的一个很好的例子. 试验的全部可能的结果为{正正,正反,反正,反反},随机量X 的取值范围为{0,1,2},对应关系为正正→2 正反→1 反正→1 反反→0在这个例子中,对应于1的试验结果有两个,即“正反”和“反正”,因此用随机变量X 不能表示随机事件{正反}. 这说明对于一个具体的随机变量而言,有时它不能表示所有的随机事件.可以通过让学生们分析下面的推理过程存在的问题,进一步巩固古典概型的知识. 如果把X 所有取值看成是全体基本事件,即{0,1,2}Ω=.根据古典概型计算概率的公式有 1(1)({1})3P X P ===.这与解答的结果相矛盾. 原因是这里的概率模型不是古典概型,因此上面式中的最后一个等号不成立. 详细解释下:虽然Ω中只含有3个基本事件,但是出现这3个基本事件不是等可能的,因此不能用古典概型计算概率的公式来计算事件发生的概率.3、设抽出的5张牌中包含A 牌的张数为X ,则X 服从超几何分布,其分布列为5448552()iiC C P X i C -==,i =0,1,2,3,4.因此抽出的5张牌中至少3张A 的概率为(3)(3)(4)0.002P X P X P X ≥==+=≈.说明:从52张牌任意取出5张,这5张牌中包含A 的个数X 是一个离散型随机变量. 把52张牌看成是52件产品,把牌A 看成次品,则X 就成为从含有四件次品的52件产品中任意抽取5件中的次品数,因此X 服从超几何分布.本题的目的是让学生熟悉超几何分布模型,体会超几何分布在不同问题背景下的表现形式. 当让本题也可以用古典概型去解决,但不如直接用超几何分布简单. 另外,在解题中分布列是用解析式表达的,优点是书写简单,一目了然.4、两点分布的例子:掷一枚质地均匀的硬币出现正面的次数X 服从两点分布;射击一次命中目标的次数服从两点分布.超几何分布的例子:假设某鱼池中仅有鲤鱼和鲑鱼两种鱼,其中鲤鱼200条,鲑鱼40条,从鱼池中任意取出5条鱼,这5条鱼包含鲑鱼的条数X 服从超几何分布. 说明:通过让学生举例子的方式,帮助学生理解这两个概率模型. 习题2.1 A 组(P49) 1、(1)能用离散型随机变量表示.设能遇到的红灯个数为X ,它可能的取值为0,1,2,3,4,5.事件{X =0}表示5个路口遇到的都不是红灯;事件{X =1}表示5个路口其中有1个路口遇到红灯,其他4个路口都不是红灯;事件{X =2}表示5个路口其中有2个路口遇到红灯,其他3个路口都不是红灯;事件{X =3}表示5个路口其中有3个路口遇到红灯,剩下2个路口都不是红灯;事件{X =4}表示5个路口其中有4个路口遇到红灯,另外1个路口都不是红灯;事件{X =5}表示5个路口全部都遇到红灯. (2)能用离散型随机变量表示.定义 12345X ⎧⎪⎪⎪=⎨⎪⎪⎪⎩,成绩不及格,成绩及格,成绩中,成绩良,成绩优则X 是一个离散型随机变量,可能的取值为1,2,3,4,5.事件{X =1}表示该同学取得的成绩为不及格;事件{X =2}表示该同学取得的成绩为及格;事件{X =3}表示该同学取得的成绩为中;事件{X =4}表示该同学取得的成绩为良;事件{X =5}表示该同学取得的成绩为优.说明:本题是考查学生是否理解离散型随机变量的含义. 在(2)中,需要学生建立一个对应关系,因为随机变量的取值一定是实数,但这个对应关系不是唯一的,只要是从五个等级到实数的意义映射即可.2、某同学跑1 km 所用时间X 不是一个离散型随机变量. 如果我们只关心该同学是否能够取得优秀成绩,可以定义如下的随机变量:01km 4min11km 4min Y >⎧=⎨≤⎩,跑所用的时间,跑所用的时间 它是离散型随机变量,且仅取两个值:0或1.事件{1}Y =表示该同学跑1 km 所用时间小于等于4 min ,能够取得优秀成绩;事件{0}Y =表示该同学跑1 km 所用时间大于4 min ,不能够取得优秀成绩.说明:考查学生在一个随机现象中能否根据关心的问题不同定义不同的随机变量,以简化问题的解答. 可以与教科书中电灯泡的寿命的例子对比,基本思想是一致的.3、一般不能. 比如掷一枚质地均匀的硬币两次,用随机变量X 表示出现正面的次数,则不能用随机变量X 表示随机事件{第1次出现正面且第2次出现反面}和{第1次出现反面且第2次出现正面}. 因为{X =1}={第1次出现正面且第2次出现反面}∪{第1次出现反面且第2次出现正面},所以这两个事件不能分别用随机变量X 表示.说明:一个随机变量是与一个事件域相对应的,一个事件域一般是由部分事件组成,但要满足一定的条件. 对离散型随机变量,如果它取某个值是由几个随机变量组成,则这几个随机事件就不能用随机变量表示,比如从一批产品中依次取出几个产品,用X 表示取出的产品中次品的个数,这时我们不能用X 表示随机事件{第i 次取出次品,其他均为合格品}. 4、不正确,因为取所有值的概率和不等于1.说明:考查学生对分布列的两个条件的理解,每个概率不小于0,其和等于1,即 (1)0i p ≥,1,2,,i n = ;(2)11ni i p ==∑.5、射击成绩优秀可以用事件{X ≥8}表示,因此射击优秀的概率为P {X ≥8}=(8)(9)(10)0.280.290.220.79P X P X P X =+=+==++=说明:本题知识点是用随机变量表示随机事件,并通过分布列计算随机事件的概率. 6、用X 表示该班被选中的人数,则X 服从超几何分布,其分布列为104261030()iiC C P X i C -==, i =0,1,2,3,4.该班恰有2名同学被选到的概率为2842610304!26!1902!2!8!18!(2)0.31230!60910!20!C C P X C⨯⨯⨯====≈⨯.说明:本题与49页练习的第3题类似,希望学生在不同背景下能看出超几何分布模型. 习题2.1 B 组(P49) 1、(1)设随机抽出的3篇课文中该同学能背诵的 篇数为X ,则X 是一个离散型随机变量,它可能的 取值为0,1,2,3,且X 服从超几何分布,分布列 为即(2112(2)(2)(3)0.667263P X P X P X ≥==+==+==.说明:本题是为了让学生熟悉超几何分布模型,并能用该模型解决实际问题.2、用X 表示所购买彩票上与选出的7个基本号码相同的号码的个数,则X 服从超几何分布,其分布列为7729736()iiC C P X i C -==, i =0,1,2,3,4,5,6,7.至少中三等奖的概率为52617072972972977736363697(5)0.00192752C C C C C C P X CCC≥=++=≈.说明:与上题类似同样是用超几何分布解决实际问题,从此题的结算结果可以看出至少中三等奖的概率近似为1/1000. 2.2二项分布及其应用 练习(P54)1、设第1次抽到A 的事件为B ,第2次抽到A 的事件为C ,则第1次和第2次都抽到A 的事件为B C .解法1:在第1次抽到A 的条件下,扑克牌中仅剩下51张牌,其中有3张A ,所以在第1次抽到A 的条件下第2次也抽到A 的概率为3()51P C B =.解法2:在第1次抽到A 的条件下第2次也抽到A 的概率为()433()()45151n BC P C B n B ⨯===⨯.解法3:在第1次抽到A 的条件下第2次也抽到A 的概率为43()35251()451()515251P BC P C B P B ⨯⨯===⨯⨯. 说明:解法1是利用缩小基本事件范围的方法计算条件概率,即分析在第1次抽到A 的条件下第2次抽取一张牌的随机试验的所有可能结果,利用古典概型计算概率的公式直接得到结果. 解法2实际上是在原来的基本事件范围内通过事件的计数来计算条件概率. 第3种方法是利用条件概率的定义来计算. 这里可以让学生体会从不同角度求解条件概率的特点.2、设第1次抽出次品的时间为B ,第2次抽出正品的事件为C ,则第1次抽出次品且第2次抽出正品的事件为B C .解法1:在第1次抽出次品的条件下,剩下的99件产品中有4件次品,所以在第1次抽出次品的条件下第2次抽出正品的概率为95()99P C B =.解法2:在第1次抽出次品的条件下第2次抽出正品的概率为()59595()()59999n BC P C B n B ⨯===⨯.解法3:在第1次抽出次品的条件下第2次抽出正品的概率为595()9510099()599()9910099P BC P C B P B ⨯⨯===⨯⨯. 说明:与上题类似,可以用不同方法计算条件概率.3、例1 箱中3张奖券中只有1张能中奖,现分别由3人无放回地任意抽取,在已知第一个人抽到奖券的条件下,第二个人抽到奖券的概率或第三个人抽到奖券的概率,均为条件概率,它们都是0.例2 某班有45名同学,其中20名男生,25名女生,依次从全班同学中任选两名同学代表班级参加知识竞赛,在第1名同学是女生的条件下,第2名同学也是女生的概率. 说明:这样的例子很多,学生举例的过程可以帮助学生理解条件概率的含义. 练习(P55)1、利用古典概型计算的公式,可以求得()0.5P A =,()0.5P B =,()0.5P C =, ()0.25P AB =,()0.25P BC =,()0.25P AC =,可以验证()()()P AB P A P B =,()()()P BC P B P C =,()()()P AC P A P C =.所以根据事件相互独立的定义,有事件A 与B 相互独立,事件B 与C 相互独立,事件A 与C 相互独立.说明:本题中事件A 与B 相互独立比较显然,因为抛掷的两枚硬币之间是互不影响的. 但事件B 与C 相互独立,事件A 与C 相互独立不显然,需要利用定义验证, 从该习题可以看出,事件之间是否独立有时根据实际含义就可做出判断,但有时仅根据实际含义是不能判断,需要用独立性的定义判断. 2、(1)先摸出1个白球不放回的条件下,口袋中剩下3个球,其中仅有1个白球,所以在先摸出1个白球不放回的条件下,再摸出1个白球的概率是1/3.(2)先摸出1个白球后放回的条件下,口袋中仍然有4个球,其中有2个白球,所以在先摸出1个白球后放回的条件下,再摸出1个白球的概率是1/2.说明:此题的目的是希望学生体会有放回摸球与无放回摸球的区别,在有放回摸球中第2次摸到白球的概率不受第1次摸球结果的影响,而在无放回摸球中第2次摸到白球的概率受第1次摸球结果的影响.3、设在元旦期间甲地降雨的事件为A ,乙地降雨的事件为B .(1)甲、乙两地都降雨的事件为A B ,所以甲、乙两地都降雨的概率为()()()0.20.30.06P AB P A P B ==⨯=(2)甲、乙两地都不降雨的事件为A B ,所以甲、乙两地都不降雨的概率为()()()0.80.70.56P A B P A P B ==⨯=(3)其中至少一个地方降雨的事件为()()()A B AB A B ,由于事件A B ,A B 和AB 两两互斥,根据概率加法公式和相互独立事件的定义,其中至少一个地方降雨的概率为()()()0.060.20.70.80.30.44P AB P AB P A B ++=+⨯+⨯=.说明:与例3类似,利用事件独立性和概率的性质计算事件的概率,需要学生复习《数学3(必修)》中学过的概率性质. 4、因为()()A A B A B = ,而事件A B 与事件A B 互斥, 利用概率的性质得到()()()P A P A B P A B =+ 所以()()()P A B P A P A B =-. 又因为事件A 与B 相互独立.故 ()()()()()(1())()()P A B P A P A P B P A P B P A P B =-=-=. 由两个事件相互独立的定义知A 与B 相互独立. 类似可证明A 与B ,A 与B 也都是相互独立的.说明:证明此题要求学生掌握概率的性质. 此题的结论是十分有用的,也是比较好理解的,比如事件A 与B 发生没有关系,当然与B 不发生也应该没有关系.5、例1 同时掷甲、乙两枚骰子,事件A 表示甲骰子出现的是4点,事件B 表示乙骰子出现的是4点,则事件A 与事件B 相互独立.例2 从装有5个红球3个白球的袋子中有放回地依次任意摸出两个球,事件A 表示第1次摸到红球,事件B 表示第2次摸到白球,则事件A 与事件B 相互独立.说明:要求学生不但能判断两个事件是否相互独立,而且能举例说明什么样的两个事件是相互独立的,特别掌握在有放回抽样中,两次抽样的结果是相互独立的,这是二项分布的基础. 练习(P58) 1、用A 表示抽到的这件产品的为合格品,i A 表示这件产品在第i 道工序中质量合格,i =1, 2,3,4,5. 则12345A A A A A A = ,1()0.96P A =,2()0.99P A =,3()0.98P A =,4()0.97P A =,5()0.96P A =,且12345,,,,A A A A A 相互独立. 所以()P A =1()P A 2()P A 3()P A 4()P A 5()P A 0.960.990.980.970.960.867=⨯⨯⨯⨯≈.说明:本题主要考查学生应用教科书56页的公式(1)解决实际问题的能力. 这里的难点是如何把这件产品合格用各道工序的合格表达出来. 实际上,各道工序都合格等价于产品合格,因此事件“各道工序合格之交”就是产品合格.2、将一枚硬币连续抛掷5次,正面向上的次数X 服从二项分布,其分布列为551()()2k P X k C ==,k =0,1,2,3,4,5.用表格的形式表示如下:说明:本题是最基本的二项分布的例子. 在写分布列时,如果是用第一种方式表示,一定要标出k 的取值范围.3、用事件B 表示仅第1次未击中目标,事件i A 表示该射手第i 次射击击中目标,i =0,1,2,3,4,则1234B A A A A =,因为4次射击可以看成4次独立重复试验,所以可以用56页的公式(1)计算B 发生的概率:1234()()()()()(10.9)0.90.90.90.0729P B P A P A P A P A ==-⨯⨯⨯=.说明:本题的关键是把4次射击看成4次独立重复试验,然后利用56页的公式(1)计算概率. 该题还可以修改成求4次射击都没有命中目标的概率,或者4次射击至少击中一次目标的概率.4、例1 某同学投篮命中率为0.6,他在6次投篮中命中的次数X 是一个随机变量,X ~(6,0.6)B .例2 在一次考试中有10道单选题,某同学一道题都不会,随机地选择答案,这10道单选题中答对的个数X 是一个随机变量,X ~(10,0.25)B .说明:希望学生不但能判断一个随机变量是否服从二项分布,而且能举出二项分布的例子,以加深对二项分布的理解. 习题2.2 A 组(P59)1、因为3个灯泡是并联,各灯泡是否能正常照明是彼此独立的,不受其他灯泡的影响,所以可以看成3次独立重复试验. 设这段时间内能正常照明的灯泡个数为X ,X 服从二项分布. 这段时间内吊灯能照明表示3个灯泡至少有1个灯泡能正常照明,即0X >,则吊灯能照明的概率为3(0)1(0)1(10.7)0.973P X P X >=-==--=.说明:可以让学生思考:如果这3个灯泡串联,那么这段时间内吊灯能照明的概率是多少?以此比较两种连接方法的可靠性. 2、(1)箱子中共有41n -个球,其中有白球2n 个,设事件B 表示摸到的n 个球都是白球,利用古典概型计算概率的公式得到241()nn n n C P B C-=.(2)设事件A 表示摸到的n 个球都是黑球,事件C 表示摸到的n 个球颜色相同,则C A B = ,2141()nn n n C P A C --=.又A 与B 互斥,所以22141()()()nnn n n n C C P C P A P B C --+=+=.在已知n 个球的颜色相同的情况下,设颜色是白色的概率为2221()()()()()nn nnn n C P BC P B P B C P C P C C C -===+说明:(2)中的计算同样可以利用古典概型计算概率的公式()()()n BC P B C n C =得到,但是这里的计数是基于原始的基本事件全体来计数.3、设有3个孩子的家庭中女孩的个数为X ~(3,0.5)B . 至少有2个是女孩等价于事件{X ≥2}, 因此至少有2个女孩的概率为2333111(2)(2)(3)()()222P X P X P X C ≥==+==+=.说明:关键是把问题转化为二项分布的模型. 当然该问题也可以利用古典概型计算概率的公式直到得到.4、利用条件概率公式有(())()()()()P B C A P BA CA P B C A P A P A ==,因为B 和C 互斥,所以B A 和C A 也互斥,利用概率的加法公式有()()()P BA CA P BA P CA =+ .因此()()()()()()()()()()P BA P CA P BA P CA P B C A P B A P C A P A P A P A +==+=+ .习题2.2 B 组(P59)1、每局比赛只有两个结果,甲获胜或乙获胜,每局比赛可以看成是相互独立的,所以甲获胜的局数X 是随机变量,X 服从二项分布.(1)在采用3局2胜制中,X ~(3,0.6)B ,事件{2X ≥}表示“甲获胜”. 所以甲获胜的概率为2233(2)(2)(3)0.60.40.60.648P X P X P X C ≥==+==⨯⨯+=.(2)在采用5局3胜制中,X ~(5,0.6)B ,事件{3X ≥}表示“甲获胜”. 所以甲获胜的概率为(3)(3)(4)(5)P X P X P X P X ≥==+=+=332445550.60.40.60.40.60.683C C =⨯⨯+⨯⨯+≈.可以看出采用5局3胜制对甲更有利,由此可以猜测“比赛的总局数越多甲获胜的概率越大”,由此可以看出为了使比赛公平,比赛的局数不能太少. 在这个实际问题背景中,比赛局数越少,对乙队越有利;比赛局数越多,对甲队越有利. 说明:对于一个实际问题,最终目的是解决问题,而不是计算随机事件的概率. 本题背景中,应该根据计算出的概率结果对赛制提出提议.2、设事件1A 表示从甲箱子里摸出白球,事件2A 表示从乙箱子里摸出白球,因为从甲箱子里摸球的结果不会影响从乙箱子里摸球的结果,所以1A 和2A 是相互独立的.P (获奖)1212323()()()0.35410P A A P A P A ===⨯==.尽管两个箱子里装的白球比黑球多,但获奖的概率小于0.5. 原因是除了两个球全为白球外,还有可能两个球全为黑球或两个球中一个为白球另一个为黑球,两个球全为黑球的概率为2210.2545⨯==,两个球中一个为白球另一个为黑球的概率为10.30.20.5--=. 由两个箱子里装的白球比黑球多,只能推出摸出的两个球全为白球的概率大于摸出的两个球全为黑球的概率. 由于这两个事件的并不等于必然事件,因此不能推出获奖的概率大于0.5. 说明:问题的关键在于把几个事件的关系搞清楚,必然事件Ω={两个球全为白球} {两个球全为黑球} {一个为白球另一个为黑球}.3、(1)在有放回的方式抽取中,每次抽取时都是从这n 件产品中抽取,从而抽到次品的概率都为0.02. 可以把3次抽取看成是3次独立重复试验,这样抽到的次品数X ~(3,0.02)B ,恰好抽到1件次品的概率为1223(1)0.02(10.02)30.020.980.057624P X C ==⨯⨯-=⨯⨯≈.在无放回的方式抽取中,抽到的次品数X 是随机变量,X 服从超几何分布,X 的分布与产品的总数n 有关,所以需要分3种情况分别计算:①500n =时,产品的总数为500件,其中次品的件数为500×2%=10,合格品的件数为490. 从500件产品中抽出3件,其中恰好抽到1件次品的概率为1210490350049048910304904892!(1)0.0578535004994985004994983!C CP X C ⨯⨯⨯⨯====≈⨯⨯⨯⨯.②5000n =时,产品的总数为5000件,其中次品的件数为5000×2%=100,合格品的件数为4900. 从5000件产品中抽出3件,其中恰好抽到1件次品的概率为1210049003500030049004899(1)0.057647500049994998C C P X C⨯⨯===≈⨯⨯.③50000n =时,产品的总数为50000件,其中次品的件数为50000×2%=1000,合格品的件数为49000. 从50000件产品中抽出3件,其中恰好抽到1件次品的概率为1210004900035000030004900048999(1)0.057626500004999949998C C P X C ⨯⨯===≈⨯⨯.(2)根据(1)的计算结果可以看出,当产品的总数很大时,超几何分布近似为二项分布. 这也是可以理解的,当产品总数很大而抽出的产品较少时,每次抽出产品后,次品率近似不变. 这样就可以近似看成每次抽样的结果是相互独立的,抽出产品中的次品件数近似服从二项分布. 说明:由于数字比较大,可以利用计算机或计算器进行数值计算. 另外,本题目也可以帮助学生了解超几何分布和二项分布之间的关系:第一,n 次试验中,某一事件A 出现的次数X 可能服从超几何分布或二项分布. 当这n 次试验是独立重复试验时,X 服从二项分布;当这n 次试验是不放回摸球问题,事件A 为摸到某种特性(如某种颜色)的球时,X 服从超几何分布.第二,在不放回n 次摸球试验中,摸到某种颜色球的次数X 服从超几何分布. 但是当袋子中的球的数目N 很大时,X 的分布列近似于二项分布,并且随着N 的增加,这种近似的精度也增加.2.3离散型随机变量的均值与方差 练习(P64)1、不一定. 比如掷一枚硬币,出现正面的次数X 是随机变量,它取值0,1,取每个值的概率都为0.5,其均值是0.5的分布列为X 的均值是2说明:本题的目的是希望学生不要误解均值的含义,均值是随机变量取值的平均水平,它不一定是随机试验的结果之一.2、()00.110.220.330.240.150.1 2.3E X =⨯+⨯+⨯+⨯+⨯+⨯=. 说明:根据定义计算离散型随机变量的均值,是最基本的习题.3、X 的分布列为所求均值为()10.510.50E X =-⨯+⨯=.说明:要计算离散型随机变量的均值,一般首先写出该随机变量的分布列. 4、第1台机床生产零件的平均次品数1()00.410.320.230.11E X =⨯+⨯+⨯+⨯=,第2台机床生产零件的平均次品数2()00.310.520.20.9E X =⨯+⨯+⨯=.因为第2台机床生产零件的平均次品数2()E X 小于第1台机床生产零件的平均次品数1()E X ,所以第2台机床更好,其实际含义是随着产量的增加,第2台机床生产出的次品数要比第1台机床生产出的次品数小.说明:本题考查学生对随机变量均值含义的理解.5、同时抛掷5枚质地均匀的硬币,相当于做5次重复试验,出现正面向上的硬币数X 服从二项分布(5,0.5)B ,所以()50.5 2.5E X np ==⨯=.说明:教科书已给出二项分布的均值,本题可以直接利用这个结果. 练习(P68)1、()00.110.220.430.240.12E X =⨯+⨯+⨯+⨯+⨯=,22222()(02)0.1(12)0.2(22)0.4(32)0.2(42)0.1D X =-⨯+-⨯+-⨯+-⨯+-⨯=,1.095≈. 说明:这个分布列是对称的,对称轴是2X =,所以均值为2. 图象表示的分布列如下:2、()1E X c c =⨯=,2()()10D X c c =-⨯=.说明:随机变量X 满足()1P X c ==,其中c 为常数,这个分布称为单点分布,实际上,这里把常数看成是特殊的离散型随机变量. 因为该随机变量仅取一个值,当然刻画离散程度的量应该为0.3、随机变量的方差反映随机变量的取值稳定(或偏离)于均值的程度. 方差越大,随机变量的取值越分散;方差越小,随机变量的取值越集中于均值附近. 通常在均值相等的情况要比较方差的大小.例如,在本节63页例3中,三个方案的平均损失相等,通常我们会选择方差最小的方案. 再例如,有两种投资方案,它们的平均收益相同,但方差不同,是选择方差大的方案还是选择方差小的方案,这要因情况而定. 如果一个人比较喜欢冒险,那么应该选择方差大的方案;如果一个人喜欢稳定的收入,那么应该选择方差小方案. 如股票投资和储蓄两种方案,假设它们的平均收益相同,喜欢冒险的人一般会选择股票投资.说明:通过让学生举例子的方式,希望学生理解方差的含义. 习题2.3 A 组(P68)1、()20.1610.4430.4 1.32E X =-⨯+⨯+⨯=, 222()(21.32)0.16(11.32)0.44(31.32)0.42.9376D X =--⨯+-⨯+-⨯=,1.714≈. 说明:已知离散型随机变量的分布列,计算均值、方差和标准差属于最基本的习题. 2、13a b ==说明:利用均值的定义和分布列的性质即可求得.3、在同样的条件下连续射击10次,相当于做10次独立重复试验,击中靶心的次数X 服从二项分布(10,0.9)B ,所以()100.99E X np ==⨯=.说明:此题类似64页第5题,在教科书中已给出二项分布的均值的公式,本题可以直接利用这个结果,不用再按均值的定义重新计算.4、设X()20.1100.03500.011000.00510000.00052E X =⨯+⨯+⨯+⨯+⨯=.说明:如果发行彩票的公司按每张2元销售,并且中奖规则如题中所述,那么该公司一分钱也赚不到,连手续费都要自己出,没有公司会按这种方式发行彩票. 通常一张彩票可能中奖金额的均值要小于买一张彩票的金额,小的越多公司挣得越多,学生可以就某一种彩票的中奖情况进行分析.5、1()60.1670.1480.4290.1100.188E X =⨯+⨯+⨯+⨯+⨯=,222221()(68)0.16(78)0.14(88)0.42(98)0.1(108)0.18D X =-⨯+-⨯+-⨯+-⨯+-⨯ 1.6= 2()60.1970.2480.1290.28100.178E X =⨯+⨯+⨯+⨯+⨯= 222222()(68)0.19(78)0.24(88)0.12(98)0.28(108.17D X =-⨯+-⨯+-⨯+-⨯+-⨯ 1.96=因为甲、乙两名射手射击的环数均值相等,而乙射手射击的环数方差比甲射手射击的环数方差大,所以可以说,甲、乙两名射手射击的平均水平没有差别,在多次射击中平均得分差别不会很大,但甲通常发挥比较稳定,多数得分在8环,而乙得分比较分散,近似平均分配在6~10环.说明:考查学生对离散型随机变量的均值和方差的理解. 习题2.3 B 组(P68)1、利用古典概型计算概率的公式计算试验成功的概率:205369P ===试验成功包含的基本事件个数基本事件总数.在30次试验中成功次数X 服从二项分布5(30)9B ,,成功次数X 的均值为550()3016.793E X np ==⨯=≈.说明:本题的关键是看出在30次试验中的成功次数X 服从二项分布和计算试验成功的概率p .2、设这台机器一周内可能获利X 万元,首先计算X 可能取每个值的概率:5(5)(10.1)0.59049P X ==-=, 145( 2.5)0.1(10.1)0.32805P X C ==⋅⋅-= 2235(0)0.1(10.1)0.0729P X C ==⋅⋅-=(1)1(5)( 2.5)(0)0.00856P X P X P X P X =-=-=-=-==即X()50.59049 2.50.3280500.0729(1)0.00856 3.764015E X =⨯+⨯+⨯+-⨯=.。

高中数学人教A版选修2-3课件2-1-2离散型随机变量的分布列

高中数学人教A版选修2-3课件2-1-2离散型随机变量的分布列
付款,其利润为250元;分4期或5期付款,其利润为300元.若η表示经
销一件该商品的利润,求η的分布列.
探究一
探究二
探究三
探究四
思维辨析
当堂检测
解:由题易得,η的可能取值为200元,250元,300元,
则P(η=200)=P(ξ=1)=0.12,
P(η=250)=P(ξ=2)+P(ξ=3)=0.24+0.18=0.42,
=1
【做一做1】 离散型随机变量X的分布列为
X
1
1
4
)
P
则m的值为(
A.
C.
1
2
1
4
B.
2
3
m
4
1
3
1
3
1
D.
6
1
1
1
1
4
3
6
4
解析:由概率分布列的性质知, +m+ + =1,得 m= .
答案:C
1
6
2.两点分布
随机变量X的分布列为
X
P
0
1-p
1
p
若随机变量X的分布列具有上表的形式,则称X服从两点分布,并
C 345
C 350
C 350
.
,
探究一
探究二
探究三
探究四
思维辨析
当堂检测
离散型随机变量的分布列
例1 从装有除颜色外完全相同的6个白球,4个黑球和2个黄球的箱
中随机地取出两个球,规定每取出1个黑球赢2元,而每取出1个白球
输1元,取出黄球无输赢.
(1)以X表示赢得的钱数,随机变量X可以取哪些值?求X的分布列;

选修2-3 第二章 2.1.2 离散型随机变量的分布列

选修2-3 第二章  2.1.2 离散型随机变量的分布列


2.1.2 离散型随机变量的分布列 刷基础
题型4 超几何分布
11.[吉林吉化一中2018高二期末]一袋中装有10个大小相同的黑球和白球,已知从袋中任意摸出2个球, 至少得到1个白球的概率是 .
(1)求白球的个数; (2)从袋中任意摸出3个球,记得到白球的个数为X,求随机变量X的分布列.

2.1.2 离散型随机变量的分布列 刷基础
2.1.2 离散型随机变量的分布列 刷基础
题型1 离散型随机变量的分布列
2.设X是一个离散型随机变量,其分布列如下表,则q等于________.
X
-1
0
1
P
0.5
1- q
q2
解析
2.1.2 离散型随机变量的分布列
题型2 离散型随机变量分布列的性质
刷基础
3.[河南2019高二期中]已知随机变量X的分布列如表所示.
解析
将50名学生看作一批产品,其中选修A课程为不合格品,选修B课程为合格品,随机抽取两名学生
,X表示选修A课程的学生数,则X服从超几何分布,其中N=50,M=15,n=2.依题意所求概率
为P(X=1)=
=.
2.1.2 离散型随机变量的分布列 刷基础
题型4 超几何分布
10.[广西南宁四中2019高二月考]现有一批产品共10件,其中8件为正品,2件为次品,从中抽取3件. (1)恰有1件次品的抽法有多少种; (2)求取到次品数X的分布列.
2.1.2 离散型随机变量的分布列
题型5 综合问题
刷基础
12.[四川成都外国语学校2019高二月考]在10件产品中,有3件一等品,4件二等品,3件三等品.从这10 件产品中任取3件.求:
(1)取出的3件产品中一等品件数X的分布列; (2)取出的3件产品中一等品件数多于二等品件数的概率.

高中数学人教版选修2-3同步练习:2.1.1《离散型随机变量及其分布列》

高中数学人教版选修2-3同步练习:2.1.1《离散型随机变量及其分布列》

高中数学人教版选修2-3同步练习:2.1.1《离散型随机变量及其分布列》第二章随机变量及其分布2.1离散型随机变量及其分布列2.1.1离散型随机变量课时训练6 离散型随机变量一、选择题1.抛掷一枚质地均匀的硬币一次,随机变量为().A.掷硬币的次数B.出现正面向上的次数C.出现正面向上或反面向上的次数D.出现正面向上与反面向上的次数之和答案:B解析:出现正面向上的次数为0或1,是随机变量.2.下列随机变量是离散型随机变量的是().①抛5颗骰子得到的点数和;②某人一天内接收到的电话次数;③某地一年内下雨的天数;④某机器生产零件的误差数.A.①②③B.④C.①④D.②③答案:A解析:由离散型随机变量的定义知①②③均是离散型随机变量,而④不是,由于这个误差数几乎都是在0附近的实数,无法一一列出.3.已知下列随机变量:①10件产品中有2件次品,从中任选3件,取到次品的件数X;②一位射击手对目标进行射击,击中目标得1分,未击中目标得0分,用X表示该射击手在一次射击中的得分;③刘翔在一次110米跨栏比赛中的成绩X;④在体育彩票的抽奖中,一次摇号产生的号码数X.其中X是离散型随机变量的是().A.①②③B.②③④C.①②④D.③④答案:C解析:③中X的值可在某一区间内取值,不能一一列出,故不是离散型随机变量.4.袋中装有10个红球,5个黑球,每次随机抽取一个球,若取得黑球,则另换一个红球放回袋中,直到取到红球为止,若抽取的次数为X,则表示“放回5个球”的事件为().A.X=4B.X=5C.X=6D.X≤4答案:C解析:第一次取到黑球,则放回1个球,第二次取到黑球,则放回2个球……共放了五回,第六次取到了红球,试验终止,故X=6.5.对一批产品逐个进行检测,第一次检测到次品前已检测的产品个数为ξ,则ξ=k表示的试验结果为().A.第k-1次检测到正品,而第k次检测到次品B.第k次检测到正品,而第k+1次检测到次品C.前k-1次检测到正品,而第k次检测到次品D.前k次检测到正品,而第k+1次检测到次品答案:D6.一用户在打电话时忘了号码的最后四位数字,只记得最后四位数字两两不同,且都大于5,于是他随机拨最后四位数字(两两不同),设他拨到所要号码时已拨的次数为ξ,则随机变量ξ的所有可能取值的种数为().A.20B.24C.4D.18答案:B解析:由于后四位数字两两不同,且都大于5,因此只能是6,7,8,9四位数字的不同排列,故有=24(种).二、填空题7.在考试中,需回答三个问题,考试规则规定:每题回答正确得100分,回答不正确得-100分,则这名同学回答这三个问题的总得分ξ的所有可能取值是.答案:-300,-100,100,300解析:若答对0个问题得分-300;若答对1个问题得分-100;若答对2个问题得分100;若问题全答对得分300.8.一袋中装有5个同样的球,编号依次为1,2,3,4,5,从该袋中随机取出3个球.记三个球中最小编号为ξ,则“ξ=3”表示的试验结果是.答案:取出编号为3,4,5的三个球9.在8件产品中,有3件次品,5件正品,从中任取一件,取到次品就停止,取后不放回,抽取次数为X,则“X=3”表示的试验结果是.答案:前两次均取到正品,第三次取到次品三、解答题10.写出下列各随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果:(1)盒中装有6支白粉笔和8支红粉笔,从中任意取出3支,其中所含白粉笔的支数ξ;(2)从4张已编号(1~4号)的卡片中任意取出2张,被取出的卡片号数之和ξ.解:(1)ξ可取0,1,2,3.ξ=i表示取出i支白粉笔,3-i支红粉笔,其中i=0,1,2,3.(2)ξ可取3,4,5,6,7.其中ξ=3表示取出编号为1,2的两张卡片.ξ=4表示取出编号为1,3的两张卡片.ξ=5表示取出编号为2,3或1,4的两张卡片.ξ=6表示取出编号为2,4的两张卡片.ξ=7表示取出编号为3,4的两张卡片.11.一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数为ξ.(1)列表说明可能出现的结果与对应的ξ的值;(2)若规定抽取3个球中,每抽到一个白球加5分,抽到黑球不加分,且最后不管结果都加上6分,求最终得分η的可能取值,并判定η的随机变量类型.解:(1)ξ0 1 2 3结果取得3个黑球取得1个白球2个黑球取得2个白球1个黑球取得3个白球(2)由题意可得η=5ξ+6,而ξ可能的取值范围为{0,1,2,3},则η对应的各值是5×0+6,5×1+6,5×2+6,5×3+6,故η的可能取值为{6,11,16,21},显然η为离散型随机变量.12.下列随机试验的结果能否用离散型随机变量表示?若能,请写出各随机变量可能的取值并说明这些值所表示的随机试验的结果.(1)离开天安门的距离η;(2)袋中有大小完全相同的红球5个,白球4个,从袋中任意取出一球,若取出的球是白球,则过程结束;若取出的球是红球,则将此红球放回袋中,然后重新从袋中任意取出一球,直至取出的球是白球,此规定下的取球次数ξ.解:(1)η可取[0,+∞)中的数.η=k表示离开天安门的距离为k(km).不是离散型随机变量.(2)ξ可取所有的正整数.{ξ=i}表示前i-1次取出红球,而第i次取出白球,这里i∈N*.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3)某城市1天之中发生的火警次数X; (X=0、1、2、3、· · · )
(4)某品牌的电灯泡的寿命X;[0,+∞)
(5)某林场树木最高达30米,最低是0.5米,则此林场
任意一棵树木的高度x. [0.5,30]
思考:前3个随机变量与最后两个有什么区别?
2019/4/10 v:pzyandong 12
v:pzyandong
11
例1、写出下列各随机变量可能的取值,并说明它们各自所表示的 随机试验的结果:
(1)从10张已编号的卡片(从1号到10号)中任取1张, 被取出的卡片的号数x ; (x=1、2、3、· · · 、10) (2)抛掷两个骰子,所得点数之和Y; (Y=2、3、· · · 、12)
4这5个数表示
2019/4/10
v:pzyandong
8
一、随机变量的概念: 在前面的例子中,我们把随机试验的每一个结果都用一个确定的 数字来表示,这样试验结果的变化就可看成是这些数字的变化。
若把这些数字当做某个变量的取值,则这个变量就叫做随机变量,
常用X、Y、x、h 来表示。 随机变量即是随机试验的试验结果和实数之间的一种对应关系. 本质是建立了一个从试验结果到实数的对应关系。
1.随机变量是随机事件的结果的数量化.
随机变量ξ的取值对应于随机试验的某一随机事件。 随机变量是随机试验的试验结果和实数之间的一个对应关系,
这种对应关系是人为建立起来的,但又是客观存在的这与函数概 念的本质是一样的,只不过在函数概念中,函数f (x)的自变量x是 实数,而在随机变量的概念中,随机变量ξ的自变量是试验结果。 2.随机变量分为离散型随机变量和连续型随机变量。 3. 若ξ是随机变量,则η=aξ+b(其中a、b是常数)也是随机变量 .
二、随机变量的分类: 1、如果可以按一定次序,把随机变量可能取的值一一列出,那么这 样的随机变量就叫做离散型随机变量。 (如掷骰子的结果,城市每天火警的次数等等) 2、若随机变量可以取某个区间内的一切值,那么这样的随机变量叫 做连续型随机变量。(如灯泡的寿命,树木的高度等等) 注意:(1)高中阶段,我们只研究离散型随机变量;
2019/4/10 v:pzyandong 14
例3.一 袋中装有5只同样大小的白球,编号为1,2,3,4,5 现从 该袋内随机取出3只球,被取出的球的最大号码数ξ 解 ξ可取3,4,5 .
ξ=3,表示取出的3个球的编号为1,2,3; ξ=4,表示取出的3个球的编号为1,2,4或1,3,4或2,3,4; ξ=5,表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2, 3,5或2,4,5或3,4,5
解:X的取值范围是{0,1,2,3} ,其中 {X=0}表示的事件是“取出0个白球,3个黑球”; {X=1}表示的事件是“取出1个白球,2个黑球”; {X=2}表示的事件是“取出2个白球,1个黑球”; {X=3}表示的事件是“取出3个白球,0个黑球”; 变式:X < 3在这里又表示什么事件呢? “取出的3个球中,白球不超过2个”
2019/4/10
v:pz用 数字来表示呢?
以1和0表示正面
向上和反面向上
0
1
2019/4/10
v:pzyandong
6
某次产品检验,在可能含有次品的100件产品中任意抽取4件,那么 其中含有的次品可能是0件,1件,2件,3件,4件,
即可能出现的结果 可以由0,1,2,3,
注意:有些随机试验的结果虽然不具有数量性质, 但还是可以用 数量来表达,如在掷硬币的试验中,我们可以定义“ X=0,表示 正面向上,X =1,表示反面向上”
2019/4/10 v:pzyandong 9
我们确定了一个对应关系,使得每一个试验结果都用一个确定 的数字来表示。 正面朝上 反面朝上 0 1 这种对应事实上是一个映射。
(2)变量离散与否,与变量的选取有关;
比如:对灯泡的寿命问题,可定义如下离散型随机变量
0, 寿命 1000小时 Y 1, 寿命 1000小时
2019/4/10 v:pzyandong 13
例2、一个袋中装有5个白球和5个黑球,若从中任取3个,则其中所 含白球的个数X就是一个随机变量,求X的取值范围,并说明X的不 同取值所表示的事件。
出现1点 出现2点 …… 出现6点
2019/4/10
1 2 …… 6
0件次品 1件次品 …… 4件次品
v:pzyandong
0 1 …… 4
10
随机变量和函数
随机试验结果
实数 两者都是一种映射
随机变量 函数
实数
实数
试验结果的范围相当于函数的定义域 随机变量的取值范围相当于函数的值域
2019/4/10
量,那么他所付款η是否也为一个随机变量呢? ξ、η有什么关系呢?
50 6 (x 50) 6 0.7 4.2x 90 x [50,80],x N
若ξ是随机变量,则η=aξ+b(其中a、b是常数)也是随机变量 .
2019/4/10
v:pzyandong
17
小结:
2019/4/10
v:pzyandong
15
2019/4/10
v:pzyandong
‹#›
思维训练:
4.某人去商厦为所在公司购买玻璃水杯若干只,公司要求至少要买
50只,但不得超过80只.商厦有优惠规定:一次购买小于或等于50只 的不优惠.大于50只的,超出的部分按原价格的7折优惠.已知水杯
原来的价格是每只6元.这个人一次购买水杯的只数ξ是一个随机变
高二数学 选修2-3
2.1.1离散型随机变量
2019/4/10
v:pzyandong
1
2019/4/10
v:pzyandong
2
某人射击一 次,可能出现命中0环,命中1环,…,命中10环等结果,
可能出现的结果可能由0,1,……10这11个数表示.
2019/4/10
v:pzyandong
3
出现的点数可以用数字1,2,3,4,5,6表示. 掷一枚骰子时, 出现的点数如 何表示?
2019/4/10
v:pzyandong
18
知识点
随机变量
[问题] (1)掷一枚均匀的骰子,出现的点数.
(2)在一块地里种下10颗树苗,成活的棵数.
相关文档
最新文档