人教版九年级上册数学:圆复习课件示范

合集下载

第二十四章圆 复习课课件(共35张PPT)人教版九年级数学上册

第二十四章圆 复习课课件(共35张PPT)人教版九年级数学上册

学习目标
知识梳理
典型例题
当堂检测
课堂总结
4.会画三角形的外接圆和内切圆,知道三角形内心和外心的性质,知 道圆内接多边形并会相关计算. 5.知道弧长和扇形面积的计算公式,并能用这些公式进行相关计算.
学习目标
知识梳理
典型例题
当堂检测
课堂总结
1 圆的有关概念及性质 1.定义:平面上到定点的距离等于定长的所有点组成的图形叫做圆. 2.有关概念:
(1)弦、直径(圆中最长的弦)
O.
(2)弧、优弧、劣弧、等弧
(3)弦心距
3.不在同一条直线上的三个点确定一个圆.
学习目标
知识梳理
典型例题
当堂检测
课堂总结
2 圆的对称性 1.圆是轴对称图形,经过圆心的每一条直线都是它的对称轴.圆有无数 条对称轴. 2.圆是中心对称图形,并且绕圆心旋转任何一个角度都能与自身重合, 即圆具有旋转不变性.
解:设直径BC与弦AD交于点E
A
∵∠D=36°,∴∠ABC=36°
∵AD⊥BC,
B
∴在直角三角形ABE中,∠BAD=90°-36°=54°
C E D
学习目标
知识梳理
典型例题
当堂检测
课堂总结
例2.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC. (1)若∠CBD=39°,求∠BAD的度数;(2)求证明:∠1=∠2.
典型例题
当堂检测
课堂总结
例3.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直 径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这 个小圆孔的宽口AB的长度为 8 mm.
解析:设圆心为O,连接AO,作出过点O的 弓形高CD,垂足为D,可AO=5mm,OD=3mm 利用勾股定理进行计算,AD=4mm, 所以AB=8mm.

全国优质课一等奖人教版九年级数学上册《圆(复习课件)》公开课课件

全国优质课一等奖人教版九年级数学上册《圆(复习课件)》公开课课件

符号语言:
04
基础巩固(圆心角与圆周角)
圆心角的定义:顶点在圆心的角叫做圆心角。
圆心角的判断方法:观察顶点是否在圆心。
圆周角的定义:顶点在圆上,两边都和圆相交的角叫做圆周角。
圆周角的特征: ①顶点在圆上;②两边都和圆相交。
05
基础巩固(弧、弦、圆心角之间的关系)
在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相
基础回顾
02
热考题型
03
直击中考
CONTENTS
基础回顾
01
基础巩固(圆的概念)
如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,
另一个端点A所形成的图形叫做圆。
其中,固定的端点O叫做圆心。
线段OA叫做半径。
以点O为圆心的圆,记作“⊙O”,读作“圆O”。
02
基础巩固(圆的特征)
【特征一】圆心为O、半径为r的圆可以看成是所有到定点O的距离等于定长r的点组成的图形。
( n 2) 180
正n边形的一个内角的度数是____________;
n
360
中心角是___________;
n
相等
正多边形的中心角与外角的大小关系是________.
正n边形的周长为 P=na (P为正n边形的周长,α为边长)
正n边形的周长为 S
A
B
1
Pr (S为正多边形的面积,P为正多边形的周长,
①三角形内切圆半径公式: r
C
其中S为三角形的面积;C为三角形的周长.
ab
a +b- c
.
或r =
②特殊的直角三角形内切圆半径公式:r =
a+b+c

人教版九年级上册教材数学:圆复习课件演示

人教版九年级上册教材数学:圆复习课件演示

圆的定义(集合观点)
• 圆是到定点的距离等于定长的点的集合。 – 圆上各点到定点(圆心)的距离都等于定长 (半径); – 到定点的距离等于定长的点都在圆上。
• 一个圆把平面内的所有点 分成了多少类?
• 你能模仿圆的集合定义思 想,说说什么是圆的内部 和圆的外部吗?
人教版九年级上册教材数学:圆复习 课件演 示
知识体系
基本性质
概 对 圆周角与 念 称 圆心角的
性 关系
垂 圆心角、 径 弧、弦之 定 间的关系 理 定理

直线与圆的 圆与圆的 正多边形 位置关系 位置关系 和圆
圆的定义(运动观点)
在一个平面内,线段OA绕它固 定的一个端点O旋转一周,另一 个端点A随之旋转所形成的图形 叫做圆。
固定的端点O叫做圆心,线段 OA叫做半径,以点O为圆心的圆, 记作☉O,读作“圆O”
B
人教版九年级上册教材数学:圆复习 课件演 示
A
人教版九年级上册教材数学:圆复习 课件演 示
C
O
C O
B
A B
B A
A
C
O
圆周角:顶点在圆上,并且两边都和圆相 交的角。 圆心角: 顶点在圆心的角.
人教版九年级上册教材数学:圆复习 课件演 示
人教版九年级上册教材数学:圆复习 课件演 示
画图:同一条弧所对的圆周角和圆心角 之间可能出现哪几种不同的位置关系?
人教版九年级上册教材数学:圆复习 课件演 示
A
AO=BO=CO=DO,
侧想半一弧=圆想弧A会D:B有=D将。什弧一么B个C关,圆系弧沿?A着C任一C 条直径O 对折D ,两
性A质O:=B圆O是=C轴O对=D称O图,形,任何B 一条直A 径所在

第24章 圆的复习-九年级数学上册教学课件(人教版)

第24章 圆的复习-九年级数学上册教学课件(人教版)

原 所示,则这个小圆孔的宽口AB的长度为 8 mm.

C


O
8mm
A
B

D

与圆有关的概念
典 1.圆:平面内到定点的距离等于定长的所有点组成的图形.
例 2.弦:连结圆上任意两点的线段.
3.直径:经过圆心的弦是圆的直径,直径是最长的弦.
原 4.劣弧:小于半圆周的圆弧.
理 5.优弧:大于半圆周的圆弧.
炼 【注意】(1)三角形的外心是三角形三边的垂直平分线的交点.
(2)一个三角形的外接圆是唯一的.

(3)三角形的内心是三角形三条角平分线的交点.

(4)一个三角形的内切圆是唯一的.
点与圆的位置关系
典 1.在△ABC中,∠C=90º,AC=1,BC=2,M是AB的中点,以点C为圆 例 心,1为半径作⊙C,则( C )
原 2.垂径定理的推论:平分弦(不是直径)的直径垂直于这条弦, 理 并且平分这条弦所对的两条弧;
精 3.垂径定理的推论:平分弧的直径垂直平分这条弧所对的弦. 炼
提 升
圆的基本性质
典 1.圆的对称性: 例 圆是轴对称图形,任意一条直径所在的直线都是它的对称轴.
原 2.有关圆心角、弧、弦的性质:

在同圆或等圆中,如果两个圆心角、
° 精 炼
提 升
典 6.如图,已知A、B、C、D是⊙O上的四点,延长DC,AB相交于点 例 E.若BC=BE.求证:△ADE是等腰三角形.
原 理
精 炼
提 升
典 7.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC. 例 (1)若∠CBD=39º,求∠BAD的度数; 原 (2)求证:∠1=∠2. 理

【公开课】人教版九年级数学上册圆复习课课件PPT

【公开课】人教版九年级数学上册圆复习课课件PPT
2
在Rt△ABC中,由勾股定理得:
AC AB2 BC 2 22 12 3
由(1)知,∠PAC= ∠PCA = ∠P= 60 °
【公开课】人教版九年级数学上册 第24章 圆复习课(课件)(共14张PPT)
PA=AC
3
【公开课】人教版九年级数学上册 第24章 圆复习课(课件)(共14张PPT)
3. 切线长定理
∵PA、PB是⊙O的两条切线
∴PA=PB,∠APO=∠BPO
【公开课】人教版九年级数学上册 第24章 圆复习课(课件)(共14张PPT)
A
O
P
B
【公开课】人教版九年级数学上册 第24章 圆复习课(课件)(共14张PPT)
例2、如图,已知AB为⊙O的直径,PA、PC为⊙O的切线,
A、C为切点, ∠BAC=30°. (1)求∠P的大小 (2)若AB=2,求PA的长(结果保留根号)
【公开课】人教版九年级数学上册 第24章 圆复习课(课件)(共14张PPT)
【公开课】人教版九年级数学上册 第24章 圆复习课(课件)(共14张PPT)
1. 切线的判定定理
2. 切线的性质定理
∵OC是半径,且AB⊥OC
∴AB与⊙O相切于点C
O
∵ AB与⊙O相切于点C,
OC是半径
.┐
A C B ∴ AB⊥OC
第二十四章 圆复习课 (1)
主要知识 圆的基本性质 与圆有关的位置关系 正多边形和圆 有关圆的计算
垂径定理
垂直于弦的直径平分弦, 并且平分弦所的两条弧.
C
A M└ ●O
B
若 ① CD是直径 ② 弦AB⊥CD
可推得
③AM=BM,
④A⌒C=B⌒C,
⑤A⌒D=⌒BD.

人教部初三九年级数学上册 圆的复习 名师教学PPT课件

人教部初三九年级数学上册 圆的复习 名师教学PPT课件

试一试,作辅助线,并讲一讲
注意:

●归纳2.
圆在中考常考的题型
1.选择题、填空题、解答题都有。 在填空题、选择题里常考的是单
独的一个知识点如:圆周角、圆心角关系、扇形面积、弧长、圆锥
侧面积的计算等等;
2.解答题常常是几个知识点综合起来考。常考的有:切线的性质与
判定,垂径定理或圆周角定理结合勾股定理或相似三角形来考。
半径与弦长计算,弦心距来中间站。 圆上若有一切线,切点圆心半径连。 切线长度的计算,勾股定理最方便。 要想证明是切线,半径垂线仔细辨。 有直径时径连弦,所对半圆出直角。 弧有中点圆心连,垂径定理要记全。 要想作个外接圆,各边作出中垂线。 还要作个内接圆,内角平分线梦圆。
心,OB为半径的圆交BC于点D,过D作DE⊥AC,垂足为E(如图
①).
证明:DE是☉O 的切线.
三.展示反馈
●归纳1.圆中常用辅助线的添加方法
1.连圆心,造半径; 2.作垂直(弦心距),用垂径和勾股定理; 3.有直径,出直角; 4.证明切线分两类,有交点时作半径,证垂直。
无交点时作垂直证半径; 5.有切线,作过切点的半径。
33. 如图,已知△ABC内接于☉O,AB为直径,∠CBA的平分线交 AC于点F,交☉O于点D,DE⊥AB于点E,且交AC于点P,连接AD.
(1)求证:∠DAC=∠DBA; (2)求证:P是线段AF的中点; (3)连接CD,若CD=3,BD=4,求☉O的半径和DE的长. 的半径和DE的长.
圆常作辅助线的口诀
方法1.(有交点时)连半径→证垂直→推切线 方法2.(没交点时)作垂直→证半径→推切线 切线长定理
二.问题探究
●通过典型例题的探究,归纳圆的常 用辅助线的添加方法. ●通过典型例题的探究,归纳圆的内 容在中考常考的题型.

九年级数学上册(人教版)第二十四章《圆》课件

九年级数学上册(人教版)第二十四章《圆》课件
(1)在同圆或等圆中,如果圆心角相等,那么它所 对的弧相等,所对的弦相等. (2)在圆中,如果弧相等,那么它所对的圆心角相 等,所对的弦相等. (3)在一个圆中,如果弦相等,那么它所对的弧相 等,所对的圆心角相等.
O A 2023/1/4
︵ ︵ D ∵ ∠COD =∠AOB ∴ AB = CD C ∴AB=CD
.r
O
S = nπr2
360
2023/1/4

S
=
1
2
lr
4.圆柱的展开图:
A
D
h Br C
S侧 =2πr h S全=2πr h+2 π r2
2023/1/4
5.圆锥的展开图:
a h
r S侧 =πr a S全=πr a+ π r2
2023/1/4
a 侧面
底面
常见的基本图形及结论:
AC
A
2023/1/4
构成等腰解疑难; 灵活应用才方便。
2023/1/4
典型例题:
1.如图, ⊙O的直径AB=12,以OA为直径的 ⊙O1交大圆的弦AC于D,过D点作小圆的 切线交OC于点E,交AB于F.
C
DE A O1 O F B
(1)说明D是AC的中点.
(2)猜想DF与OC的位 置关系,并说明理由. (3)若DF=4,求OF的长.
. (3)弦心距
O
2023/1/4
二. 圆的基本性质 1.圆的对称性: (1)圆是轴对称图形,经过圆心的每一条直 线都是它的对称轴.圆有无数条对称轴. (2)圆是中心对称图形,并且绕圆心旋转 任何一个角度都能与自身重合,即圆具 有旋转不变性.

2023/1/4
2.同圆或等圆中圆心角、弧、弦之间的关系:

最新人教版初中九年级上册数学【圆全章复习】教学课件

最新人教版初中九年级上册数学【圆全章复习】教学课件
请补全解答过程.
E
C
6
4
4D
H4
A
O
BF
10
综合运用
小结:
E
E
C
C
D
D
3
3
1 A2
O
BF
A
12
O
BF
综合运用
小结:
E
E
C D
C D
G
H
A
O
BF
A
O
BF
知识梳理
圆的对称性
圆的有关性质 弧、弦、圆心角之间的关系
同弧上的圆周角和圆心角的关系
圆 点、直线和圆的位置关系
点和圆的位置关系 直线和圆的位置关系
综合运用
例 如图,⊙O是△ABC的外接圆,若AB=6cm,∠C=60°,则⊙O的半径为 ________cm.
C
O
A
B
综合运用
方法1:作OD⊥AB于D,连接OA,OB.
∵∠C=60°,
∴∠AOB=2∠C=120°.
∵OA=OB,OD⊥AB于D, AB=6 cm,
∴△AOD中,∠ADO=90°,
知识梳理
圆的有关性质
圆的对称性 垂径定理 弧、弦、圆心角之间的关系 定理 同弧上的圆周角和圆心角的关系
圆周角定理
初中数学
重点回顾
圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.
A2 A1
A3
O
B
C
重点回顾
圆周角定理的推论 推论1:同弧或等弧所对的圆周角相等. 推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 推论3:圆内接四边形的对角互补.
切线的判定定理:经过半径的外端并且垂直于这 条半径的直线是圆的切线.

24.1.1 圆. 教学 课件(共21张PPT) 人教版九年级数学上册

24.1.1 圆. 教学 课件(共21张PPT)  人教版九年级数学上册

固定一点,拉直卷尺,旋转. 追问3:你能否用数学的几何元素来刻画这些关键的操作字眼吗?同时在 纸上画一画圆.
项目活动 探索定义 追问3:你能否用数学的几何元素来刻画这些关键的操作字眼吗?同时在纸上
画一画圆.
圆的旋转定义(描述性定义): 如图,在平面内,线段 OA 绕它固定的一个端点 O 旋转一周,则另一个端点 A 所形成的封闭曲线叫做圆. 其固定的端点 O 叫做圆心; 线段 OA 叫做半径,一般用 r 表示;
察两个圆是否能够重合.
等圆:能够完全重合的两个圆. 等弧:在同圆或等圆中,能够互相重合的弧.
深入思考 探究概念
思考4:长度︵相等的弧︵是等弧吗?
如图,如果 AB 和 CD 的拉直长度都是 10 cm,移动 并调整小圆的位置,是否能使这两条弧完全重合?
不可能完全重合
B D 这两条弧弯曲程度不同
“等弧”≠“长度相等的弧”
弦:连接圆上任意两点的__线__段__.
B 例如:AB、AC.
A
O
C 直径:经过__圆__心___的__弦____. 例如:AB.
直径是_最__长__的弦.
深入思考 探究概念 思考2:用弦将圆分成两部分,请动手画画有几种情况. A
C
O
A
B
O
弦将圆分成两个_不__相__等_的圆弧. 直径将圆分成两个相__等__的圆弧.
道树木的年龄.把树干的横截面看成是圆形的,如果一棵20 年树龄的树的树干直径是23cm,这棵树的半径平均每年增 加多少?
解:这棵树的直径平均每年增加:23÷20=1.15cm; 则其半径平均每年增加:1.15÷2=0.575cm.
课堂小结 收获反思 定义
旋转定义 集合定义
弦(直径)

人教版九年级上册数学《弧、弦、圆心角》圆教学说课复习课件

人教版九年级上册数学《弧、弦、圆心角》圆教学说课复习课件

练习
1.如图,AB,CD 是圆O 的两条弦.
(1)如果AB =CD,那么_____________,____________;
(2)如果
, 那么_____________,____________;
(3)如果∠AOB =∠COD,那么_________,__________;
(4)如果AB=CD,OE⊥AB,OF⊥CD,垂足分别
BOC COD DOE=35 ,
A
· O
B
75 .
巩固练习
判断正误.
× (1)等弦所对的弧相等. ( ) × (2)等弧所对的弦相等. ( ) × (3)圆心角相等,所对的弦相等. ( )
探究新知
素养考点 2 利用弧、弦、圆心角的关系证明相等
例2 如图,在⊙O中, A⌒B=A⌒C ,∠ACB=60°.
B. A⌒B>C⌒D D. 不能确定
课堂检测
能力提升题
如图,已知AB、CD为⊙O的两条弦,A⌒D=B⌒C
求证:AB=CD.
C
证明:连接AO,BO,CO,DO.
∵ A⌒D=B⌒C
B
O.
AOD BOC.
D
AOD+BOD=BOC+BOD. A
即AOB COD,
AB=CD.
课堂检测
拓广探索题 如图,在⊙O中,2∠AOB=∠COD,那么C⌒D=2A⌒B成立
为E,F,OE与OF 相等吗?为什么?
练习
2.如图,AB 是圆O 的直径, ∠AOE 的度数.
,∠COD=35°. 求
练习——易错点
下面的说法正确吗?为什么? 如图,因为∠AOB =∠A’OB ’, 所以
不正确,在同圆或等圆中,才有相等的圆心角所对弧相等.

第二十四章 圆复习【复习课件】九年级数学上册单元复习(人教版)

第二十四章 圆复习【复习课件】九年级数学上册单元复习(人教版)
【注意】(1)三角形的外心是三角形三条边的垂直平分线 的交点.(2)一个三角形的外接圆是唯一的.
知识梳理 考点2 与圆有关的概念 11.三角形的内切圆 内心:三角形的内切圆的圆心叫做这个这个三角形的内心. 【 注 意 】(1) 三 角 形 的 内 心 是 三 角 形 三 条 角 平 分 线 的 交 点.(2)一个三角形的内切圆是唯一的.
知识梳理 考点8 与切线相关的定理 (1)判定定理:经过圆的半径的外端且垂直于这条半径 的直线是圆的切线. (2)性质定理:圆的切线垂直于经过切点的半径. (3)切线长定理:经过圆外一点所画的圆的两条 切线,它们的切线长相等.这一点和圆心的连线 平分这两条切线的夹角.
课堂检测
1.如图,AB 是⊙O 的直径,点 C 在⊙O 上,过点 C 的直线
4.圆锥的侧面积 (1)圆锥的侧面展开图是一个 扇形 . (2)如果圆锥母线长为l,底面圆的半径为r,那么这
个扇形的半径为 l ,扇形的弧长为 2 r . (3)圆锥的侧面积为 lr .
(4)圆锥的全面积为 lr r2 .
知识梳理
考点9 与圆有关的计算
5.圆内接正多边形的计算
360
(1)正n边形的中心角为 n
半径决定大小;(2) 不在同一条直线上的
·
三个点确定一个圆.
知识梳理 考点2 与圆有关的概念 9.外接圆、内接正多边形:将一个圆n(n≥3)等分,依次连接 各等分点所得到的多边形叫作这个圆的内接正多边形,这个 圆是这个正多边形的外接圆. 10.三角形的外接圆 外心:三角形的外接圆的圆心叫做这个这个三角形的外心.
知识梳理
考点9 与圆有关的计算
1.弧长公式 n R
半径为R的圆中,n°圆心角所对的弧长l=__1_8_0__. 2.扇形面积公式

九年级数学上册第二十四章圆的教学课件人教版

九年级数学上册第二十四章圆的教学课件人教版
垂直于弦的直径(1)
探究
一、用纸剪一个圆,沿着圆的任意一 条直径对折,重复做几次,你发现了 什么?
圆是轴对称图形,任
何一条直径所在的直
O
线都是它的对称轴。
探究
二、如图,AB是⊙O的一条弦,作直
径CD,使CD⊥AB,垂足为E。
(1)这个图形是轴对称
C
图形吗?如果是,对
称轴是什么?
O
A
B
D
探究
二、如图,AB是⊙O的一条弦,作直
正方形。
C
若AB与AC不相等,
则ADOE是什么四
边形?
A
D
O B
范例
例2、如图,在以O为圆心的两个同心
圆中,大圆的弦AB交小圆与C、D两
点。
求证:AC=BD。
重要辅助线
O
CD
A
B
垂直于弦的直径
巩固
7、如图,已知AC是⊙O的直径,AB 是弦,OM⊥AB。 求证:BC=2OM。
C O
A
B
巩固
8、已知⊙O的半径为5cm,⊙O的两 条平行弦AB=8cm,CD=6cm,求弦 AB与CD之间的距离。
AC=BC,AD=BD?
C
O AE
D
O
BA D
C A
B
C B
E O
D
范例
例1、如图,在⊙O中,弦AB长8cm, 圆心O到AB的距离为3cm,求的⊙O 半径。
转化思想
A
B
圆的线段问题转化
O
为直角三角形问题
巩固
2、已知:在⊙O中,弦AB长8cm,
⊙O半径为5cm,求圆心O到AB的
距离。
A
B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的定义(集合观点)
• 圆是到定点的距离等于定长的点的集合。 – 圆上各点到定点(圆心)的距离都等于定长 (半径); – 到定点的距离等于定长的点都在圆上。
• 一个圆把平面内的所有点 分成了多少类?
• 你能模仿圆的集合定义思 想,说说什么是圆的内部 和圆的外部吗?
圆的定义辨析
• 篮球是圆吗?
– 圆必须在一个平面内
外接圆的圆心叫做三角形的外心,
C CC
三角形叫做圆的内接三角形。
B
A AA
O OO C
B B
问题1:如何作三角形的外接圆?
如何找三角形的外心?
问在题三角2:形三内角吗形?的外心一定▲▲AABAB∠CCC是是=钝锐9角0角°三三O角角形形
B
A
AO=BO=CO=DO,
侧想半一弧=圆想弧A会D:B有=D将。什弧一么B个C关,圆系弧沿?A着C任一C 条直径O 对折D ,两
思考: 1、“同圆或等圆”的条件能否去掉? 2、判断正误:在同圆或等圆中,如果两个 圆心角、两条弧、两条弦、两条弦心距、两个 圆周角中有一组量相等,那么它们所对应的 其余各组量也相等。
B
C
E
A
O
D
O
A
B
F
C
D
推论2 半圆(或直径)所对的圆周角是90°; 90°的圆周角所对的弦是直径。
推论3 如果三角形一边上的中线等于这条边 的一半,那么这个三角形是直角三角形。
B
立吗?
A
变式3:EA=_F_B__, EC=__F_D__。
C
E
O
F
D
B
AC
DB
O
变式4:_O_A_=_O_B_
AC=BD.
变式5:_O_C_=_O_D_
AC=BD.
• 如图,P为⊙O的弦BA延长线上一点, PA=AB=2,PO=5,求⊙O的半径。
B
M
A
P
关于弦的问题,常常需
O
要过圆心作弦的垂线段,

4.根据结构来梳理。按照情节的开端 、发展 、高潮 和结局 来划分 文章层 次,进而 梳理情 节。

5.根据场景来梳理。一般一个场景可 以梳理 为一个 情节。 小说中 的场景 就是不 同时间 人物活 动的场 所。

6.根据线索来梳理。抓住线索是把握 小说故 事发展 的关键 。线索 有单线 和双线 两种。 双线一 般分明 线和暗 线。高 考考查 的小说 往往较 简单,线 索也一 般是单 线式。
C
C
C
O


B
A

O

A
O A
分类讨论 B
完全归纳法 B
圆周角定理
C
O
B
C O
D A
1、已知∠AOB=75°,求: ∠ACB
O
2、已知∠AOB=120°,
A 求: ∠ACB
B
3、已知∠ACD=30°,求: ∠AOB
4、已知∠AOB=110°,求:
B ∠ACB
O
A
C A
B C
• 定理:一条弧所对的圆周角等于它所对 的圆心角的一半。
• 以3cm为半径画圆,能画多少个? • 以点O为圆心画圆,能画多少个? • 由此,你发现半径和圆心分别有什么作用?
– 半径确定圆的大小;圆心确定圆的位置
• 圆是“圆周”还是“圆面”?
– 圆是一条封闭曲线
• 圆周上的点与圆心有什么关系?
点与圆的位置关系
• 点与圆的位置关系是由什么来决定的 呢? 点到圆心的距离
B
A B
B A
A
C
O
圆周角:顶点在圆上,并且两边都和圆相 交的角。
圆心角: 顶点在圆心的角.
画图:同一条弧所对的圆周角和圆心角 之间可能出现哪几种不同的位置关系?
C
C
C
O
O
A
B
A
O A
B
B
回顾:圆周角等于它所对的弧的度数的一半。
猜想:圆周角和圆心角都是与圆有关的角, 它们之间有什么关系?
一条弧所对的圆周角等于它所对 的圆心角的一半
n°弧
C
一般地,n°的圆心角
对着n°的弧。
D
n°圆心角
圆心角的度数
O
A
1°圆心角 B
1°弧 和它所对的弧 的度数相等。
圆周角
角的顶点 在圆心
F
D C
O
圆心角:如∠BOA 圆内角:如∠BCA
圆外角:如∠BFA
圆周角:如∠BDA
•角的顶点在圆周上 •是否顶点在圆周上 的角就是圆周角呢?
B
A
C
C
O
O
知识体系
基本性质
概 对 圆周角与 念 称 圆心角的
性 关系
垂 圆心角、 径 弧、弦之 定 间的关系 理 定理

直线与圆的 圆与圆的 正多边形 位置关系 位置关系 和圆
圆的定义(运动观点)
在一个平面内,线段OA绕它固 定的一个端点O旋转一周,另一 个端点A随之旋转所形成的图形 叫做圆。
固定的端点O叫做圆心,线段 OA叫做半径,以点O为圆心的圆, 记作☉O,读作“圆O”
(如:∠AOB)
A 弦心距:从圆心到弦的距离。
(如:OC)
O
C
B
如图,∠AOB=∠A`OB`,OC⊥AB, OC`⊥A`B`。
猜想:弧AB与弧A`B`,AB与A`B`, OC与OC`之间的关系,
A
定理 在同圆或等圆中, 相等的圆心角所对的弧相等, 所对的弦相等,所对的弦的 弦心距相等。
C O
B A' C'
性A质O:=B圆O是=C轴O对=D称O图,形,任何B 一条直A 径所在
的直弧线A都D=是弧它B的C=对弧称A轴C 。
=弧BD。
C
D
O
观察右图,有什么等量关系?
AO=BO=CO=DO,弧 AD=弧BD,弧AC= C 弧BC, AE=BE 。
垂直于B 弦的直A

O
ED
B
垂径定理 垂直于弦的直径平分这 条弦,并且平分弦所对的两条弧。
– 怎样的两个圆叫同心圆?
– 怎样的两个圆叫等圆?
– 同圆和等圆有什么性质?
– 什么叫等弧?
思考:确定一条直线的条件是什么?
类比联想:是否也存在由几个点确定一个圆呢? 讨论:经过一个点,能作出多少个圆?
经过两个点,如何作圆,能作多少个? 经过三个点,如何作圆,能作多少个?
经过三角形的三个顶点的圆叫做三角形的外接圆,

2.它由一系列展示人物性格,反映人物 与人物 、人物 与环境 之间相 互关系 的具体 事件构 成。

3.把握好故事情节,是欣赏小说的基础,也是整 体感知 小说的 起点。 命题者 在为小 说命题 时,也必 定以情 节为出 发点,从整体 上设置 理解小 说内容 的试题 。通常 从情节 梳理、 情节作 用两方 面设题 考查。
C E
D O
A
B
A O
B C
F 如等图弧,如所果对弧的A圆B=周弧角C相D,等那;么
∠E在和同∠F圆是中什,么关相系等?的反圆过周来角呢?
D
所对的弧也相等
E
如 如图 果,弧⊙ABO等=1和圆弧⊙C也DO成,2是立那等么圆,
O1
A O2
F
∠E和∠F是什么关系?反过
D
来呢?
C
B
推论1 同弧或等弧所对的圆周角相等; 同圆或等圆中,相等的圆周角所对的弧相等。
C
E • 什么时候圆周角是直角?
D
反过来呢?
O
• 直角三角形斜边中线有什
A
B 么性质?反过来呢?
已知:点O是ΔABC的外心, ∠BOC=130°,求∠A的度数。
C
C
A
O
A
B
B O

1.情节是叙事性文学作品内容构成的 要素之 一,是叙 事作品 中表现 人物之 间相互 关系的 一系列 生活事 件的发 展过程 。
如果圆的半径为r, 点到圆心的距离为d,则:
点在圆上 d=r 点在圆内 d<r 点在圆外 d>r
• 弦和直径
与圆有关的概念
– 什么是弦?什么是直径?
– 直径是弦吗?弦是直径吗?
• 弧与半圆
– 什么是圆弧(弧)?怎样表示?
– 弧分成哪几类?
– 半圆是弧吗?弧是半圆吗?
• 弓形是什么?
• 同心圆、同圆、等圆和等弧
①④④ ⑤
② ③ ⑤① ② ③
② ④
①① ④② ⑤④

C


A
E
O
D
B
(1)平分弦(不是直径)的直径垂直 于弦,并且平分弦所对的两条弧;
(2)弦的垂直平分线经过圆心,并 且平分弦所对的两条弧;
(3)平分弦所对的一条弧的直径, 垂直平分弦并且平分弦所对的另一条弧。
A
E

C
O
D
B
圆的两条平行弦所夹的弧相等。
• 也可以理解为:一条弧所对的圆心角是 它所对的圆周角的二倍;圆周角的度数 等于它所对的弧的度数的一半。
推论
• 弧相等,圆周角是否相等?反过来呢?
• 什么时候圆周角是直角?反过来呢?
• 直角三角形斜边中线有什么性质?反过 来呢?
如图,比较同∠A弧C所B、对∠的AD圆B、 ∠AEB的大小 周角相等
E
B'
题设
结论


()
前 提
圆 或 等


( 条 件 )
圆 心 角 相 等
圆心角所对的弧相等, 圆 心角所对的弦相等, 圆心 角所对弦的弦心距相等。
相关文档
最新文档