数学人教版九年级上231图形的旋转教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:23.1图形的
旋转
一、教学目标
1.感知图形的旋转,知道什么是图形的旋转、旋转中心和旋转角,会指出实例中的旋转中心和旋转角.
2.经历用硬纸板画旋转后图形的过程,加深对图形旋转的感知,发展空间观念.
二、教学重点和难点
1.重点:图形的旋转概念.
2.难点:图形的旋转概念.
三、教学过程
(一)创设情境,导入新课
师:在日常生活中我们经常能看到各种美丽的图案,这些美丽的图案是怎么设计出来的?让我们仔细来看一看.
(师出示下面的图案)
(图在七年级下册P27)
师:(指图案)大家仔细看一看,这个图案是怎么设计的?
生:……(让几名同学发表看法)
师:(指准图案)这是一个鸽子,把这个鸽子向右平移,得到这个鸽子,再向右平移得
到这个鸽子,再向右平移得到这个鸽子,这样就得到了这一排鸽子;同样,我们把这个鸽子向下平移,得到这个鸽子,再向右平移得到这个鸽子,这样平移下去,又得到了这一排鸽子;同样方法可以得到第三排鸽子.可见这个图案是用一个鸽子经过平移得到的(边讲边板书:平移).
师:我们再来看一个图案. (师出示下面的图案)
(图在八年级上册P48)
师:(指图案)大家看一看,这个图案又是怎么设计的?
生:……(让几名同学发表看法)
师:这个图案可以看成是把(指准)这个图平移到这里,再平移到这里,再平移到这里,最后形成了这个图案.这是同学们都看到的,但这个图案的形成还可以换一种方式来看,怎么换一种方式来看?(稍停)
师:(指准)作这个图关于这条直线的轴对称图形,(指准)得到这个图形;再作这个图关于这条直线的轴对称图形,(指准)得到这个图形;再作这个图关于这条直线的轴对称图形,(指准)得到这个图形.这样作下去,就形成了这个图案.可见这个图案是(指准)这个图经过反复作轴对称图形而形成的(边讲边板书:轴对称). 师:下面我们再来看一个图案. (师出示下面的图案)
(图在九年级上册P73)
师:(指图案)大家看,这个图案又是怎么设计的?
生:……(让几名同学发表看法)
(这个图案可以看成是利用轴对称而形成,也可以看成是利用旋转而形成,如果学生没有提出轴对称,教师也不必提)
师:(指准图案)这是一片花瓣,把这片花瓣这样旋转得到这片花瓣,再这样旋转得到这片花瓣,最后形成了花的图案.可见这个图案是用一片花瓣经过旋转得到的(边讲边板书:旋转)
师:看了这三个图案,我们可以回答开始时的那个问题:美丽的图案是怎么设计出来的?谁来回答这个问题?
生:……(让几名同学回答)
师:(指准板书)美丽的图案是利用平移、轴对称、旋转设计出来的.
师:平移、轴对称、旋转是图形变换的三种方式,平移我们在初一的时候已经学过,轴对称我们在初二的时候已经学过,从本节课开始我们要学习旋转.(板书课题:23.1图形的旋转)
(二)尝试指导,讲授新课
师:什么是图形的旋转?(边讲边指准图案)所谓图形的旋转就是把(要指准一片花瓣)一个图形绕着某一点转动一个角度.这个点0(边讲边在图中标0)叫做旋转中心(板书:点0叫做旋转中心),转动的角(边讲边在图中标角)叫做旋转角(板书:转动的角叫
做旋转角)
.
师:(指准图案)大家算一算,这个旋转角等于多少?(让生算一会儿师再讲)这是周角,旋转角是周角的五分之一,所以旋转角是360°÷5=72°.
师:图形上的点P(边讲边在图中标点P)经过旋转变成P′(边讲边在图中标P′),点P与点P′叫做这个旋转的对应点(板书:点P与点P′叫做这个旋转的对应点). (标图后,原图成下图)
(三)试探练习,回授调节
1.填空:如图,钟表的时针在不停地旋转,
从3时到5时,时针的旋转中心是点,
旋转角等于°,点B 的对应点是点 .
2.填空:如图,杠杆绕支点转动撬起重物,杠杆的旋转中心是点,旋
转角是∠,点A的对应点是点 .
3.如图,扎西坐在旋转的秋千上,请在图中画出点A,B,C的对应点A′,B′,C′. (四)尝试指导,讲授新课
师:前面我们学习了图形旋转的概念,下面我们要动手画一画旋转图形. 师:怎么画旋转图形?(稍停)画旋转图形有一个很好的办法.
师:(演示挖有三角形洞的硬纸板)这是一块硬纸板,里面挖了一个三角形.利用硬纸板先画一个三角形(边讲边画,画好不要动),现在我们以这个顶点为旋转中心旋转(边讲边旋转),好,就转到这里,再画一个三角形(边讲边画,然后移开硬纸板,画好的图大致如下)
师:(指准图)这个三角形经过旋转得到了这个三角形,点O是旋转中心(边讲边在图中标O),点A的对应点是点A′(边讲边在图中标A,A′),点B的对应点是点B′(边讲边在图中标B,B′).
师:(指准图)OA转到OA′,可见∠AOA′等于旋转角(边讲边标角).
(标后原图成下图)
师:(指准图)刚才我们画的旋转图形是以顶点为旋转中心,如果我们以三角形外的一
点为旋转中心,旋转图形又是怎么样的呢?
师:(演示挖有三角形洞的硬纸板)和刚才一样,利用硬纸板先画一个三角形(边讲边
画,画好不要动),
现在我们以三角形外的一点为旋转中心旋转(硬纸板上要挖一个小洞为旋转中心,并用粉笔标明位置,边讲边旋转),好,就转到这里,再画一个三角形(边讲边画,然后移开硬纸板,画好的图大致如下).
OB/ABA/
师:(指准图)这个三角形经过旋转得到这个三角形,点O是旋转中心(边讲边在图中标O),点A的对应点是点A′(边讲边在图中标A,A′),点B的对应点是点B′(边讲边在图中标B,B′),点C的对应点是点C′(边讲边在图中标C,C′).
师:(指图)在这个三角形的旋转中,哪个角等于旋转角?(让生思考一会儿)
师:(用虚线连接OA,OA′,并指准)OA转到OA′,可见∠AOA′等于旋转角(边讲边