频数和频率基础题30道选择题附答案
第三章 频数及其分布复习题及答案
第三章频数及其分布一、选择题:(每题3分,共30分)1.某地区A医院获得2018年10月在该院出生的20名初生婴儿的体重数据。
现在要了解这20名初生婴儿的体重分布情况,需考察哪一个特征数----------------------------- ()A.极差B.平均数C.方差D.频数2.为了要了解一批数据在各个范围内所占比例的大小,将这批数据分组,落在各个小组里的数据个数叫做 ----------------------------------------------------------------()A.频数B.频率C.样本容量D.频数累计3.已知数据:25,21,23,25,29,27,28,25,27,30,22,26,25,24,26,28,26,25,24,27。
在列频数分布表时,如果取组距为2,那么落在24.5~26.5这一组的频率是()A.0.6 B.0.5 C.0.4 D.0.34.一个样本分成5组,第一、二、三组中共有160个数据,第三、四、五组共有260个数据,并且第三组的频率是0.20,则第三组的频数是 ---------------------------------- ()A.50B.60C.70D.805.“I am a good student.”这句话中,字母”a“出现的频率是------------------- ()A.2B.215 C.118 D.1116.某班共有45位同学,其中近视眼占60%,下列说法不正确的是 ----------------- ()A.该班近视眼的频率是0.6。
B.该班近视眼的频数是27。
C.该班近视眼的频数是0.6。
D.该班有18位视力正常的同学。
那么该城市一年中日平均气温为26℃的约有 ---------------------------------- ()A.70天B.71天C.72天D.73天8.已知样本:25,28,30,27,29,31,33,36,35,32,26,29,31,30,28,那么频率为0.2的范围是 ---------------------------------------------------------------- ()A.25~27B. 28~30C. 31~33D. 34~369. 在统计中,频率分布的主要作用是 ------------------------------------------()A.可以反映总体的平均水平B.可以反映总体的波动大小C.可以估计总体的分布情况D.可以看出总体的最大值和最小值0.110.某班50名学生期末考试数学成绩(单位:分)的频率分布直方图如图所示,其中数据不在分点上,对图中提供的信息作出如下判断:①成绩在49.5~59.5分数段的人数与89.5~100分数段的人数相等; ②从左到右,第四小组的频率是0.3; ③成绩在79.5分以上的学生有20人; ④本次考试成绩的中位数落在第三小组。
备战中考数学基础必练(浙教版)频数与频率(含解析)
2019备战中考数学基础必练(浙教版)-频数与频率(含解析)一、单选题1.某校有500名学生参加外语口语考试,考试成绩在70分~85分之间的有120人,则这个分数段的频率是()A.0.2B.0.12C.0.24D.0.252.某校七年级三班有50位学生,他们来上学有的步行,有的骑车,还有的乘车,根据表中已知信息可得()A.a=18,d=24%B.a=18,d=40%C.a=12,c=24%D.a=12,c=40%3.嘉嘉将100个数据分成①﹣⑧组,如下表所示,则第⑤组的频率为()A.11B.12C.0.11D.0.124.抛一枚普通硬币10次,其中4次出现正面,则出现正面的频率为()A.2.5B.1.6C.0.6D.0.45.对某班40同学的一次数学成绩进行统计,适当分组后80~90分这个分数段的划记人数为“”,那么此班在这个分数段的人数占全班人数的百分比是()A.20%B.40%C.8%D.25%6.掷一枚质地均匀的硬币50次,硬币落地后,出现正面朝上的次数为20次,则正面朝上的频率为()A. B. C. D.17.给定一组数据如下,14,14,14,16,16,17,17,17,20,20,20,20,20,25,数17出现的频数与频率分别为()A.3和B.17和C.3和D.均不对8.有40个数据,共分成6组,第1~4组的频数分别为10,5,7,6,第5组的频率是0.1,则第6组的频数是()A.8B.28C.32D.409.有一个样本有100个数据,落在某一组内的频率是0.3,那么落在这一组内的频数是()A.50B.30C.15D.310.在频数分布表中,各小组的频数之和()A.小于数据总数B.等于数据总数C.大于数据总数D.不能确定二、填空题11.某班把学生分成5个学习小组,前4个小组的频率分别是0.04、0.04、0.16、0.34,第三个小组的频数是8,则第5小组的频率是________。
初二上册数学频数和频率同步练习题
初二上册数学频数和频率同步练习题
初二上册数学频数和频率同步练习题
1.列各数中可以用来表示频率的是()
A.-0.1
B.1.2
C.0.4
D.3
答案:C
解析:频率是从0到1之间的数,不能小于0,也不能大于1.
A.18
B.0.4
C.0.3
D.0.35
答案:C
解析:可由“频率=频数÷数据总数”求.
3.(2011四川资阳)现有50张大小、质地及背面图案均相同的.北京奥运会吉祥物福娃卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘福娃的名字后原样放回,洗匀后再抽,不断重复上述过程,最后记录抽到欢欢的频率为20%,则这些卡片中欢欢约为张.
解析:这些卡片中欢欢约有50×20%=10张.
答案:10
4.(2011四川成都)某校九年级一班对全班50名学生进行了“一周(按7天计算)做家务劳动所用时间(单位:小时)”的统计,其频率分布如下表:
一周做家务劳动所用时间(单位:小时)1.522.534
频率0.160.260.320.140.12
那么该班学生一周做家务劳动所用时间的平均数为___________小时,中位数为___________小时.
解析:平均数为
0.16×1.5+0.26×2+0.32×2.5+0.14×3+0.12×4=2.46,中位数应在第25、26个上,故都在2.5小时这个时间内.
答案:2.46;2.5。
青岛版数学九年级下册6.2《频数与频率》练习题及答案
6.2 频数与频率一、选择题(共20小题;共100分)1. 下表是我国部分城市气象台对五月某一天最高温度的预报,当天预报最高温度数据的中位数是2. 频数、频率与实验总次数之间的关系是 ( )A. 频数越大,频率越大B. 总次数一定时,频数越大,频率可无限大C. 频数与总次数成正比D. 频数一定时,频率与总次数成反比3. 调查某班名同学的跳高成绩时,在收集到的数据中,不足米的数出现的频率是,则达到或超过米的数出现的频率是 ( )A. B. C. D.4. 某学校为了了解九年级学生体能情况,随机选取名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图.学生仰卧起坐次数在之间的频率为A. B. C. D.5. 绘制频数分布直方图时,计算出最大值与最小值的差为,若取组距为,则最好应分( )A. 组B. 组C. 组D. 组或组6. 在一个不透明的布袋中装有红色、白色玻璃球共个,除颜色外其他完全相同.小明通过多次摸球试验发现,摸到红色球的频率稳定在左右,则口袋中红色球可能有 ( )A. 个B. 个C. 个D. 个7. 某校为了了解九年级学生的体能情况,随机抽查了其中的名学生,测试了分钟仰卧起座的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起座次数在次之间的频率是A. B. C. D.8. 某市对名年满岁的男生的身高进行了测量,结果身高(单位: )在这一小组的频率为,则该组的人数为 ( )A. 人B. 人C. 人D. 人9. 在一个不透明的袋子里装有个黑球和若干个白球,它们除颜色外都相同.在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用如下办法:随机从中摸出一球,记下颜色后放回袋中,充分摇匀后,再随机摸出一球,记下颜色,,不断重复上述过程.小明共摸次,其中次摸到黑球.根据上述数据,小明估计口袋中白球大约有 ( )A. 个B. 个C. 个D. 个10. 将个数据分成个组,如下表:则第六组的频数为 ( )A. B. C. D.11. 大课间活动在我市各校蓬勃开展.某班大课间活动抽查了名学生每分钟跳绳次数,获得如下数据(单位:次):,,,,,,,,,,,,,,,,,,,.则跳绳次数在这一组的频率是 ( )A. B. C. D.12. 王老师对本班名学生的血型作了统计,列出如下的统计表,则本班型血的人数是组别型型型型频率A. 人B. 人C. 人D. 人13. 某校对名女生的身高进行了测量,身高在 (单位: )这一小组的频率为.,则该组的人数为 ( )A. 人B. 人C. 人D. 人14. 下列说法正确的是 ( )A. 频数越小,频率越大B. 频数大,频率也一定大C. 频数一定时,频率越小,总次数越大D. 频数很大时,频率可能超过15. 对个数据进行处理时,适当分组,各组数据个数之和与百分率之和分别等于 ( )A. ,B. ,C. ,D. ,16. 一个容量为的样本最大值为,最小值,取组距为,则可以分成 ( )A. 组B. 组C. 组D. 组17. 在样本的频数分布直方图中,有个小长方形,若中间一个小长方形的面积等于其它个小长方形面积的和的四分之一,且样本数据有个,则中间一组的频数为 ( )A. B. C. D.18. 已知一组数据,,,,,,,,,,,,,,,,,,,,那么频率为的范围是 ( )A. B. C. D.19. 为了了解某地区初三学生的身体发育情况,抽查了该地区名年龄为岁- 岁的男生体重(),得到频率分布直方图如下:根据上图可得这名学生中体重大于等于小于等于的学生人数是A. B. C. D.20. 在对某地区的一次人口抽样统计分析中,各年龄段(年龄为整数)的人数如下表所示,请根据此表回答下列问题.样本年龄在 A.B.C.D.二、填空题(共4小题;共20分)21. 对某中学同年龄的 名女学生的身高进行测量,得到一组数据,其中最大值是 ,最小值是 ,对这组数据进行整理时,打算把它们分成 组,则组距是 .22. 某班级 名学生在阶段性测试中,分数段在 分的频率为 ,则该班级在这个分数段的学生有 人.23. 已知一个县有 人参加全国初中物理竞赛,把他们的成绩分为六组,第一组到第四组的频数分别是 , , , ,第五组的频率是 ,则第六组的频率是 .24. 七(一)班同学为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据整理如下表(部分):若该小区有 户家庭,据此估计该小区月均用水量不超过 的家庭约有 户.三、解答题(共5小题;共65分)25. 某校八年级所有女生的身高统计数据如下表,请回答下列问题:(1) (2) 身高在 到 的女生有多少人?(3) 一女生的身高恰好为,哪一组包含这个身高?这一组出现的频数、频率各是多少?26. 以下问题中的数据在美国的历史上都是真实的,试对此现象进行分析:(1) 亚利桑那州历来是一个风景优美,气候宜人的地方,尤其有利于肺结核病人的疗养、康复.可是十九世纪有一位统计学家发现,在亚利桑那州死于肺结核的人数远较其他州多,患者比例普遍达到其他州的至倍.人们一度对这里优美的环境望而却步,给当地的旅游、疗养业造成了巨大的影响.(2) 上个世纪,某地的房产开发商曾对当时每户家庭人数进行过较大规模的调查,得到的结论是平均每户人.据此,在当年的住房设计中主要考虑了适宜人家庭居住的户型,结果造成了滞销,而适宜至人家庭居住的小户型和人以上的大户型却供不应求.27. 九(1)班同学为了解2011 年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.请解答以下问题:月均用水量频数户频率(1) 把上面的频数分布表和频数分布直方图补充完整;(2) 求月均用水量不超过的家庭数占被调查家庭总数的百分比;(3) 若该小区有户家庭,根据调查数据估计,该小区月均用水量超过的家庭大约有多少户?28. 我市启动了第二届“美丽港城•美在阅读”全民阅读活动.为了解市民每天的阅读时间情况,随机抽取了部分市民进行调查.根据调查结果绘制如下尚不完整的频数分布表:(1) 补全表格;(2) 将每天阅读时间不低于的市民称为“阅读爱好者”.若我市约有万人,请估计我市能称为“阅读爱好者”的市民约有多少万人?29. 5 月23,24日,兰州市九年级学生进行了中考体育测试.某校抽取了部分学生的一分钟跳绳测试成绩,将测试成绩整理后作出如右统计图.甲同学计算出前两组的频率和是,乙同学计算出第一组的频率为,丙同学计算出从左至右第二、三、四组的频数比为.结合统计图回答下列问题:(1) 这次共抽取了多少名学生的一分钟跳绳测试成绩?(2) 若跳绳次数不少于次为优秀,则这次测试成绩的优秀率是多少?(3) 如果这次测试成绩的中位数是次,那么这次测试中,成绩为次的学生至少有多少人?答案第一部分1. B2. D3. B4. D5. C6. B7. A8. A9. B 10. D11. B 12. A 13. B 14. C 15. A16. B 17. B 18. D 19. C 20. A第二部分21.22.23.24.第三部分25. (1) 这个学校八年级共有女生(人).25. (2) 身高在到的女生有(人).25. (3) 从上表可以看出,在第组,第组出现的频数是,频率为.26. (1) 由于亚利桑那州的气候、环境有利于肺结核病人的康复,所以必然会有大量外地患者前来疗养,患者比例、死亡人数的增加就不足为奇.要正确评价当地环境对肺结核患者的作用,应同时调查肺结核病人的治愈、好转率,当地居民中肺结核的发病率等.26. (2) 平均每户人并不表示大多数家庭规模为近人.开发商在关注家庭人数平均数、众数的同时应对数据作全面分析,并注重对近期准备购房对象作调查.事实上,当地媒体事后公布的数据是全部家庭中,人家庭占,人家庭占,人以上家庭占;而两年内购买新房的家庭中人家庭占,人家庭占,人以上家庭占.月均用水量频数户频率27. (1)27. (2) .即月均用水量不超过的家庭数占被调查的家庭总数的.27. (3) .所以根据调查数据统计,该小区月均用水量超过的家庭大约有户.28. (1)28. (2) (万人).答:我市能称为“阅读爱好者”的市民约有万人.29. (1) 第二组的频率为,(名),这次共抽取了名学生的一分钟跳绳测试成绩.29. (2) 第一组人数为(人),第三组人数为人,第四组人数为人.这次测试的优秀率为.29. (3) 成绩为次的学生至少有人.。
初三年级数学下学期《频数与频率》课后练习
初三年级数学下学期《频数与频率》课后练习学习是一个边学新知识边牢固的过程,对学过的知识一定要多加练习,这样才能进步,所以小编为大家整理了一份频数与频率课后练习,供大家参照。
一、选择题 (每题 5 分,共 30 分)1.一个扇形统计图中,扇形 A.B.C.D 的面积之比为2∶ 1∶ 4∶ 5,则最大扇形的圆心角为( )A.80B.100C.120D.150分组频数频率151.5~156.5~156.5~ 166.56a166.5~171.5~2.某校为了认识九年级全体男生的身体发育情况,对20名男生的身高进行了测量(测量结果均为整数,单位:厘米).将所得的数据整理后,列出频率分布表,以下表所示:则以下结论中: (1)此次抽样解析的样本是20 名学生 ;(2)频率分布表中的数据a=0.30;(3) 身高 167cm(包括 167cm) 的男生有9 人,正确的有 ( )A.(1)(2)(3)B.(1)(2)C.(1)(3)D.(2)(3)4.如图,是一个正在绘制的扇形统计图,整个圆表示某班参加体育活动的总人数,那么表示参加立定跳远训练的人数占总人数的 35%的扇形是 ( )7.如图为 2019~ 2019 年我国国内生产总值年增添率的变化情况,从图上看,以下结论中不正确的选项是( )A.2019 ~ 2019 年,国内生产总值的年增添率逐年减少B.2019 年国内生产总值的年增添率开始上升C.这 7 年中,每年的国内生产总值不断增添D.这 7 年中,每年的国内生产总值有增有减5.某校宣告了该校反响各年级学生体育达标情况的两张统计图,该校七 .八 .九三个年级共有学生800 人.甲.乙.丙三个同学看了这两张统计图后,甲说:七年级的体育达标率最高.乙说:八年级共有学生264 人 .丙说:九年级的体育达标率最高.甲.乙.丙三个同学中,说法正确的选项是( )A. 甲和乙B.乙和丙C.甲和丙D.甲和乙及丙6.长三角 16 个城市中浙江省有 7 个城市 .以下列图分别表示 2019 年这 7 个城市 GDP( 公民生产总值 ) 的总量和增添快度 .则以下对嘉兴经济的议论,错误的选项是( )A.GDP 总量列第五位B.GDP 总量高出平均值C.经济增添快度列第二位D. 经济增添快度高出平均值二、填空题 (每题 5 分,共 30 分)3.一个样本含有下面10 个数据: 52, 51, 49, 50, 47, 48,50, 51,48, 53,则最大的值是_________,最小的值是_________,若是组距为 1.5,则应分成 ________组 .5.在数据 55,66,23,33,22,65,84,87,23,24,88 中,大于等于 50 而小于等于70 的数共有 _________个6.在扇形统计图中,有两个扇形的圆心角度数之比为 3∶ 4,且较小扇形表示 24 本课本书,则较大扇形表示 ________本课本书 .10.一组数据共 50 个,分别落在 5 个小组内,第一 .二 .三.四组的数据分别为,则第五小组的频数和频率分别为________._________.11.已知样本 25,21, 23,25, 27,29, 25,28, 30,29,26, 24,25, 27,26, 22,24, 25,26, 28.若取组距为2,那么应分为 ______组,在 24.5~26.5 这一组的频数是_______.12.小亮检查本班同学的身高后,将数据绘制成以以下列图所示的频数分布直方图(每小组数据包括最小值,但不包括最大值.比方,第二小组数据x 满足: 145150,其他小组的数据近似).设班上学生身高的平均数为,则的取值范围是_______________.三、解答题 (每题 10 分,共 40 分)13.甲.乙两人在某公司做见习销售员,销售小天鹅洗衣机,他们在 1~ 8 月份的销售情况以下表所示:月份1月2月3月4月5月6月7月8月甲的销售量 (单位:台 )78676677乙的销售量 (单位:台 )56567789(1)在右边给出的坐标系中,绘制甲.乙两人这8个月的月销售量的折线图: (甲用实线 ;乙用虚线 )(2)请依照 (1)中的折线图,写出 2 条关于甲 .乙两人在这8 个月中的销售情况的信息.①② .14.为了认识学生参加体育活动的情况,学校订学生进行随机抽样检查,其中一个问题是你平均每天参加体育活动的时间是多少 ?,共有 4 个选项:A.1.5 小时以上B.1 ~ 1.5 小时C.0.51 小时D.0.5 小时以下图 1.2 是依照检查结果绘制的两幅不完满的统计图,请你依照统计图供应的信息,解答以下问题:(1)本次一共检查了多少名学生?(2)在图 1 中将选项 B 的部分补充完满;(3)若该校有3000 名学生,你估计全校可能有多少名学一生均每天参加体育活动的时间在0.5 小时以下 .图1 图215.以下列图表示的是某班同学衣服上口袋的数目:(1)从图中可否可以得出以下信息?①只有 4 个人的衣服上有 4 个口袋 ;②只有 1 个人的衣服上有8个口袋;③只有 3 个人的衣服上有 5 个口袋 ;(2)依照上图填写下面的频数分布表,并绘制频数分布直方图.口袋数目 x35x799频数记录频数16.某校为了认识九年级学生的体能情况,抽调了一部分学生进行一分钟跳绳测试,将测试成绩整理后作出以下统计图.甲同学计算出前两组的频率和是0.12,乙同学计算出跳绳次数很多于 100 次的同学占96%,丙同学计算出从左至右第二.三.四组的频数比为4∶ 17∶15.结合统计图回答以下问题:(1)此次共抽调了多少人?(2)若跳绳次数很多于130 次为优秀,则此次测试成绩的优秀率是多少 ?四、拓展研究 (不计入总分 )17.人们常用人均教育经费来反响一个地区对教育投入的情况,我国 30 个城市 2019 年人均教育经费的统计数据以下.(单位:元 )北京 731 南宁 100长春 101重庆 102乌鲁木齐 171青岛 425深圳 584合肥 192武汉 184上海 790兰州 170呼和浩特206 广州 483 天津 440 郑州 197南京 292福州 349洛阳 127南昌 117贵阳 166吉林 76 海口 183 济南 205 昆明 234 西安 126成都 160 哈尔滨 249 石家庄 228 长沙 155 沈阳 237 (1)将以上数据进行以下分组,并填写表格:人均教育经费城市数 (频数 )(2)画出分布直方图和折线图.参照答案1.D2.B3.C4.D5.A6.B7.53 47 48.39.3210.5 0.1 11.5 8 12.13.(1)略 (2)①乙的月销售量整体上送上升趋势;②甲的月销售量整体上呈平稳态势;等等 .14.(1)解 :200 名 (2)略 (3)30005%=150 人15.(1)能获取①③ ;(2)口袋数目 x35x799频数记录频数 4761216.(1)此次共抽调150 人 ;(2)26.67%;17.(1)人均教育经费城市数 (频数 )815322(2)图略 .这个工作可让学生分组负责收集整理,登在小黑板上 ,每周一换。
苏科版数学八年级下册7.3 频数与频率同步训练含答案解析
苏科版数学八年级下册7.3 频数与频率同步训练含答案解析一.选择题1.“I am a good student.”这句话中,字母“a”出现的频率是()A.2 B.C.D.2.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.43.某中学有2000名学生,为了丰富学生的课余活动,准备开设围棋、国际象棋、中国象棋、桥牌这四项益智训练,学生可以自愿参加.为了准确了解信息,采取了抽样调查的方式.调查结果显示,8%的学生没有选择其中的任何一项,其余的学生选择了其中的某一项.学校将调查的结果绘制成了以下两幅不完整的统计图,下列判断:①本次抽样调查的学生有500人;②“桥牌”在扇形图中所占的圆心角为97.2°;③估计全校约有360人参加围棋训练.其中正确的判断有()A.0个 B.1个 C.2个 D.3个4.小欢为一组数据制作频数分布表,他了解到这组数据的最大值是40,最小值是16,准备分组时取组距为4.为了使数据不落在边界上,他应将这组数据分成()A.6组 B.7组 C.8组 D.9组5.在频数分布直方图中,有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形面积的和的,且数据有160个,则中间一组的频数为()A.32 B.0.2 C.40 D.0.256.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.2607.小明在选举班委时得了28票,下列说法中错误的是()A.不管小明所在班级有多少学生,所有选票中选小明的选票频率不变B.不管小明所在班级有多少学生,所有选票中选小明的选票频数不变C.小明所在班级的学生人数不少于28人D.小明的选票的频率不能大于18.如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A.2~4小时B.4~6小时C.6~8小时D.8~10小时9.)小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/min0<x≤55<x≤1010<x≤1515<x≤20频数(通话次数)201695则通话时间不超过15min的频率为()A.0.1 B.0.4 C.0.5 D.0.910.小杰调查了本班同学体重情况,画出了频数分布直方图,那么下列结论不正确的是()A.全班总人数为45人B.体重在50千克~55千克的人数最多C.学生体重的众数是14D.体重在60千克~65千克的人数占全班总人数的11.(2011•浙江校级自主招生)某个样本的频数分布直方图中一共有4组,从左到右的组中值依次为5,8,11,14,频数依次为5,4,6,5,则频率为0.2的一组为()A.6.5﹣9.5 B.9.5﹣12.5 C.8﹣11 D.5﹣8二.填空题12.(2017•益阳)学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为12人,频率为0.25,那么被调查的学生人数为.13.(2015•贵港)在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第六组的频数是.14.(2016•莆田)在大课间活动中,同学们积极参加体育锻炼,小红在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,估计该校学生“一分钟跳绳”成绩优秀的人数为人.15.(2015•黄石)九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是.16.(2014•崇左)已知在一个样本中,50个数据分别落在5个组内,第一,二,三,四,五组数据的个数分别是2,8,15,20,5,则第四组频数为.三.解答题17.(2017•杭州)为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).某校九年级50名学生跳高测试成绩的频数表组别(m)频数1.09~1.1981.19~1.29121.29~1.39a1.39~1.4910(1)求a的值,并把频数直方图补充完整;(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.18.(2017•黄石)随着社会的发展,私家车变得越来越普及,使用节能低油耗汽车,对环保有着非常积极的意义,某市有关部门对本市的某一型号的若干辆汽车,进行了一项油耗抽样实验:即在同一条件下,被抽样的该型号汽车,在油耗1L 的情况下,所行驶的路程(单位:km)进行统计分析,结果如图所示:(注:记A为12~12.5,B为12.5~13,C为13~13.5,D为13.5~14,E为14~14.5)请依据统计结果回答以下问题:(1)试求进行该试验的车辆数;(2)请补全频数分布直方图;(3)若该市有这种型号的汽车约900辆(不考虑其他因素),请利用上述统计数据初步预测,该市约有多少辆该型号的汽车,在耗油1L的情况下可以行驶13km 以上?19.(2017•岳阳)为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:课外阅读时频数(人数)频率间(单位:小时)0<t≤220.04 2<t≤430.06 4<t≤6150.30 6<t≤8a0.50t>85b 请根据图表信息回答下列问题:(1)频数分布表中的a=,b=;(2)将频数分布直方图补充完整;(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?20.(2017•贵港)在开展“经典阅读”活动中,某学校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表.根据图表信息,解答下列问题:频率分布表阅读时间(小时)频数(人)频率1≤x<2180.122≤x<3a m3≤x<4450.34≤x<536n5≤x<6210.14合计b1(1)填空:a=,b=,m=,n=;(2)将频数分布直方图补充完整(画图后请标注相应的频数);(3)若该校由3000名学生,请根据上述调查结果,估算该校学生一周的课外阅读时间不足三小时的人数.21.(2017•长春)某校八年级学生会为了解本年级600名学生的睡眠情况,将同学们某天的睡眠时长t(小时)分为A,B,C,D,E(A:9≤t≤24;B:8≤t<9;C:7≤t<8;D:6≤t<7;E:0≤t<6)五个选项,进行了一次问卷调查,随机抽取n名同学的调查问卷并进行了整理,绘制成如下条形统计图,根据统计图提供的信息解答下列问题:(1)求n的值;(2)根据统计结果,估计该年级600名学生中睡眠时长不足7小时的人数.22.(2017•鞍山)某校要了解学生每天的课外阅读时间情况,随机调查了部分学生,对学生每天的课外阅读时间x(单位:min)进行分组整理,并绘制了如图所示的不完整的统计图表,根据图中提供的信息,解答下列问题:(1)本次调查共抽取名学生.(2)统计表中a=,b=.(3)将频数分布直方图补充完整.(4)若全校共有1200名学生,请估计阅读时间不少于45min的有多少人.课外阅读时间x/min频数/人频率0≤x<1560.115≤x<30120.230≤x<45a0.2545≤x<6018b60≤x<7590.1523.(2017•大庆)某校为了解学生平均每天课外阅读的时间,随机调查了该校部分学生一周内平均每天课外阅读的时间(以分钟为单位,并取整数),将有关数据统计整理并绘制成尚未完成的频率分布表和频数分布直方图.请你根据图表中所提供的信息,解答下列问题.频率分布表组别分组频数频率115~2570.14225~35a0.24335~45200.40445~556b555~6550.10注:这里的15~25表示大于等于15同时小于25.(1)求被调查的学生人数;(2)直接写出频率分布表中的a和b的值,并补全频数分布直方图;(3)若该校共有学生500名,则平均每天课外阅读的时间不少于35分钟的学生大约有多少名?24.(2017•绵阳)红星中学课外兴趣活动小组对某水稻品种的稻穗谷粒数目进行调查,从试验田中随机抽取了30株,得到的数据如下(单位:颗):182195201179208204186192210204 175193200203188197212207185206 188186198202221199219208187224(1)对抽取的30株水稻稻穗谷粒数进行统计分析,请补全下表中空格,并完善直方图:谷粒颗数175≤x<185185≤x<195195≤x<205205≤x<215215≤x<225频数8103对应扇形图中区域D E C如图所示的扇形统计图中,扇形A对应的圆心角为度,扇形B对应的圆心角为度;(2)该试验田中大约有3000株水稻,据此估计,其中稻穗谷粒数大于或等于205颗的水稻有多少株?25.(2017•济南)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本)频数(人数)频率5a0.26180.36714b880.16合计c1(1)统计表中的a=,b=,c=;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.26.(2016•咸宁)某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费,为更好地决策,自来水公司的随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图,(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是.(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数.(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?27.(2016•黑龙江)下面是某年参加国家教育评估的学校学生的数学平均成绩(x)的统计图,请根据所给信息,解答下列问题:(1)本次共调查所学校.(2)图能更好地说明一半以上学校的学生数学平均成绩在60≤x<70之间.(3)估计我国150所学校中学生的数学平均成绩在70≤x<80的学校有多少所?28.(2016•无锡)某校为了解全校学生上学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:参加社区活动次数的频数、频率分布表活动次数x频数频率0<x≤3100.203<x≤6a0.246<x≤9160.329<x≤1260.1212<x≤15m b15<x≤182n根据以上图表信息,解答下列问题:(1)表中a=,b=;(2)请把频数分布直方图补充完整(画图后请标注相应的数据);(3)若该校共有1200名学生,请估计该校在上学期参加社区活动超过6次的学生有多少人?29.(2016•泰州)某校为更好地开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布条形图.最喜爱的传统文化项目类型频数分布表项目类型频数频率书法类18a围棋类140.28喜剧类80.16国画类b0.20根据以上信息完成下列问题:(1)直接写出频数分布表中a的值;(2)补全频数分布条形图;(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?参考答案与试题解析一.选择题(共11小题)1.(2017秋•资中县期末)“I am a good student.”这句话中,字母“a”出现的频率是()A.2 B.C.D.【分析】首先正确数出这句话中的字母总数,a出现的次数;再根据频率=频数÷总数进行计算.【解答】解:这句话中,15个字母a出现了2次,所以字母“a”出现的频率是.故选B.【点评】考查了频率的概念以及计算方法:频率=频数÷总数.2.(2016•苏州)一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.4【分析】根据第1~4组的频数,求出第5组的频数,即可确定出其频率.【解答】解:根据题意得:40﹣(12+10+6+8)=40﹣36=4,则第5组的频率为4÷40=0.1,故选A.【点评】此题考查了频数与频率,弄清题中的数据是解本题的关键.3.(2007•黄陂区校级自主招生)某中学有2000名学生,为了丰富学生的课余活动,准备开设围棋、国际象棋、中国象棋、桥牌这四项益智训练,学生可以自愿参加.为了准确了解信息,采取了抽样调查的方式.调查结果显示,8%的学生没有选择其中的任何一项,其余的学生选择了其中的某一项.学校将调查的结果绘制成了以下两幅不完整的统计图,下列判断:①本次抽样调查的学生有500人;②“桥牌”在扇形图中所占的圆心角为97.2°;③估计全校约有360人参加围棋训练.其中正确的判断有()A.0个 B.1个 C.2个 D.3个【分析】频数除以所占比例就等于总数,据此即可解答.另外要会通过样本估计总体.【解答】解:读图可知:本次抽样调查的学生中有18%的即90人选择围棋,调查的学生有90÷18%=500人;①正确.对于②无法判断.③全校共2000名学生,有约有18%,即360人的选择围棋,③正确.故选C.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.4.(2017春•南湖区校级期末)小欢为一组数据制作频数分布表,他了解到这组数据的最大值是40,最小值是16,准备分组时取组距为4.为了使数据不落在边界上,他应将这组数据分成()A.6组 B.7组 C.8组 D.9组【分析】根据极差与组距的关系可知这组数据的组数.【解答】解:∵这组数据的最大值是40,最小值是16,分组时取组距为4.∴极差=40﹣16=24.∵24÷4=6,又∵数据不落在边界上,∴这组数据的组数=6+1=7组.故选B.【点评】本题中注意要考虑数据不落在边界上,因而不要错误的认为是分为6组.5.(2017春•荔湾区期末)在频数分布直方图中,有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形面积的和的,且数据有160个,则中间一组的频数为()A.32 B.0.2 C.40 D.0.25【分析】频率分布直方图是用小长方形面积的大小来表示在各个区间内取值的频率.直角坐标系中的纵轴表示频率与组距的比值,即小长方形面积=组距×频率在频数分布直方图中,计算出中间一个小长方形的面积占总面积的比值为=,再由频率=计算频数.【解答】解:由于中间一个小长方形的面积等于其它10个小长方形面积的和的,则中间一个小长方形的面积占总面积的=,即中间一组的频率为,且数据有160个,∴中间一组的频数为=32.故选A.【点评】本题考查分析频数分布直方图和频率的求法.解本题要懂得频率分布直分图的意义,了解频率分布直分图是一种以频数为纵向指标的条形统计图.6.(2017•安徽)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.260【分析】用被抽查的100名学生中参加社团活动时间在8~10小时之间的学生所占的百分数乘以该校学生总人数,即可得解.【解答】解:由题可得,抽查的学生中参加社团活动时间在8~10小时之间的学生数为100﹣30﹣24﹣10﹣8=28(人),∴1000×=280(人),即该校五一期间参加社团活动时间在8~10小时之间的学生数大约是280人.故选:A.【点评】本题考查了频数分布直方图以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.7.(2016春•仪征市月考)小明在选举班委时得了28票,下列说法中错误的是()A.不管小明所在班级有多少学生,所有选票中选小明的选票频率不变B.不管小明所在班级有多少学生,所有选票中选小明的选票频数不变C.小明所在班级的学生人数不少于28人D.小明的选票的频率不能大于1【分析】根据频率=,即可解答.【解答】解:频率=,当全班人数变化时,所有选票中选小明的选票频率也随着变化;根据各小组频数之和等于数据总和,各小组频率之和等于1;可得B,C,D,都正确,A错误.故选A.【点评】本题是对频率、频数灵活运用的综合考查,各小组频数之和等于数据总和,各小组频率之和等于1.频率、频数的关系:频率=.8.(2016•温州)如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A.2~4小时B.4~6小时C.6~8小时D.8~10小时【分析】根据条形统计图可以得到哪一组的人数最多,从而可以解答本题.【解答】解:由条形统计图可得,人数最多的一组是4~6小时,频数为22,故选B.【点评】本题考查频数分布直方图,解题的关键是明确题意,利用数形结合的思想解答.9.(2015•苏州)小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/min0<x≤55<x≤1010<x≤1515<x≤20频数(通话次数)201695则通话时间不超过15min的频率为()A.0.1 B.0.4 C.0.5 D.0.9【分析】用不超过15分钟的通话时间除以所有的通话时间即可求得通话时间不超过15分钟的频率.【解答】解:∵不超过15分钟的通话次数为20+16+9=45次,通话总次数为20+16+9+5=50次,∴通话时间不超过15min的频率为=0.9,故选D.【点评】本题考查了频数分布表的知识,解题的关键是了解频率=频数÷样本容量,难度不大.10.(2015•上海模拟)小杰调查了本班同学体重情况,画出了频数分布直方图,那么下列结论不正确的是()A.全班总人数为45人B.体重在50千克~55千克的人数最多C.学生体重的众数是14D.体重在60千克~65千克的人数占全班总人数的【分析】根据频数直方图分析可得ABCD选项,又有众数是出现次数最多的数,则学生体重的众数是50﹣55千克之间的数;故可得答案.【解答】解:由频数直方图可以看出:全班总人数为8+10+14+8+5=45人;A正确;体重在50千克到55千克的人数最多为14人;故众数在50千克到55千克之间.B 正确,但C错误;在体重在60千克到65千克的人数为5人,则占全班总人数的5÷45=;D正确.故选C.【点评】读图时要全面细致,同时,解题方法要灵活多样,切忌死记硬背,要充分运用数形结合思想来解决由统计图形式给出的数学实际问题.11.(2011•浙江校级自主招生)某个样本的频数分布直方图中一共有4组,从左到右的组中值依次为5,8,11,14,频数依次为5,4,6,5,则频率为0.2的一组为()A.6.5﹣9.5 B.9.5﹣12.5 C.8﹣11 D.5﹣8【分析】首先根据各组的频数即可确定频率是0.2的是哪一组,然后根据组中值的大小即可确定组距,则频率为0.2的一组的范围即可确定.【解答】解:各组的频数是5,4,6,5则第一组的频率是:=0.25,则第四组的频率也是0.25,第二组的频率是:=0.2,则频率为0.2的一组为第二组;组距是8﹣5=3,第二组的组中值是8,则第二组的范围是:6.5﹣9.5.故选A.【点评】本题考查了频数分布图,正确理解组中值的含义是关键.二.填空题(共5小题)12.(2017•益阳)学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为12人,频率为0.25,那么被调查的学生人数为48.【分析】设被调查的学生人数为x人,则有=0.25,解方程即可.【解答】解:设被调查的学生人数为x人,则有=0.25,解得x=48,经检验x=48是方程的解.故答案为48;【点评】本题考查频数与频率、记住两者的关系是解题的关键,属于基础题.13.(2015•贵港)在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第六组的频数是5.【分析】一个容量为50的样本,把它分成6组,第一组到第四组的频数分别为6,8,9,12,根据第五组的频率是0.2,求出第五组的频数,用样本容量减去前五组的频数,得到第六组的频数.【解答】解:∵一个容量为50的样本,把它分成6组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第五组的频数是0.2×50=10,∴第六组的频数是50﹣6﹣8﹣9﹣10﹣12=5.故答案为:5.【点评】此题考查频数与频率问题,关键是利用频数、频率和样本容量三者之间的关系进行分析.14.(2016•莆田)在大课间活动中,同学们积极参加体育锻炼,小红在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,估计该校学生“一分钟跳绳”成绩优秀的人数为480人.【分析】首先由第二小组有10人,占20%,可求得总人数,再根据各小组频数之和等于数据总数求得第四小组的人数,利用总人数260乘以样本中“一分钟跳绳”成绩为优秀的人数所占的比例即可求解.【解答】解:总人数是:10÷20%=50(人),第四小组的人数是:50﹣4﹣10﹣16﹣6﹣4=10,所以该校九年级女生“一分钟跳绳”成绩为优秀的人数是:×1200=480,故答案为:480.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.15.(2015•黄石)九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是92%.【分析】利用合格的人数即50﹣4=46人,除以总人数即可求得.【解答】解:该班此次成绩达到合格的同学占全班人数的百分比是×100%=92%.故答案是:92%.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.16.(2014•崇左)已知在一个样本中,50个数据分别落在5个组内,第一,二,三,四,五组数据的个数分别是2,8,15,20,5,则第四组频数为20.【分析】根据各小组频数之和等于数据总和,进行计算.【解答】解:根据题意,得第四组频数为第4组数据个数,故第四组频数为20.故答案为:20.【点评】本题是对频率、频数灵活运用的综合考查.注意:各小组频数之和等于数据总和,各小组频率之和等于1.三.解答题(共13小题)17.(2017•杭州)为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).某校九年级50名学生跳高测试成绩的频数表组别(m)频数1.09~1.1981.19~1.29121.29~1.39a1.39~1.4910(1)求a的值,并把频数直方图补充完整;(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.【分析】(1)利用总人数50减去其它组的人数即可求得a的值;(2)利用总人数乘以对应的比例即可求解.【解答】解:(1)a=50﹣8﹣12﹣10=20,;(2)该年级学生跳高成绩在1.29m(含1.29m)以上的人数是:500×=300(人).【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了样本估计总体.18.(2017•黄石)随着社会的发展,私家车变得越来越普及,使用节能低油耗汽车,对环保有着非常积极的意义,某市有关部门对本市的某一型号的若干辆汽车,进行了一项油耗抽样实验:即在同一条件下,被抽样的该型号汽车,在油耗1L 的情况下,所行驶的路程(单位:km)进行统计分析,结果如图所示:(注:记A为12~12.5,B为12.5~13,C为13~13.5,D为13.5~14,E为14~14.5)请依据统计结果回答以下问题:(1)试求进行该试验的车辆数;(2)请补全频数分布直方图;(3)若该市有这种型号的汽车约900辆(不考虑其他因素),请利用上述统计数据初步预测,该市约有多少辆该型号的汽车,在耗油1L的情况下可以行驶13km 以上?【分析】(1)根据C所占的百分比以及频数,即可得到进行该试验的车辆数;(2)根据B的百分比,计算得到B的频数,进而得到D的频数,据此补全频数分布直方图;(3)根据C,D,E所占的百分比之和乘上该市这种型号的汽车的总数,即可得到结果.。
频数与频率-初中数学习题集含答案
频数与频率(北京习题集)(教师版)一.选择题(共2小题)1.(2016秋•西城区校级期中)已知一个样本27,23,25,27,29,31,27,30,32,28,31,28,26,27,29,18,24,26,27,30,那么频数为8的范围是 A .B .C .D .2.(2010春•西城区期末)已知一个样本:23,24,25,26,26,27,27,27,27,27,28,28,28,29,29,30,30,31,31,32,那么频数为8的范围是 A .B .C .D .二.填空题(共4小题)3.(2019春•顺义区期末)已知一组数据:10,8,6,10,8,13,11,10,12,7,10,11,10,9,12,10,9,12,9,8,把这组数据按照,,,分组,那么频率为0.4的一组是 .4.(2010春•海淀区校级期末)数据共50个,分别落在5个小组内,第一、二、三、四组的数据分别为2、8、15、14,则第五个小组的频数为 .5.(2006秋•海淀区期末)已知在一个样本中,30个数据分别落在3个组内,第一、二、三组数据个数分别为5,16,9,则第二组的频率为 .6.(2003秋•北京期末)某人在做抛掷硬币的试验中,结果为正面的频数为52,频率为,问此人共抛掷了 次.()24.5~26.526.5~28.528.5~30.530.5~32.5()24.5~26.526.5~28.528.5~30.530.5~32.56~78~910~1112~1340%频数与频率(北京习题集)(教师版)参考答案与试题解析一.选择题(共2小题)1.(2016秋•西城区校级期中)已知一个样本27,23,25,27,29,31,27,30,32,28,31,28,26,27,29,18,24,26,27,30,那么频数为8的范围是 A .B .C .D .【分析】根据题意可得共20个数据,其中在之间的有8个,其频数为8.【解答】解:根据所给数据可得在之间的有8个,那么频数为8的范围是,故选:.【点评】此题主要考查了频数,频数是指每个对象出现的次数.2.(2010春•西城区期末)已知一个样本:23,24,25,26,26,27,27,27,27,27,28,28,28,29,29,30,30,31,31,32,那么频数为8的范围是 A .B .C .D .【分析】根据题意可得:共20个数据,其中在之间的有8个,故可以求得其频数.【解答】解:共20个数据,其中在之间的有8个,频数为8的范围是一组.故选:.【点评】此题考查频率、频数的关系频率频数数据总和.二.填空题(共4小题)3.(2019春•顺义区期末)已知一组数据:10,8,6,10,8,13,11,10,12,7,10,11,10,9,12,10,9,12,9,8,把这组数据按照,,,分组,那么频率为0.4的一组是 .【分析】根据频率的计算公式,分别求出,,,这四个组的频率,即可作出判断.【解答】解:共有20个数据,其中的频率是;的频率是;的频率是;的频率是.故答案为.【点评】本题考查了频率的计算方法,掌握频率频数总数是解题的关键.4.(2010春•海淀区校级期末)数据共50个,分别落在5个小组内,第一、二、三、四组的数据分别为2、8、15、14,则第五个小组的频数为 11 .()24.5~26.526.5~28.528.5~30.530.5~32.526.5~28.526.5~28.526.5~28.5B ()24.5~26.526.5~28.528.5~30.530.5~32.526.5~28.5Q 26.5~28.5∴26.5~28.5B =÷6~78~910~1112~1310~116~78~910~1112~136~72200.1÷=8~96200.3÷=10~118200.4÷=12~134200.2÷=10~11=÷【分析】此题只需根据各小组频数之和等于数据总和,进行计算即可.【解答】解:根据题意,得第二组数的频数为.故答案为11.【点评】本题是对频率、频数灵活运用的综合考查.注意:各小组频数之和等于数据总和,各小组频率之和等于1.5.(2006秋•海淀区期末)已知在一个样本中,30个数据分别落在3个组内,第一、二、三组数据个数分别为5,16,9,则第二组的频率为 . 【分析】根据频率频数总数计算.【解答】解:由题意得:第二组的频率是. 故答案为. 【点评】本题考查了频数与频率的知识,掌握频率、频数、总数三者之间的关系:频率频数总数.6.(2003秋•北京期末)某人在做抛掷硬币的试验中,结果为正面的频数为52,频率为,问此人共抛掷了 130 次.【分析】根据频率,频数,数据总和三者之间的数量关系求解.【解答】解:依题意,此人共抛掷了(次.故答案为:130.【点评】本题是对频率、频数灵活运用的综合考查.注意:频率. 50(281514)11-+++=815=÷8163015÷=815=÷40%5240%130÷=)=频数数据总和。
2020—2021学年苏科版八年级下册 7.3 频数与频率(含答案)
初中数学苏科版八年级下册7.3 频数与频率一、单选题(本大题共10题,每题3分,共30分)1.新冠疫情发生以来,截止年月日为止,全球累计有人确诊,“ ”中出现数字“ ”的频率是()A. B. C. D.2.已知10个数据:63,65,67,69,66,64,65,67,66,68,对这些数据编制频数分布表,那么数据在64.5~67.5之间的频率为:()A.0.5B.0.6C.5D.63.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,口袋中白色球很可能是().A.6个B.16个C.18个D.24个4.一次数学测试后,某班50名学生的成绩被分为5组,第1-4组的频数分别为12、10、15、8,则第5组的频率是()A.5B.7C.0.5D.0.15.某校对1500名学生的视力进行了检查,其值在5.0~5.1这一小组的频率为0.30,则该组的人数为()A.150人B.450人C.600人D.1050人6.八年级某班40名学生的数学测试成绩分为5组,第1-4组的频数分别为12,10,6,8,则第5组的频率是()A.0.1B.0.2C.0.3D.0.47.某人将一枚质地均匀的硬币连续抛10次,落地后正面朝上6次,反面朝上4次,则下列说法正确的是()A.出现正面的频率是6B.出现正面的频率是60%C.出现正面的频率是4D.出现正面的频率是40%8.某班共有学生40人,其中10月份生日的学生人数为8人,则10月份生日学生的频数和频率分别为()A.10和25%B.25%和10C.8和20%D.20%和89.嘉嘉将100个数据分成①~①组,如下表所示,则第①组的频率为( )A.11B.12C.0.11D.0.1210.学校七年级学生做校服,校服分小号、中号、大号、特大号四种,随抽取若干名学生调查身高得如下统计分布表:求a= ,b=()A.450.3B.250.3C.450.03D.350.3二、填空题(本大题共8题,每题2分,共16分)11.在●○●○○●○○○●○○○○●○○○○○中,空心圈“○”出现的频率..为________.12.小欢为一组数据制作频数表,他了解到这组数据的最大值是40,最小值是16,准备分组时取组距为4,为了使数据不落在边界上,他应将这组数据分成________组.13.从装有a个球的暗袋中随机的摸出一个球,已知袋中有个红球,通过大量重复的实验发现,摸到红球的频率稳定在左右,可以估计a约为________.14.已知一个样本中,样本容量为50,这50个数据分别落在5个小组内,第一、二、四、五小组的频数分别是2,10,10,20,则第三个小组的频率为________.15.某校为了了解七年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起坐次数在25~30次之间的频率是________.16.已知样本数据为25,21,25,21,23,25,27,29,25,28,30,29,26,24,25,27,26,22,24,25,26,28.若组距为2,那么应分为________组,这一组的频数是________.17.一个样本容量为80的样本所绘的频数分布直方图中,4个小组对应的各小长方形高的比为2:3:4:1,那么第二小组的频数是________.18.一个不透明的盒子里有n个除颜色外其它完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为________个.三、解答题(本大题共8题,共84分)19.小明抛硬币的过程见下表,阅读并回答问题:(1)从表中可知,当抛完10次时正面出现3次,正面出现的频率为30%,那么,小明抛完10次时,得到________次反面,反面出现的频率是________;(2)当他抛完5000次时,反面出现的次数是________,反面出现的频率是________;(3)通过上面我们可以知道,正面出现的频数和反面出现的频数之和等于________,正面出现的频率和反面出现的频率之和等于________.20.在“我喜欢的体育项目”调查活动中,小明调查了本班30人,记录结果如下:(其中喜欢打羽毛球的记为A,喜欢打乒乓球的记为B,喜欢踢足球的记为C,喜欢跑步的记为D)求A的频率.21.德国有个叫鲁道夫的人,用毕生的精力,把圆周率π算到小数点后面35位.3.141 592 653 589 794 238 462 643 383 279 502 88(1)试用画“正”字的方法记录圆周率的上述近似值中各数字出现的频数,并完成下表;(2)在这串数字中,“3”,“6”,“9”出现的频率各是多少?22.下表是光明中学七年级(5)班的40名学生的出生月份的调查记录:(1)请你重新设计一张统计表,使全班同学在每个月出生人数情况一目了然;(2)求出10月份出生的学生的频数和频率;(3)现在是1月份,如果你准备为下个月生日的每一位同学送一份小礼物,那你应该准备多少份礼物?23.小明所在班级有16名男生报名参加校运动会,他们的身高(单位:cm)如下:170165178166173163178172170174170170174178178178(1)将这16名男生的身高由矮到高排列,统计每种身高的频数和频率,并填如表.(2)身高超过170cm的同学有几名?约占总人数的百分之几?(精确到1%)24.小花最近买了三本课外书,分别是《汉语字典》用A表示,《流行杂志》用B表示和《故事大王》用C 表示.班里的同学都很喜欢借阅,在五天内小花做了借书记录如下表:(1)在表中填写五天内每本书的借阅频数.(2)计算五天内《汉语字典》的借阅频率.25.航模兴趣小组的老师想知道全组学生的年龄情况,于是让大家把自己的年龄写在纸上,下表是全组40名学生的年龄(单位:岁).(1)在这个统计表中,13岁的频数是________,频率是________;(2)________岁的频率最大,这个最大频率是________;(3)假如老师随机地问一名学生的年龄,你认为老师最可能听到的回答是多少岁?26.学校鼓励学生参加社会实践,小明和他的同学利用寒假一周时间对市公交10路车起点站的一周乘车人次进行了统计,以每天800人次为准,超过的人次记为正数,不足的人次记为负数.记录一周情况如下:(1)求该起点站在这一周内平均每天乘客的人次,并估计一下2005年6月份(30天)该起点站乘客的总人次;(2)若将2005年6月份该起点站每天乘客人次整理后,按人次由小到大排列,分成五组,且每组的频率之比依次为1:2:1:3:3,请你说明这个月该起点站乘客人次的中位数能否落在某个小组内.参考答案一、单选题1.【答案】A解:“ ”共有8个数字,其中“1”出现了3次,所以“ ”中出现数字“1”的频率是,故答案为:A.2.【答案】B解:其中在64.5~67.5组的有65,67,66,65,67,66共6个,则64.5~67.5这组的频率是:.故答案为:B.3.【答案】B解:①摸到红色球、黑色球的频率稳定在15%和45%,①摸到白球的频率为1-15%-45%=40%,故口袋中白色球的个数可能是:40×40%=16个;故答案为:B.4.【答案】D解:① 第5组的频数为50-12-10-15-8=5,①第5组的频率为=0.1.故答案为:D.5.【答案】B解:根据题意,该组的人数为1500×0.3=450(人),故答案为:B.6.【答案】A解:①八年级某班40名学生的数学测试成绩分为5组,第1-4组的频数分别为12,10,6,8,①第5组的频率是:(40-12-10-6-8)÷40=0.1.故答案为:A.7.【答案】B解:①某人抛硬币抛10次,其中正面朝上6次,反面朝上4次,①出现正面的频数是6,出现反面的频数是4,出现正面的频率为6÷10=60%;出现反面的频率为4÷10=40%.故答案为:B.8.【答案】C解:①某班共有学生40人,其中10月份生日的学生人数为8人,①10月份生日学生的频数和频率分别为:8、=0.2.故答案为:C.9.【答案】C解:由表格中的数据,第①组的频数为100-(3+8+15+22+18+14+9)=11频率为11÷100=0.11故答案为:C.10.【答案】A解:观察统计表知:小组的频数20,频率0.2,①学生总数为20÷0.2=100(人);① ,① ,故答案为:A.二、填空题11.【答案】0.75解:在●○●○○●○○○●○○○○●○○○○○中,共有20个圆圈,其中空心圆圈有15个,①空心圈“○”出现的频率为:.故答案为:0.75.12.【答案】7解:①这组数据的最大值是40,最小值是16,分组时取组距为4.①极差=40-16=24.①24÷4=6,又①数据不落在边界上,①这组数据的组数=6+1=7组.故答案为:713.【答案】20解:由题意得解之:a=20.故答案为:20.14.【答案】0.16解:由题意知:第三小组的频数,频率.故答案为:0.16.15.【答案】0.4解:仰卧起坐次数在25~30次的频数是12,所以仰卧起坐次数在25~30次之间的频率为12÷30=0.4,故答案为:0.4.16.【答案】5;9解:极差是:,组距为2,,应分为5组;在这一组的频数是9.故答案为:5,9.17.【答案】24解:故答案是:24.18.【答案】30解:根据题意得,解得:n=30;故答案为:30.三、解答题19.【答案】(1)7;70%(2)2502;50.04%(3)抛掷总次数;1解:(1)当抛完10次时正面出现3次,正面出现的频率为30%,那么小明抛完10次时,得到7次反面,反面出现的频率是70%;(2)当他抛完5000次时,反面出现的次数是2502,反面出现的频率是50.04%;(3)正面出现的频数和反面出现的频数之和等于抛掷总次数,正面出现的频率和反面出现的频率之和等于1.20.【答案】解:分析数据可得:在30人中,喜欢打羽毛球的即A的有6人,根据频率的求法:A的频率=21.【答案】(1)画“正”字略;频数分别是:1、2、5、6、4、4、3、2、5、4(2)解:分别是6÷36≈16.7%,3÷36≈8.3%,4÷36≈11.1%22.【答案】解:(1)按生日的月份重新分组可得统计表:(2)读表可得:10月份出生的学生的频数是5,频率为=0.125(3)2月份有4位同学过生日,因此应准备4份礼物.23.【答案】(1)填表如下(2)解:身高超过170cm的同学有9名,约占总人数的56%24.【答案】(1)14;15;11(2)解:总数是14+15+11=40,则五天内《汉语字典》的借阅频率是:=解:(1)填表如下:25.【答案】(1)8;0.2(2)14;0.25(3)解:因为14岁的频率最大,所以老师最可能听到的回答为:14岁解:(1)13岁出现的次数为:8次,即频数为8,频率为:=0.2,故答案为:8,0.2;(2)由图可得,12岁出现的频数为:5,14岁出现的频数为:10,15岁出现的频数为:7,16岁出现的频数为:7,17岁出现的频数为:3,14岁出现的频数最大,即14岁的频率最大,频率为:=0.25,故答案为:14,0.25;26.【答案】解:(1)=800+(50+400﹣50+300﹣100+377+430)=1001(人次)故2005年6月份30天的乘客总人次为1001×30=30030(人次).(2)30次数据依次由小到大排列后中位数是第15个数据与第16个数据的平均数,又因为第一、二、三小组的频数之和为12,第四小组的频数为9,因此第15个和第16个数据均落在第四小组,所以这组数的中位数就落在第四小组.。
2022年中考《频数与频率》精品专项练习 附答案
频数与频率一、选择题1. 〔2021•安徽省,第5题4分〕某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x〔单位:mm〕的数据分布如下表所示,那么棉花纤维长度的数据在8≤x<32这个范围的频率为〔〕棉花纤维长度x频数0≤x<8 18≤x<16 216≤x<24 824≤x<32 632≤x<40 3A.0.8 B.0.7 C.0.4 D.考点:频数〔率〕分布表.分析:求得在8≤x<32这个范围的频数,根据频率的计算公式即可求解.解答:解:在8≤x<32这个范围的频数是:2+8+6=16,那么在8≤x<32这个范围的频率是:.应选A.点评:此题考查了频数分布表,用到的知识点是:频率=频数÷总数.二.填空题1.(2021年四川资阳,第12题3分)某校男生、女生以及教师人数的扇形统计图如下图,假设该校师生的总人数为1500人,结合图中信息,可得该校教师人数为120人.考点:扇形统计图.分析:用学校总人数乘以教师所占的百分比,计算即可得解.解答:解:1500×〔1﹣48%﹣44%〕=1500×8%=120.故答案为:120.点评:此题考查的是扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映局部占总体的百分比大小.2.〔2021年山东泰安,第22题4分〕七〔一〕班同学为了解某小区家庭月均用水情况,随机调查了该小区局部家庭,并将调查数据整理如下表〔局部〕:月均用水量x/m30<x≤55<x≤1010<x≤1515<x≤20x>20频数/户12 20 3频率假设该小区有800户家庭,据此估计该小区月均用水量不超过10m3的家庭约有户.分析:根据=总数之间的关系求出5<x≤10的频数,再用整体×样本的百分比即可得出答案.解:根据题意得:=100〔户〕,15<x≤20的频数是0.07×100=7〔户〕,5<x≤10的频数是:100﹣12﹣20﹣7﹣3=58〔户〕,那么该小区月均用水量不超过10m3的家庭约有×800=560〔户〕;故答案为:560.点评:此题考查了用样本估计总体和频数、频率、总数之间的关系,掌握=总数和样本估计整体让整体×样本的百分比是此题的关键.三.解答题1.〔2021•毕节地区,第24题12分〕我市某校在推进新课改的过程中,开设的体育选修课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修易门,学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图〔如图〕.〔1〕请你求出该班的总人数,并补全频数分布直方图;〔2〕该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.考点:频数〔率〕分布直方图;扇形统计图;列表法与树状图法.分析:〔1〕根据C类有12人,占24%,据此即可求得总人数,然后利用总人数乘以对应的比例即可求得E类的人数;〔2〕利用列举法即可求解.解答:解:〔1〕该班总人数是:12÷24%=50〔人〕,那么E类人数是:50×10%=5〔人〕,A类人数为:50﹣〔7+12+9+5〕=17〔人〕.补全频数分布直方图如下:;〔2〕画树状图如下:,或列表如下:共有12种等可能的情况,恰好1人选修篮球,1人选修足球的有4种,那么概率是:=.点评:此题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.2.〔2021•孝感,第21题10分〕为了解中考体育科目训练情况,某县从全县九年级学生中随机抽取了局部学生进行了一次中考体育科目测试〔把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格〕,并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答以下问题:〔1〕本次抽样测试的学生人数是40;〔2〕图1中∠α的度数是54°,并把图2条形统计图补充完整;〔3〕该县九年级有学生3500名,如果全部参加这次中考体育科目测试,请估计不及格的人数为700.〔4〕测试老师想从4位同学〔分别记为E、F、G、H,其中E为小明〕中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.考点:条形统计图;用样本估计总体;扇形统计图;列表法与树状图法.分析:〔1〕用B级的人数除以所占的百分比求出总人数;〔2〕用360°乘以A级所占的百分比求出∠α的度数,再用总人数减去A、B、D级的人数,求出C级的人数,从而补全统计图;〔3〕用九年级所有得学生数乘以不及格的人数所占的百分比,求出不及格的人数;〔4〕根据题意画出树状图,再根据概率公式进行计算即可.解答:解:〔1〕本次抽样测试的学生人数是:=40〔人〕,故答案为:40;〔2〕根据题意得:360°×=54°,答:图1中∠α的度数是54°;C级的人数是:40﹣6﹣12﹣8=14〔人〕,如图:故答案为:54°;〔3〕根据题意得:3500×=700〔人〕,答:不及格的人数为700人.故答案为:700;〔4〕根据题意画树形图如下:共有12种情况,选中小明的有6种,那么P〔选中小明〕==.点评:此题考查了条形统计图和扇形统计图的综合应用,用到的知识点是用样本估计总体、频数、频率、总数之间的关系等,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.3.〔2021•四川自贡,第20题10分〕为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛〞,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,假设每正确听写出一个汉字得1分,根据测试成绩绘制出局部频数分布表和局部频数分布直方图如图表:组别成绩x分频数〔人数〕第1组25≤x<30 4第2组30≤x<35 8第3组35≤x<40 16第4组40≤x<45 a第5组45≤x<50 10请结合图表完成以下各题:〔1〕求表中a的值;〔2〕请把频数分布直方图补充完整;〔3〕假设测试成绩不低于40分为优秀,那么本次测试的优秀率是多少?〔4〕第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.考点:频数〔率〕分布直方图;频数〔率〕分布表;列表法与树状图法分析:〔1〕用总人数减去第1、2、3、5组的人数,即可求出a的值;〔2〕根据〔1〕得出的a的值,补全统计图;〔3〕用成绩不低于40分的频数乘以总数,即可得出本次测试的优秀率;〔4〕用A表示小宇B表示小强,C、D表示其他两名同学,画出树状图,再根据概率公式列式计算即可.解答:解:〔1〕表中a的值是:a=50﹣4﹣8﹣16﹣10=12;〔2〕根据题意画图如下:〔3〕本次测试的优秀率是;答:本次测试的优秀率是;〔4〕用A表示小宇B表示小强,C、D表示其他两名同学,根据题意画树状图如下:共有12种情况,小宇与小强两名男同学分在同一组的情况有2种,那么小宇与小强两名男同学分在同一组的概率是=.点评:此题考查了频数分布直方图和概率,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,概率=所求情况数与总情况数之比.4. 〔2021•湘潭,第23题〕从全校1200名学生中随机选取一局部学生进行调查,调查情况:A、上网时间≤1小时;B、1小时<上网时间≤4小时;C、4小时<上网时间≤7小时;D、上网时间>7小时.统计结果制成了如图统计图:〔第1题图〕〔1〕参加调查的学生有200人;〔2〕请将条形统计图补全;〔3〕请估计全校上网不超过7小时的学生人数.考点:条形统计图;用样本估计总体;扇形统计图分析:〔1〕用A的人数除以所占的百分比求出总人数;〔2〕用总人数减去A、B、D的人数,再画出即可;〔3〕用总人数乘以全校上网不超过7小时的学生人数所占的百分比即可.解答:解:〔1〕参加调查的学生有20÷=200〔人〕;故答案为:200;〔2〕C的人数是:200﹣20﹣80﹣40=60〔人〕,补图如下:〔3〕根据题意得:1200×=960〔人〕,答:全校上网不超过7小时的学生人数是960人.点评:此题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个工程的数据;扇形统计图直接反映局部占总体的百分比大小.5. 〔2021•益阳,第17题,8分〕某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想〞读书小组协助老师随机抽取本校的局部学生,调查他们最喜爱的图书类别〔图书分为文学类、艺体类、科普类、其他等四类〕,并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答以下问题:〔1〕求被调查的学生人数;〔2〕补全条形统计图;〔3〕该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?〔第2题图〕考点:条形统计图;用样本估计总体;扇形统计图.分析:〔1〕利用科普类的人数以及所占百分比,即可求出被调查的学生人数;〔2〕利用〔1〕中所求得出喜欢艺体类的学生数进而画出图形即可;〔3〕首先求出样本中喜爱文学类图书所占百分比,进而估计全校最喜爱文学类图书的学生数.解答:解:〔1〕被调查的学生人数为:12÷20%=60〔人〕;〔2〕喜欢艺体类的学生数为:60﹣24﹣12﹣16=8〔人〕,如下图:;〔3〕全校最喜爱文学类图书的学生约有:1200×=480〔人〕.点评:此题主要考查了条形统计图的应用以及扇形统计图应用、利用样本估计总体等知识,利用图形得出正确信息求出样本容量是解题关键.6. 〔2021•株洲,第19题,6分〕我市通过网络投票选出了一批“最有孝心的美少年〞.根据各县市区的入选结果制作出如下统计表,后来发现,统计表中前三行的所有数据都是正确的,后三行中有一个数据是错误的.请答复以下问题:〔1〕统计表中a=,b=6;〔2〕统计表后三行中哪一个数据是错误的?该数据的正确值是多少?〔3〕株洲市决定从来自炎陵县的4位“最有孝心的美少年〞中,任选两位作为市级形象代言人.A、B是炎陵县“最有孝心的美少年〞中的两位,问A、B同时入选的概率是多少?区域频数频率炎陵县 4 a茶陵县 5攸县b醴陵市8株洲县 5株洲市城区12考点:频数〔率〕分布表;列表法与树状图法.分析:〔1〕由茶陵县频数为5,频率为,求出数据总数,再用4除以数据总数求出a的值,用数据总数乘得到b的值;〔2〕根据各组频数之和等于数据总数可知各组频数正确,根据频率=频数÷数据总数可知株洲市城区对应频率错误,进而求出正确值;〔3〕设来自炎陵县的4位“最有孝心的美少年〞为A、B、C、D,根据题意列出表格,然后由表格求得所有等可能的结果与A、B同时入选的情况,再利用概率公式即可求得答案.解答:解:〔1〕∵茶陵县频数为5,频率为,∴数据总数为5÷0.125=40,∴a,b=40×0.15=6.故答案为,6;〔2〕∵4+5+6+8+5+12=40,∴各组频数正确,∵,∴株洲市城区对应频率这个数据是错误的,该数据的正确值是;〔3〕设来自炎陵县的4位“最有孝心的美少年〞为A、B、C、D,列表如下:∵共有12种等可能的结果,A、B同时入选的有2种情况,∴A、B同时入选的概率是:=.点评:此题考查读频数〔率〕分布表的能力和列表法与树状图法.同时考查了概率公式.用到的知识点:频率=频数÷总数,各组频数之和等于数据总数,概率=所求情况数与总情况数之比.7.〔2021•呼和浩特,第20题9分〕学校为了了解初三年级学生体育跳绳的训练情况,从初三年级各班随机抽取了50名学生进行了60秒跳绳的测试,并将这50名学生的测试成绩〔即60秒跳绳的个数〕从低到高分成六段记为第一到六组,最后整理成下面的频数分布直方图:请根据直方图中样本数据提供的信息解答以下问题.〔1〕跳绳次数的中位数落在哪一组?由样本数据的中位数你能推断出学校初三年级学生关于60秒跳绳成绩的一个什么结论?〔2〕假设用各组数据的组中值〔各小组的两个端点的数的平均数〕代表各组的实际数据,求这50名学生的60秒跳绳的平均成绩〔结果保存整数〕;〔3〕假设从成绩落在第一和第六组的学生中随机抽取2名学生,用列举法求抽取的2名学生恰好在同一组的概率.考点:频数〔率〕分布直方图;中位数;列表法与树状图法.分析:〔1〕根据中位数的定义先把这组数据从小到大排列,找出中间两个数的平均数,再根据中位数落在第四组估计出初三学生60秒跳绳再120个以上的人数到达一半以上;〔2〕根据平均数的计算公式进行计算即可;〔3〕先把第一组的两名学生用A、B表示,第六组的三名学生用1,2,3表示,得出所有出现的情况,再根据概率公式进行计算即可.解答:解:〔1〕∵共有50个数,中位数是第25、26个数的平均数,∴跳绳次数的中位数落在第四组;∴可以估计初三学生60秒跳绳再120个以上的人数到达一半以上;〔2〕根据题意得:〔2×70+10×90+12×110+13×130+10×150+3×170〕÷50≈121〔个〕,答:这50名学生的60秒跳绳的平均成绩是121个;〔3〕记第一组的两名学生为A、B,第六组的三名学生为1,2,3,那么从这5名学生中抽取两名学生有以下10种情况:AB,A1,A2,A3,B1,B2,B3,12,13,23,那么抽取的2名学生恰好在同一组的概率是:=;点评:此题考查了频数〔率〕分布直方图,用到的知识点是中位数、平均数、概率公式,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.。
2024学年八年级数学经典好题专项(频数分布表和频数分布直方图)练习(附答案)
2024学年八年级数学经典好题专项(频数分布表和频数分布直方图)练习一、选择题1、一组数据的最大值与最小值之差为80,若取组距为9,则分成的组数应是( ) A. 7 B. 8 C. 9 D. 102、一个容量为80的样本,最大值是141,最小值是50,取组距为10,则可以分 ( )A.10组 B.9组 C.8组 D.7组3、现有一组数据,最大值为93,最小值为22,现要把它分成6组,则下列组距中,合适的为 ( ) A. 9 B. 12 C. 15 D. 184、某棉纺厂为了了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x (单位:mm)的数据分布如下表,则棉花纤维长度的数据在8≤x <32这个范围的频率为( )棉花纤维长度x频数 0≤x <8 1 8≤x <16 2 16≤x <24 8 24≤x <32 6 32≤x <403A.0.8 B .0.7 C .0.4 D .0.25、小杰调查了本班同学的体重情况,画出频数直方图如图所示,下列结论中,错误的是( )A. 全班总人数为45人B. 体重在50~55 kg 的人数最多C. “45~50 kg ”这一组的频率比“60~65 kg ”这一组的大0.1D. 体重在60~65 kg 的人数占全班总人数的196、某一组数据中,已知最大值是84,最小值是52,若分成6组,且组距为整数,某组组中值为72.5,则这组数据可能是( )A. 51.5~57.5B. 69.5~75.5C. 68.5~76.5D. 70.5~74.57、为了了解本校八年级学生的体能情况,随机抽查了其中30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直方图. 若25次为及格,则及格人数占总人数的( )A. 56.7%B. 90%C. 16.7%D. 33.3%8、为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( )A.280 B.240 C.300 D.260二、填空题9、一个样本有20个数据:35,31,33,35,37,39,35,38,40,39,36,34,35,37,36,32,34,35,36,34.在列频数分布表时,如果取组距为3,那么应分成 组10、有30个数据,其中最大值为40,最小值为15,若取组距为4,则应该分成 组11、有一个含有50个数据的数据组,已知最小数据是15,最大数据是45,且各数据都是整数,则这50个数据分为8组时,组距是________;若第1组的下限为14.5,则其上限为________,最末一组的上限为________.12、阅读对学生的成长有着深远的影响,某中学为了解学生每周课余阅读的时间,在本校随机抽取若干名学生进行调查,并依据调査结果绘制了如下不完整的统计表.则表中的a=____.组别时间/时频数(人)频率A 0≤t≤0.560.15B 0.5≤t≤1 a 0.313、某中学抽取部分学生对“你最喜欢的球类运动”调查问卷,收集整理数据后列频数分布表(部分)如下:项目 乒乓球 羽毛球 篮球 足球频数 80 50百分比 40% 25% m则表格中m的值为14、某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示,则a= .组号 分组 频数一 6≤m<7 2二 7≤m<8 7三 8≤m<9 a四 9≤m≤10 215、一个容量为60的样本,样本中最大值是172,最小值是150,取组距为3,则该样本可以分为 组16、小丽抽样调查了学校40名同学的体重(均精确到1kg),绘制了如图频数分布直方图,那么在该样本中体重不小于55kg的频率是 .17、某地区中考现场考试内容有两项,50米跑为必考项目,另在立定跳远、坐位体前屈、实心球和一分钟跳绳中选一项测试.王老师对参加体育中考的九(1)班40名学生的一项选测科目作了统计,列出如图所示的统计表,则本班参加坐位体前屈的人数是 人.组别 立定跳远 坐位体前屈 实心球 一分钟跳绳频率 0.4 0.35 0.1 0.1518、空气质量指数,简称AQI,如果AQI在0~50空气质量类别为优,在51~100空气质量类别为良,在101~150空气质量类别为轻度污染,按照某市最近一段时间的AQI画出的频数分布直方图如图所示.已知每天的AQI都是整数,那么空气质量类别为优和良的天数占总天数的百分比为 %.19、将100个数据分成①~⑧组,如表所示:编号 ① ② ③ ④ ⑤ ⑥ ⑦ ⑧频数 4 8 12 24 18 7 3那么第④组的频数为 .20、若小明统计了他家12月份打电话的通话时长,并列出频数分布表,则通话时长不超过10min的频率是 .通话时长 x/min 0<x≤5 5<x≤10 10<x≤15 x>15频数(通话次数)20 16 20 4三、解答题21、体育委员统计了全班同学60s跳绳的次数,并列出频数表如下:次数 60≤x<80 80≤x<100 100≤x<120 120≤x<140 140≤x<160 160≤x<180频数 2 4 21 13 8 4 (1)全班共有多少名学生?(2)组距是多少?组数是多少?(3)跳绳次数在120≤x<160范围内的学生有多少?22、每年的6月6日是全国爱眼日.某校为了做好全校2000名学生的眼睛保健工作,对学生的视力情况进行一次抽样调查.如图所示为利用所得的数据绘制的频数直方图(长方形的高表示该组人数).请你根据图中提供的信息,回答下列问题:(1)本次调查共抽测了____名学生.(2)在这个问题中,样本是指_____________________.(3)视力在4.85~5.15这一组内的频数是_______.(4)如果视力小于4.85均属视力不良,那么该校约有_________名学生的视力不良,应给予治疗、矫正.23、为了了解某地九年级学生参加消防知识竞赛成绩(均为整数),从中抽取了1%的同学的竞赛成绩,整理后绘制了如下的频数直方图,请结合图形解答下列问题:(1)这个问题中的总体是 ;(2)竞赛成绩在84.5~89.5分这一小组的频率是 ;(3)若竞赛成绩在90分以上(含90分)的同学可以获得奖励,则估计该地获得奖励的九年级学生约有________人.24、在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频数直方图如下图所示,已知从左至右各长方形的高的比为2∶3∶4∶6∶4∶1,第三组的频数为12.请解答下列问题:(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件,2件作品获奖,问:这两组哪一组获奖率较高?25、在开展“经典阅读”活动中,某校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计图表.根据图表信息回答下列问题:(1)填空:a=____,b=____,m=____,n=____.(2)将频数直方图补充完整.(3)若该校有3000名学生,请根据上述调查结果,估计该校学生一周的课外阅读时间不足3 h的人数.26、为了让地震受灾的儿童得到救助,某社区组织“献爱心手拉手”捐款活动,对社区部分捐款户数进行调查和分组统计后,将数据整理成如图所示的统计表和统计图(图中信息不完整).已知A、B两组捐款户数的比为1:5.请结合以上信息解答下列问题.(1)a= ,本次调查样本的容量是 ;(2)补全“捐款户数分组统计表和捐款户数统计图1”;(3)若该社区共有1000户住户参与捐款,请根据以上信息估计,全社区捐款不少于300元的户数是 户.27、为了了解某次“小学生书法比赛”的成绩情况,随机抽取了30名学生的成绩进行统计,并将统计情况绘制成如图所示的频数直方图,已知成绩x(单位:分)均满足“50≤x<100”.根据图中信息回答下列问题:(1)图中a的值为____.(2)绘制扇形统计图时,成绩x在“70≤x<80”范围内所对应扇形的圆心角的度数为____.(3)此次比赛共有300名学生参加,若将“x≥80”的成绩记为“优秀”,则获得“优秀”的学生大约有____人.28、为庆祝中华人民共和国成立70周年,郑州市某校组织八年级学生进行“方阵表演”.为了整齐划一,需了解学生的身高,现随机抽取该校八年级学生进行抽样调查,根据所得数据绘制出如下统计图表根据图表提供的信息,回答下列问题:(1)这次抽样调查,一共抽取学生 人;(2)扇形统计图中,扇形E的圆心角度数是 ;(3)请补全频数分布直方图;(4)已知该校八年级共有学生400人,请估计身高在160≤x<170的学生约有多少人?参考答案一、选择题1、一组数据的最大值与最小值之差为80,若取组距为9,则分成的组数应是( C )A. 7B. 8C. 9D. 102、一个容量为80的样本,最大值是141,最小值是50,取组距为10,则可以分 ( A )A.10组 B.9组 C.8组 D.7组3、现有一组数据,最大值为93,最小值为22,现要把它分成6组,则下列组距中,合适的为 ( B )A. 9B. 12C. 15D. 184、某棉纺厂为了了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表,则棉花纤维长度的数据在8≤x<32这个范围的频率为(A)棉花纤维长度x 频数0≤x<8 18≤x<16 216≤x<24824≤x<32 632≤x<40 3A.0.8 B.0.7 C.0.4 D.0.25、小杰调查了本班同学的体重情况,画出频数直方图如图所示,下列结论中,错误的是(C )A. 全班总人数为45人B. 体重在50~55 kg 的人数最多C. “45~50 kg ”这一组的频率比“60~65 kg ”这一组的大0.1D. 体重在60~65 kg 的人数占全班总人数的19 【解】 8+10+14+8+5=45(人),故A 选项正确. 体重在50~55 kg 的人数有14人,最多,故B 选项正确. “45~50 kg ”这一组的频率是10÷45=29, “60~65 kg ”这一组的频率是5÷45=19, 29-19=19≠0.1,故C 选项错误.5÷45=19,故D 选项正确. 故选C.6、某一组数据中,已知最大值是84,最小值是52,若分成6组,且组距为整数,某组组中值为72.5,则这组数据可能是( B ) A. 51.5~57.5 B. 69.5~75.5 C. 68.5~76.5 D. 70.5~74.57、为了了解本校八年级学生的体能情况,随机抽查了其中30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直方图. 若25次为及格,则及格人数占总人数的( A )A. 56.7%B. 90%C. 16.7%D. 33.3%8、为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( )A.280 B.240 C.300 D.260【解答】解:由题可得,抽查的学生中参加社团活动时间在8~10小时之间的学生数为100﹣30﹣24﹣10﹣8=28(人),∴1000280(人),即该校五一期间参加社团活动时间在8~10小时之间的学生数大约是280人.故选:A.二、填空题9、一个样本有20个数据:35,31,33,35,37,39,35,38,40,39,36,34,35,37,36,32,34,35,36,34.在列频数分布表时,如果取组距为3,那么应分成 4 组10、有30个数据,其中最大值为40,最小值为15,若取组距为4,则应该分成 7 组11、有一个含有50个数据的数据组,已知最小数据是15,最大数据是45,且各数据都是整数,则这50个数据分为8组时,组距是________;若第1组的下限为14.5,则其上限为________,最末一组的上限为________.[解析] 45-15=30,3<30÷8<4,∴组距应为4.若第1组的下限为14.5,则其上限为14.5+4=18.5;最末一组的上限为14.5+4×8=14.5+32=46.5.[答案] 418.546.512、阅读对学生的成长有着深远的影响,某中学为了解学生每周课余阅读的时间,在本校随机抽取若干名学生进行调查,并依据调査结果绘制了如下不完整的统计表.则表中的a=____.组别时间/时频数(人)频率A 0≤t≤0.560.15B 0.5≤t≤1 a 0.3【解析】∵被调查的总人数为6÷0.15=40(人),∴B组的人数为40×0.3=12(人),即a=12.13、某中学抽取部分学生对“你最喜欢的球类运动”调查问卷,收集整理数据后列频数分布表(部分)如下:项目 乒乓球 羽毛球 篮球 足球频数 80 50百分比 40% 25% m则表格中m的值为 10%14、某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示,则a= 9 .组号 分组 频数一 6≤m<7 2二 7≤m<8 7三 8≤m<9 a四 9≤m≤10 215、一个容量为60的样本,样本中最大值是172,最小值是150,取组距为3,则该样本可以分为 8 组16、小丽抽样调查了学校40名同学的体重(均精确到1kg),绘制了如图频数分布直方图,那么在该样本中体重不小于55kg的频率是 .【解答】解:观察直方图可知:因为该样本中体重不小于55kg的频数为:9+5+2=16,所以该样本中体重不小于55kg的频率是0.4.故答案为:0.4.17、某地区中考现场考试内容有两项,50米跑为必考项目,另在立定跳远、坐位体前屈、实心球和一分钟跳绳中选一项测试.王老师对参加体育中考的九(1)班40名学生的一项选测科目作了统计,列出如图所示的统计表,则本班参加坐位体前屈的人数是 人.组别 立定跳远 坐位体前屈 实心球 一分钟跳绳频率 0.4 0.35 0.1 0.15【解答】解:∵频率,∴频数=频率×总数=0.35×40=14人.故答案为14.18、空气质量指数,简称AQI,如果AQI在0~50空气质量类别为优,在51~100空气质量类别为良,在101~150空气质量类别为轻度污染,按照某市最近一段时间的AQI画出的频数分布直方图如图所示.已知每天的AQI都是整数,那么空气质量类别为优和良的天数占总天数的百分比为 %.【解答】解:空气质量类别为优和良的天数占总天数的百分比为100%=80%, 故答案为:80.19、将100个数据分成①~⑧组,如表所示:编号 ① ② ③ ④ ⑤ ⑥ ⑦ ⑧频数 4 8 12 24 18 7 3那么第④组的频数为 24.【解答】解:由题意可得,第④组的频数为:100﹣4﹣8﹣12﹣24﹣18﹣7﹣3=24,故答案为:24.20、若小明统计了他家12月份打电话的通话时长,并列出频数分布表,则通话时长不超过10min的频率是 0.6 .通话时长 x/min 0<x≤5 5<x≤10 10<x≤15 x>15频数(通话次数)20 16 20 4三、解答题21、体育委员统计了全班同学60s跳绳的次数,并列出频数表如下:次数 60≤x<80 80≤x<100 100≤x<120 120≤x<140 140≤x<160 160≤x<180频数 2 4 21 13 8 4 (1)全班共有多少名学生?(2)组距是多少?组数是多少?(3)跳绳次数在120≤x<160范围内的学生有多少?解:(1)全班共有2+4+21+13+8+4=52(名)学生.(2)组距是80-60=20次,组数是6.(3)跳绳次数在120≤x<160范围内的学生有13+8=21(人).22、每年的6月6日是全国爱眼日.某校为了做好全校2000名学生的眼睛保健工作,对学生的视力情况进行一次抽样调查.如图所示为利用所得的数据绘制的频数直方图(长方形的高表示该组人数).请你根据图中提供的信息,回答下列问题:(1)本次调查共抽测了__160__名学生.(2)在这个问题中,样本是指__160名学生的视力情况__.(3)视力在4.85~5.15这一组内的频数是__40__.(4)如果视力小于4.85均属视力不良,那么该校约有__1250__名学生的视力不良,应给予治疗、矫正.23、为了了解某地九年级学生参加消防知识竞赛成绩(均为整数),从中抽取了1%的同学的竞赛成绩,整理后绘制了如下的频数直方图,请结合图形解答下列问题:(1)这个问题中的总体是 ;(2)竞赛成绩在84.5~89.5分这一小组的频率是 ;(3)若竞赛成绩在90分以上(含90分)的同学可以获得奖励,则估计该地获得奖励的九年级学生约有________人.解(1)某地九年级学生参加消防知识竞赛的成绩(2)=0.32.(3)该地九年级获得奖励的人数约是(13+7)÷1%=2000(人)24、在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频数直方图如下图所示,已知从左至右各长方形的高的比为2∶3∶4∶6∶4∶1,第三组的频数为12.请解答下列问题: (1)本次活动共有多少件作品参加评比? (2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件,2件作品获奖,问:这两组哪一组获奖率较高?【解】 (1)12÷42+3+4+6+4+1=60(件).(2)第四组上交的作品数量最多,有12×64=18(件).(3)第四组的获奖率为1018=59,第六组的获奖率为2÷⎝⎛⎭⎫12×14=23=69. ∵59<69,∴第六组获奖率较高.25、在开展“经典阅读”活动中,某校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计图表.根据图表信息回答下列问题:(1)填空:a =____,b =____,m =____,n =____. (2)将频数直方图补充完整.(3)若该校有3000名学生,请根据上述调查结果,估计该校学生一周的课外阅读时间不足3 h 的人数.【解】 (1)∵b =18÷0.12=150,∴n =36÷150=0.24,∴m =1-0.12-0.3-0.24-0.14=0.2,∴a=0.2×150=30.(2)补全频数直方图如解图中斜纹所示.(3)3000×(0.12+0.2)=960.答:估计该校学生一周的课外阅读时间不足3 h的人数为960.26、为了让地震受灾的儿童得到救助,某社区组织“献爱心手拉手”捐款活动,对社区部分捐款户数进行调查和分组统计后,将数据整理成如图所示的统计表和统计图(图中信息不完整).已知A、B两组捐款户数的比为1:5.请结合以上信息解答下列问题.(1)a= ,本次调查样本的容量是 ;(2)补全“捐款户数分组统计表和捐款户数统计图1”;(3)若该社区共有1000户住户参与捐款,请根据以上信息估计,全社区捐款不少于300元的户数是 户.解:(1)B组捐款户数是10,则A组捐款户数为10×=2,样本容量为(2+10)÷(1﹣8%﹣40%﹣28%)=50.(2)统计表C、D、E 组的户数分别为20,14,4.组别 捐款额(x)元 户数A 1≤x<50 aB 100≤x<200 10C 200≤x<300 20D 300≤x<400 14E x≥400 4(3)估计全社区捐款不少于300元的户数是1000×(28%+8%)=360(户).27、为了了解某次“小学生书法比赛”的成绩情况,随机抽取了30名学生的成绩进行统计,并将统计情况绘制成如图所示的频数直方图,已知成绩x(单位:分)均满足“50≤x <100”.根据图中信息回答下列问题: (1)图中a 的值为____.(2)绘制扇形统计图时,成绩x 在“70≤x <80”范围内所对应扇形的圆心角的度数为____. (3)此次比赛共有300名学生参加,若将“x ≥80”的成绩记为“优秀”,则获得“优秀”的学生大约有____人.【解】 (1)a =30-(2+12+8+2)=6,故a =6.(2)成绩x 在“70≤x <80”范围内所对应扇形的圆心角的度数为360°×1230=144°. (3)获得“优秀”的学生大约有300×8+230=100(人).28、为庆祝中华人民共和国成立70周年,郑州市某校组织八年级学生进行“方阵表演”.为了整齐划一,需了解学生的身高,现随机抽取该校八年级学生进行抽样调查,根据所得数据绘制出如下统计图表根据图表提供的信息,回答下列问题: (1)这次抽样调查,一共抽取学生 人; (2)扇形统计图中,扇形E 的圆心角度数是 ;(3)请补全频数分布直方图;(4)已知该校八年级共有学生400人,请估计身高在160≤x<170的学生约有多少人?【解答】解:(1)这次抽样调查,一共抽取学生4÷10%=40(人);(2)扇形统计图中,扇形E的圆心角度数是36054°,故答案为:40;54°;(3)身高在160≤x<170的人数为:40×20%=8人,补全频数分布直方图如图所示;(4)400×45%=180(人),答:估计身高在160≤x<170的学生约有180人.。
频数与频率过关测试(带答案)
频数与频率过关测试(带答案)频数与频率过关测试(带答案)一、选择 1、在一次选举中,某同学的选票没有超过半数,那么其频率() A.大于50% B. 等于50% C.小于50% D.小于或等于50% 2.对某班40名同学的一次数学成绩进行统计,适当分组后成绩落在80~90这个小组的频率是20%,那么成绩落在80~90这个分数段的人数是( ) A.20 B. 10 C.8 D.12 3.一组数据的频率反映了( ) A.数据的多少 B.这些数据的平均水平 C.这些数据的离散程度 D.这些数据所占总数比例的大小 4.已知一组数据:18 21 29 23 18 20 22 19 23 24 21 1 9 24 22 17 22 23 19 21 17 对这些数据适当分组,其中17~19这一组的频数和频率分别为() A.5,25% B.6 ,30% C. 8 ,40% D. 7, 35% 5.全班52名同学投票选举团支部书记,其中得票数最多三位同学中,小明24票,小丽18票,小刚7票,则下列说法正确的是() A.小明得票的频率为 B.小丽得票的频率为 C.小刚得票的频率为 D.小刚得票的频率为二、填空6.将一批数据分成若干小组,那各组的频数是指;频率是指 . 7.小明1分钟内共投篮75次,共进了45球,则小明进球的频率是 . 8.某校七年级学生有1080人购买校服,校服按小号、中号、大号、加大号四种,在调查得到的数据中,小号、中号、大号出现的频数分别是250,420,250,则加大号出现的频率是 . 9.某自行车厂再一次检查中,从20 00辆自行车中抽查了100辆,其中有2辆不合格,则出现次品的频率是,2000辆自行车中有辆为不合格产品. 10.在频率分布直方图中,小长方形的底为;小长方形的高为;小长方形的面积为;小长方形的面积之和为 . 11.为了迎接2008年奥运会,北京某单位举办了英语培训班,100名职工在一个月内参加英语培训的次数如下表所示:次数 4 5 6 7 8 人数15 20 30 20 15 ⑴这个月每名职工平均参加英语培训的次数为次. ⑵参加次数最多的职工频率是 . 12.已知样本容量为40,在样本频率分布直方图中,如图11-1-1,各小长方形的高的比是AE:BF:CG:DH=1:3:4:2,那么第三小组的频率为 .三、解答题 13.小明对某商场一年中三种洗发用品的销售情况做了调查,它的记录结果如下表:商品名称清爽牌美王牌飘柔牌销售数量 10000瓶 5000瓶 150 00瓶⑴在这家商场里什么品牌的洗发用品最好销售;⑵假如你是这家商场的经理,马上要订货,你将怎样分配进货比例?14.今年4月,国民体质监测中心等机构开展了青少年形体测评.专家组随机抽查了某市若干名初中学生坐姿、站姿、走姿的好坏情况.我们对专家的测评数据作了适当处理(如果一个学生有一种以上不良姿势,我们以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图11-1-2中所给信息解答下列问题:(1)请将两幅统计图补充完整;(2)在这次形体测评中,一共抽查了名学生,如果全市有10万名初中生,那么全市初中生中,三姿良好的学生约有人;(3)根据统计结果,请你简单谈谈自己的看法. 15.未成年人思想道德建设越来越受到社会的关注.某青少年研究所随机调查了大连市内某校100名学生寒假中花零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观.根据调查数据制成了频率分布表和频率分布直方图(如图11-1-4) 分组频数频率 0.5~50.5 _______ 0.1 50.5~______ 20 0.2 100.5~150.5 _ ______ ____________200.5 30 0.3 200.5~250.5 10 0.1 250.5~3 00.5 5 0.05 合计 100 ________⑴补全频率分布表;⑵在频率分布直方图中,长方形ABCD的面积是_________;这次调查的样本容量是_________;⑶研究所认为,应对消费150元以上的学生提出勤俭节约的建议.试估计应对该校1000名学生中约多少名学生提出这项建议?参考答案一、选择 1、D 2.C 3.D 4.C 5.B 二、填空 6.数据落在个各组内的数,各组数据的个数与数据总数的比值. 7.0.6 8. 9.0.02,40 10.组距,,频率,1. 11.⑴6次⑵0.15 12.0.4 13解:销售清爽牌的频率为销售美王牌的频率为销售飘柔牌的频率为通过比较可知飘柔牌的好销售. ⑵应该按花香牌,雨洁牌,飘柔牌按33:17:50的比例进货. 1 4.⑴(图略)⑵500人,12000 解析:100÷20%=500人,1000000×12%=12000人. ⑶三姿良好的人不多,需端正三姿,对身体的发育有好处.(只要意思对即可)15.⑴表格中依次填10,100.5,25,0.25,150.5,1. ⑵0.25,100 ⑶1000×(0.3+0.1+0.05)=450(名)。
中考数学试卷频数题及答案
一、选择题(每题3分,共30分)1. 下列数据中,频数为4的是:A. 1, 2, 2, 3, 3, 3, 4B. 1, 2, 3, 3, 4, 4, 4C. 1, 1, 2, 2, 3, 3, 3D. 1, 1, 1, 2, 2, 3, 3答案:D解析:频数是指一组数据中某个数值出现的次数。
在选项D中,数值1出现了3次,频数为4。
2. 下列关于频数的说法正确的是:A. 频数一定大于等于0B. 频数可以大于数据组中的最大值C. 频数是表示数据集中数据分布情况的一个指标D. 频数与数据组中的最小值有关答案:A解析:频数是指一组数据中某个数值出现的次数,它一定大于等于0。
选项B、C、D的说法都不准确。
3. 下列数据中,众数是3的是:A. 1, 2, 3, 3, 3, 4, 4B. 1, 2, 3, 4, 4, 5, 5C. 1, 2, 3, 3, 4, 4, 5D. 1, 2, 3, 4, 5, 5, 6答案:A解析:众数是指一组数据中出现次数最多的数值。
在选项A中,数值3出现了3次,是出现次数最多的数值,因此众数是3。
4. 下列数据中,中位数是3的是:A. 1, 2, 3, 3, 4, 5, 6B. 1, 2, 3, 4, 5, 6, 7C. 1, 2, 3, 4, 5, 6, 7, 8D. 1, 2, 3, 4, 5, 6, 7, 8, 9答案:C解析:中位数是指一组数据从小到大排列后,位于中间位置的数值。
在选项C中,数据从小到大排列后,中间位置的数值是6,因此中位数是3。
5. 下列数据中,极差是6的是:A. 1, 2, 3, 4, 5, 6B. 1, 2, 3, 4, 5, 7C. 1, 2, 3, 4, 5, 8D. 1, 2, 3, 4, 5, 9答案:B解析:极差是指一组数据中最大值与最小值之差。
在选项B中,最大值是7,最小值是1,极差为7-1=6。
二、填空题(每题4分,共16分)6. 数据组:2, 4, 4, 6, 6, 6,众数是______。
浙教版七年级下《6.4频数与频率》同步练习含答案解析
浙教版七年级下册第6章 6.4频数与频率同步练习(解析版)一、单选题(共15题;共30分)1、数据3,1,5,1,3,4中,数据“3”出现的频数是()A、1B、2C、3D、42、我校学生会成员的年龄如下表:则出现频数最多的年龄是()A、4B、14C、13和15D、23、某次数学测验后,张老师统计了全班50名同学的成绩,其中70分以下的占12%,70﹣80分的占24%,80﹣90分的占36%,请问90分及90分以上的有()人.A、13B、14C、15D、284、已知数据:10,8,6,10,8,13,11,10,12,7,9,8,12,9,11,12,9,10,11,10,那么频数为4的一组是()A、5.5~7.5B、7.5~9.5C、9.5~11.5D、11.5~13.55、某校有300名学生参加毕业考试,其数学成绩在100﹣110分之间的有180人,则在100﹣110分之间的频率是()A、0.6B、0.5C、0.3D、0.16、在一个样本中,50个数据分别落在5个小组内,第1,2,3,5小组数据的个数分别是2,8,15,5,则第4小组的频数是()A、15B、207、A校女生占全校总人数的40%,B校女生占全校总人数的55%,则女生人数()A、A校多于B校B、A校与B校一样多C、A校少于B校D、不能确定8、已知一组数据含有20个数据:68,69,70,66,68,65,64,65,69,62,67,66,65,67,63,65,64,61,65,66,如果分成5组,那么64.5﹣66.5这一小组的频率为()A、0.04B、0.5C、0.45D、0.49、甲校男生占全校总人数的50%,乙校女生占全校总人数的50%,则甲乙两校女生人数相比()A、甲校多于乙校B、甲校少于乙校C、甲乙两校一样多D、不能确定10、已知一个样本中,50个数据分别落在5个组内,第一、二、三、四、五组数据的个数分别为2、8、15、20、5,则第四组的频率为()A、0.1B、0.2C、0.3D、0.411、有40个数据,共分成6组,第1﹣4组的频数分别是10、5、7、6.第5组的占10%,则第6组占()A、25%B、30%C、15%D、20%12、已知在一个样本中,40个数据分别落在4个组内,第一、二、四组数据个数分别为5、12、8,则第三组的频数为()A、0.375B、0.6C、15D、2513、下列各数:π,,cos60°,0,,其中无理数出现的频率是()A、20%B、40%14、有一个样本有100个数据,落在某一组内的频率是0.3,那么落在这一组内的频数是()A、50B、30C、15D、315、四大名著知识竞赛成绩结果统计如下表:成绩在91﹣100分的为优胜者,则优胜者的频率是()A、35%B、30%C、20%D、10%二、填空题(共5题;共5分)16、一次数学测验,100名学生中有25名得了优秀,则优秀人数的频率是________.17、已知在一个样本中,50个数据分别落在5个组内,第一、二、三、五组数据的个数分别为2,8,15,5,则第四组的频率是________.18、将某班级全体同学按课外阅读的不同兴趣分成三组,情况如表格所示,则表中a的值应该是________.19、某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表,则棉花纤维长度的数据在8≤x<32这个范围的频率为________ .20、某校对初中学生开展的四项课外活动进行了一次抽样调查(每人只参加其中的一项活动),调查结果如图所示.根据图示所提供的样本数据,可得学生参加体育活动的频率是________三、解答题(共6题;共30分)21、有30张牌,牌面朝下,每次抽出一张记下花色再放回,洗牌后再抽,抽到红桃、黑桃、梅花、方块的频率依次为20%、32%、45%、3%,试估计四种花色的牌各有多少张?22、在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m,规定:当m≥10时为A级,当5≤m<10时为B级,当0≤m<5时为C级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:11 10 6 15 9 16 13 12 0 82 8 10 17 6 13 7 5 7 312 10 7 11 3 6 8 14 15 12(1)求样本数据中为A级的频率;(2)试估计1000个18~35岁的青年人中“日均发微博条数”为A级的人数.23、某班某天音乐课上学习了《感恩的心》这一首歌,该班班长由此歌名产生了一个想法,于是就“每年过生日时,你是否会用语言或其他方式向母亲道一声‘谢谢’”这个问题对该校初三年级30名同学进行了调查.调查结果如下:(1)在这次抽样调查中,回答“否”的频数为多少?频率为多少?(2)请你选择适当的统计图描述这组数据;(3)估计全校3000名同学中,在过生日时,曾经用语言或其他方式向母亲道谢的人数有多少?24、食品安全问题已经严重影响到我们的健康.某执法部门最近就食品安全抽样调查某一家超市,从中随机抽样选取20种包装食品,并列出下表:请你根据以上信息解答下列问题:(1)这次抽样调查中,“食品质量为合格以上(含合格)”的频率为多少?(2)若这家超市经销的包装食品共有1300种,请你估计大约有多少种包装食品是“有害或有毒”的?25、思考题:在对某地区的一次人口抽样统计分析中,各年龄段(年龄为整数)的人数如下表所示:根据此表回答下列问题:(1)样本中年龄在60岁以上(含60岁)的频率是多少?(2)如果该地区现有人口80000人,为关注人口老龄化问题,请估算该地区60岁以上(含60岁)的人口数.26、某校八年级共有150名男生,从中随机抽取30名男生在“阳光体育活动”启动日进行“引体向上”测试,下表是测试成绩记录(单位:个):(1)我们已经会列频数分布表、画条形统计图、折线统计图和扇形统计图.为了能让体育老师一目了然知道整个测试情况,请你选择一种合适的统计表或统计图整理表示上述数据;(2)观察分析(1)中的统计表或统计图,请你写出两条从中获得的信息:(3)规定八年级男生“引体向上”4个及以上为合格.若学校准备对“引体向上”不合格的男生提出锻炼建议,试估计要对八年级多少名男生提出这项建议?答案解析部分一、单选题1、【答案】B【考点】频数与频率【解析】解:∵数据3,1,5,1,3,4,数据“3”出现了2次,∴数据“3”出现的频数是2.故选:B.【分析】根据频数的概念:频数是表示一组数据中符合条件的对象出现的次数.2、【答案】B【考点】频数与频率【解析】【解答】解:由表格可得,14岁出现的人数最多,故出现频数最多的年龄是14岁.故选B.【分析】频数是指每个对象出现的次数,从而结合表格可得出出现频数最多的年龄.3、【答案】B【考点】频数与频率【解析】解:90分及90分以上的频率为:1﹣12%﹣24%﹣36%=28%,∵全班共有50人,∴90分及90分以上的人数为:50×28%=14.故选B.【分析】先求出90分及90分以上的频率,然后根据频数=频率×数据总和求解.4、【答案】D【考点】频数与频率【解析】解:5.5~7.5组有6,7,频数为2;7.5~9.5组有8,8,9,8,9,9,频数为6;9.5~11.5组有10,10,11,10,11,10,11,10,频数为8;11.5~13.5组有13,12,12,12,频数为4.故选D.【分析】找出四组中的数字,判断出频数,即可做出判断.5、【答案】A【考点】频数与频率【解析】【解答】解:频率=180÷300=0.6.故选A.【分析】根据频率=频数÷数据总和即可求解.6、【答案】B【考点】频数与频率【解析】【解答】解:50﹣(2+8+15+5)=20.则第4小组的频数是20.故选B.【分析】每组的数据个数就是每组的频数,50减去第1,2,3,5,小组数据的个数就是第4组的频数.7、【答案】D【考点】频数与频率【解析】【解答】解:A校的人数非常多,B小的人数非常少时,A校的女生多,A校的女生人数有可能与B校的女生人数一样多,A校的人数少时,B校的女生多,故选:D.【分析】根据频率是频数与数据总和的比,可得答案.8、【答案】D【考点】频数与频率【解析】【解答】解:根据题意,发现数据中在64.5﹣66.5之间的有8个数据,故64.5﹣66.5这一小组的频率=0.4;故选D.【分析】根据题意,找在64.5﹣66.5之间的数据,计算其个数;再由频率的计算方法,计算可得答案.9、【答案】D【考点】频数与频率【解析】【解答】解:因为甲乙两校总人数不知道,无法计算出各校男女生人数,因此不能确定甲乙两校女生人数的多少,故选:D.【分析】根据总人数×女生所占百分比=女生人数进行计算比较即可.10、【答案】D【考点】频数与频率【解析】【解答】解:由题意得:第四组的频率是20÷50=0.4.故选D.【分析】根据频率=频数÷总数计算.11、【答案】D【考点】频数与频率【解析】【解答】解:∵第5组占10%,∴第5组的频数为40×10%=4,∴第6组的频数为40﹣(10+5+7+6+4)=8,故第6组所占百分比为=20%.故选D.【分析】有40个数据,第5组占10%;故可以求得第5组的频数,根据各组的频数的和是40,即可求得第6组的频数,利用频数除以频率即可求解.12、【答案】C【考点】频数与频率【解析】【解答】解:第三组的频数为:40﹣5﹣12﹣8=15.故选C.【分析】用数据总和减去其它三组的数据个数即可求解.13、【答案】B【考点】频数与频率【解析】【解答】解:无理数有π,共2个.则无理数出现的频率是×100%=40%.故选B.【分析】根据无理数的定义首先确定无理数的个数,然后利用频率的定义求解.14、【答案】B【考点】频数与频率【解析】【解答】解:频数:100×0.3=30,故选:B.【分析】根据频率、频数的关系:频率=频数÷数据总和,可得频数=频率×数据总和.15、【答案】C【考点】频数与频率【解析】【解答】解:根据题意,得共有2+8+6+4=20(人)参加竞赛;其中有4人是优胜者;故优胜者的频率是=20%.故选C.【分析】首先根据表格,计算其总人数;再根据频率=频数÷总数进行计算.二、填空题16、【答案】0.25【考点】频数与频率【解析】【解答】解:优秀人数的频率:=0.25,故答案为:0.25.【分析】利用优秀人数的频数÷总人数可得优秀人数的频率.17、【答案】0.4【考点】频数与频率【解析】【解答】解:第四组的频数为:50﹣2﹣8﹣15﹣5=20,第四组的频率是:=0.4,故答案为:0.4.【分析】首先计算出第四项组的频数,然后再利用频数除以总数可得第四组的频率.18、【答案】7【考点】频数与频率【解析】【解答】解:∵1﹣20%=80%,∴(16+12)÷80%=35,∴a=35×20%=7.故答案为:7.【分析】首先根据各小组的频率之和等于1得出第一组与第二组的频率和,然后求出数据总数,从而求出a的值.19、【答案】0.8【考点】频数与频率【解析】【解答】解:在8≤x<32这个范围的频数是:2+8+6=16,则在8≤x<32这个范围的频率是:=0.8.故答案为0.8.【分析】先求得在8≤x<32这个范围的频数,再根据频率的计算公式即可求解.20、【答案】0.3【考点】频数与频率【解析】【解答】解:数据总数=15+30+20+35=100,参加体育活动的频数为30,参加体育活动的频率为:=0.3.故答案为:0.3.【分析】根据条形图计算数据总数,再找出学生参加体育活动的频数,根据频率=计算即可.三、解答题21、【答案】解:根据分析,可以估计其中有红桃约为6张,黑桃约为10张,梅花约为14张,方块约为1张.【考点】频数与频率【解析】【分析】由公式频率=,即可计算:抽到红桃的频数=30×0.20=6张;方块的频数=30×0.03≈1张;黑桃的频数=30×0.32≈10张;梅花的频数=30×0.45=13张.22、【答案】解:(1)m≥10的人数有15人,则频率==;(2)1000×=500(人),即1000个18~35岁的青年人中“日均发微博条数”为A级的人数为500人.【考点】频数与频率【解析】【分析】(1)先找出数据中A级的频数,用频数÷总数即可求得频率;(2)用总人数×频率即可估算A级的人数.23、【答案】解:(1)说“否”的有21人,故频数为21,频率=21÷30=0.7.(2)说否的有21人,说是的有3人,说有时的有6人.(3)是、有时的频率=,∴全校3000名同学中,在过生日时,曾经用语言或其他方式向母亲道谢的人数=3000×=900人.【考点】频数与频率【解析】【分析】(1)数出回答否的人数,就是频数,频数除以30就是频率.(2)可用条形统计图来描述.(3)计算出是、及有时的频率,然后根据频数=总数×频率即可得出答案.24、【答案】解:(1)∵这次抽样中,食品质量为合格以上(含合格)”的频数是0+2+3=5,∴频率为=0.25;(2)1300×=260种.答:约有260种包装食品是“有害或有毒”的.【考点】频数与频率【解析】【分析】(1)首先求出随机抽样的20种包装食品中“食品质量为合格以上(含合格)”的数量,然后根据频率=频数÷数据总数得出结果;(2)首先求出随机抽样的20种包装食品中“有害或有毒”的频率,然后根据样本估计总体的思想,得出答案.25、【答案】解:(1)根据题意,得:样本中年龄在60岁以上(含60岁)的频率是=0.16;(2)根据(1),得:80000×0.16=12800(人).【考点】频数与频率【解析】【分析】(1)根据表格,求得总人数,再根据频率=频数÷总数,进行计算;(2)根据(1)的结论,能够用样本估计总体.26、【答案】解:(1)选择条形统计图(2)获得的信息如:成绩为五个的有3人,占10%;成绩为2个的人数最多.(3)(4+10+7)÷30×150=105(名).【考点】频数与频率,条形统计图【解析】【分析】(1)按学生成绩的个数统计,发现:1个的人有4人,2个有10人,3个有7人,4个有6人,5个有3人.依此画条形统计图;(2)符合题意即可,答案不唯一;(3)用样本中的不到4个的学生人数的频率乘总数.第11页共11页。
2019-2020学年度最新浙教版七年级数学下册《频数与频率》同步练习及答案解析一精品试卷
6.4 频数与频率(第二课时)一、选择题1、在1000个数据中,用适当的方法抽取50个作为样本进行统计,频率分布表中54.5~57.5这一组的频率是0.12,那么估计总体数据落在54.5~57.5之间的约有()A. 120个B. 60个C. 12个D. 6个2、王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是()组别A型B型AB型O型频率0.40.350.10.15A.16人 B.14人C.4人D.6人3、某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的频率为()棉花纤维长度x频数0≤x<8 18≤x<16 216≤x<24 824≤x<32 632≤x<40 3A. 0.8 B.0.7 C.0.4 D.0.2二、填空题4、对某校八年级(1)班50名学生的年龄进行抽查,其中15岁的2人,14岁的45人,13岁的3人,则14岁的频数为__ __,频率为__ __.5、一组20个数据的样本分成三组,第一组的频数是10,第二组的频率是0.25,那么第三组的频数是。
6、大课间活动在我市各校蓬勃开展,某班大课间活动抽查了20名学生每分钟跳绳次数,获得如下数据(单位:次):50,63,77,83,87,88,89,91,100,102,111,117,121,130,133,146,158,177,188.则跳绳次数在90~110这一组的频率是。
三、解答题7、某中学为了解学生的课外阅读情况,就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学仅选一项),并根据调查结果制作了尚不完整的频率分布表:类别频数(人数) 频率文学m 0.42艺术22 0.11科普66 n其他28合计 1.00(1)表中m=__ __,n=__ __;(2)根据以上调查,试估计该校1200名学生中最喜爱阅读科普读物的学生有__ __人.8、七(一)班同学为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据整理如下表(部分):月均用水量x/m30<x≤55<x≤1010<x≤1515<x≤20x>20频数/户120 32频率0.120.07若该小区有800户家庭,据此估计该小区月均用水量不超过10m3的家庭约有户.9、为增强学生的身体素质,某校坚持常年的全员体育锻炼,并定期进行体能测试,下面是将某班学生立定跳远成绩(精确到0.01米)进行整理后,分成5组(含低值不含高值):1.60~1.80,1.80~2.00,2.00~2.20,2.20~2.40,2.40~2.60.已知前4个小组的频率分别为0.05,0.15,0.30,0.35,第5个小组的频数为9.(1)该班参加这次测试的人数是多少?(2)前4个小组的人数分别是多少?(3)成绩在2.00米以上(含2.00米)的为合格,问该班成绩的合格率是多少?★10、2011年5月9日至14日,德州市共有35000余名学生参加中考体育测试,为了了解九年级男生立定跳远的成绩,从某校随机抽取了50名男生的测试成绩,根据测试评分标准,将他们的得分按优秀、良好、及格、不及格(分别用A、B、C、D表示)四个等级进行统计,并绘制成扇形图和统计表:等级成绩(分)频数(人数)频率A 90~100 19 0.38请你根据以上图表提供的信息,解答下列问题:(1)m =________,n =________,x =________,y =________; (2)在扇形图中,C 等级所对应的圆心角是________度; (3)如果该校九年级共有500名男生参加了立定跳远测试,那么请你估计这些男生成绩等级达到优秀和良好的共有多少人?B 75~89 m xC 60~74 n y D60以下3 0.06 合计501.006.4(2)1、D,2、A,3、A,4、45,0.9,5、5,6、15%7、(1)84,0.33,(2)396, 8、560, 9、(1)60人,(2)前4小组人数依次为3,9,18,21人,(3)80%, 10、(1)20,8,0.4,0.16,(2)57.6º,(3)390人。
初三中考一轮复习频数与频率 题型分类 含答案(全面 非常好)
教学主题教学目标重要知识点1.2.3.易错点教学过程一、选择题1. 某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:用电量(度)120 140 160 180 200户数 2 3 6 7 2则这20户家庭该月用电量的众数和中位数分别是【】A.180,160 B.160,180 C.160,160 D.180,180【答案】A。
2. 为调查某校2000名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图.根据统计图提供的信息,可估算出该校喜爱体育节目的学生共有【】(A)300名(B)400名(C)500名(D)600名【答案】B。
3.数据5,7,5,8,6,13,5的中位数是【】A.5 B.6 C.7 D.8【答案】B。
4、数据8、8、6、5、6、1、6的众数是【】A.1 B.5 C. 6 D.8【答案】C。
5. 体育课上,某班两名同学分别进行5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的【】A.平均数B.频数分布C.中位数D.方差【答案】D。
6. 某校羽毛球训练队共有8名队员,他们的年龄(单位:岁)分別为:12,13,13,14,12,13,15,13,则他们年龄的众数为【】A.12 B.13 C .14 D.15【答案】B。
7. 下列数据3,2,3,4,5,2,2的中位数是【】A.5 B.4 C.3 D.2【答案】C。
8. 某校学生来自甲、乙、丙三个地区,其人数比为2:3:5,如图所示的扇形图表示上述分布情况.已知来自甲地区的为180人,则下列说法不正确的是【】A.扇形甲的圆心角是72°B.学生的总人数是900人C.丙地区的人数比乙地区的人数多180人D.甲地区的人数比丙地区的人数少180人【答案】D。
9. 某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为2222====S8.5S 2.5S10.1S7.4,,,.二月份白菜价格最乙丁甲丙稳定的市场是【】A.甲B.乙C.丙D.丁【答案】B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
频数和频率基础题汇编(1)(扫描二维码可查看试题解析)一.选择题(共30小题)1.(2015•大庆模拟)将100个数据分成①~⑧组,如下表所示:组号①②③④⑤⑥⑦⑧频数4812241873那么第④组的频率为()A.24B.26C.D.2.(2014•温州)如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是()A.5~10元B.10~15元C.15~20元D.20~25元3.(2014•江西模拟)某校对初三年级1600名男生的身高进行了测量,结果身高(单位:m)在~这一小组的频率为,则该组的人数为()A.640人B.480 人C.400人D.40人4.(2014•崇明县二模)某校九年级200名学生在第一学期的期末考试中数学成绩(分数都是整数)分布如表:分数段75~8990~104105~119120~134135~149频率表中每组数据含最小值和最大值,在最低分为75分与最高分为149分之间的每个分数都有学生,那么下列关于这200名学生成绩的说法中一定正确的是()A.中位数在105~119分数段B.中位数是分C.中位数在120~134分数段D.众数在120~134分数段5.(2014•武汉模拟)七年级有2000名学生参加“趣味数学竞赛”活动,从中抽取了若干名学生的得分进行统计,整理出下列不完整的表格,和扇形统计图.成绩x(分)频数(人)50≤x<601060≤x<7070≤x<8080≤x<9090≤x<10050若90分以上(含90分)的学生可获得一等奖;70分以上(含70分),90以下的学生可获得二等奖;其余学生可获得鼓励奖.根据统计图表中的数据,估计本次活动中,七年级学生获得二等奖的人数大约有()A.1200人B.120人C.60人D.600人6.(2014•安庆一模)某校组织400名九年级学生参加英语测试,为了解他们的测试情况(满分120分),随机抽取若干名学生,将所得成绩数据整理后,画出频数分布直方图(如图).估计该校成绩在100~120分之间的人数有()A.12B.48C.60D.727.(2013秋•船山区校级期末)某同学八年级(2)班50名同学采用无记名投票方式选班长,其中姚通得12票,杜秋得18票,黄凌得10票,则下列说法正确的是()A.全班只有40人参了投票B.姚通得票的频率是=C.杜秋得票的频率是=D.黄凌得票的频率是1﹣﹣=8.(2014秋•邗江区期末)数学老师布置10道选择题作为课堂练习,学习委员将全班同学的答欢迎登陆全品中考网“题情况绘制成条形图,据统计图可知,答对8道题的同学的频率是()A.B.C.D.9.(2014春•雅安期末)掷一枚质地均匀的硬币50次,硬币落地后,出现正面朝上的次数为20次,则正面朝上的频率为()A.B.C.D.110.(2014秋•海口期末)若频率为,总数为100,则频数为()A.B.200C.100D.2011.(2014秋•海口期末)小东5分钟内共投篮60次,共进球15个,则小东进球的频率是()A.B.60C.D.1512.(2014春•栾城县期末)已知数据﹣1、2、3、﹣π、﹣5,其中负数出现的频率是()A.20%B.40%C.50%D.60%13.(2014春•临沂期末)有40个数据,其中最大值为35,最小值为12,若取组距为4,则应分为()A.4组B.5组C.6组D.7组14.(2014春•乳山市期末)在绘制频数直方图时,若有50个数据,其中最大值为38,最小值为16,取组距为4,则应该分()A.4组B.5组C.6组D.7组15.(2014春•邳州市期中)一个学生随手写下了一串数字2,则2出现的频率是()A.14B.10C.D.16.(2014春•盐城校级期中)对60个数据进行处理时,适当分组,各组数据个数之和与百分率之和分别等于()A.60,1B.60,60C.1,60D.1,117.(2014春•嘉兴期中)已知样本数据个数为30,且被分成4组,各组数据个数之比为2:4:3:1,则第二小组和第三小组的频率分别为()A.和B.和9C.12和D.12和918.(2014春•东营区校级期中)频数分布直方图由五个小长方形组成,且五个小长方形的高度的比是3:5:4:2:3,若第一小组频数为12,则数据总数共有()A.60B.64C.68D.7219.(2014春•京口区校级月考)已知样本:14、8、10、7、9、7、12、11、13、8、10、10、8、11、10、11、13、9、12、9,那么样本数据落在范围~内的频率()A.B.C.D.20.(2014春•东台市校级月考)在频数分布直方图中,各小长方形的高等于相应组的()A.组距B.组数C.频数D.频率21.(2014春•大丰市校级月考)样本容量为200的频率分布直方图如图.根据样本的频率分布直方图估计,样本数据落在[6,10)内的频数为()A.32B.36C.46D.6422.(2013•丽水)王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是()组别A型B型AB型O型频率A.16人B.14人C.4人D.6人23.(2013•永嘉县校级二模)为了支援雅安地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在~组别的频率是()A.B.C.D.24.(2013春•武冈市校级期末)一组数据共50个,分为6组,第1~4组的频数分别为5,7,8,10,第5组的频率为,则第6组的频数为()A.10B.11C.12D.1525.(2013春•建德市校级期末)已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,7,6,第五组的频率是,所以第六组的频率是()A.B.C.D.26.(2013秋•南安市校级期末)抛一枚普通硬币10次,其中4次出现正面,则出现正面的频率为()A.B.C.D.27.(2013春•北流市期末)在“We like maths.”这个句子的所有字母中,字母“e”出现的频数是()A.2B.3C.4D.528.(2013春•奉化市校级期末)某校为了了解学生在校午餐所需的时间,抽查了20名同学在校午餐所需的时间,获得如下数据(单位:分):10,12,15,10,16,18,19,18,20,34,22,25,20,18,18,20,15,16,21,16.若将这些数据分为6组,则组距是()A.4分B.5分C.6分D.7分29.(2013春•东莞期末)一个容量为80的样本,最大值是141,最小值是50,取组距为10,可以分成()A.10组B.9组C.8组D.7组30.(2013春•鄞州区期末)一组数据的极差为30,组距为4,则分成的组数为()A.7组B.组C.8组D.9组频数和频率基础题汇编(1)参考答案与试题解析一.选择题(共30小题)1.(2015•大庆模拟)将100个数据分成①~⑧组,如下表所示:组号①②③④⑤⑥⑦⑧频数4812241873那么第④组的频率为()A.24B.26C.D.考点:频数与频率.分析:先根据数据总数和表格中的数据,可以计算得到第④组的频数;再根据频率=频数÷数据总数进行计算.解答:解:根据表格中的数据,得第④组的频数为100﹣(4+8+12+24+18+7+3)=24,其频率为24:100=.故选C.点评:本题考查频数、频率的计算方法.用到的知识点:各组的频数之和等于数据总数;频率=频数:数据总数.2.(2014•温州)如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是()A.5~10元B.10~15元C.15~20元D.20~25元考点:频数(率)分布直方图.分析:根据图形所给出的数据直接找出捐款人数最多的一组即可.解答:解:根据图形所给出的数据可得:捐款额为15~20元的有20人,人数最多,则捐款人数最多的一组是15﹣20元.故选:C.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.3.(2014•江西模拟)某校对初三年级1600名男生的身高进行了测量,结果身高(单位:m)在~这一小组的频率为,则该组的人数为()A.640人B.480 人C.400人D.40人考点:频数与频率.分析:根据频率=频数÷数据总数,得频数=数据总数×频率,将数据代入即可求解.解答:解:根据题意,得该组的人数为1600×=640(人).故选A.点评:此题考查频率、频数的关系:频率=频数÷数据总数.能够灵活运用此公式是解题的关键.4.(2014•崇明县二模)某校九年级200名学生在第一学期的期末考试中数学成绩(分数都是整数)分布如表:分数段75~8990~104105~119120~134135~149频率表中每组数据含最小值和最大值,在最低分为75分与最高分为149分之间的每个分数都有学生,那么下列关于这200名学生成绩的说法中一定正确的是()A.中位数在105~119分数段B.中位数是分C.中位数在120~134分数段D.众数在120~134分数段考点:频数(率)分布表;中位数;众数.分析:根据中位数与众数的定义对各选项分析判断后利用排除法求解.解答:解:分数段位于75~89的人数:200×=20,分数段位于90~104的人数:200×=30,分数段位于105~119的人数:200×=50,分数段位于120~134的人数:200×=70,分数段位于135~149的人数:200×=30,根据中位数的定义,可知中位数是位于第100与101个分数的平均数,又在最低分为75分与最高分为149分之间的每个分数都有学生,所以中位数是:(119+120)÷2=(分);根据众数的定义可知本题的众数不能确定.故选B.点评:本题考查读频率分布表的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据中的数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.5.(2014•武汉模拟)七年级有2000名学生参加“趣味数学竞赛”活动,从中抽取了若干名学生的得分进行统计,整理出下列不完整的表格,和扇形统计图.成绩x(分)频数(人)50≤x<601060≤x<7070≤x<8080≤x<9090≤x<10050若90分以上(含90分)的学生可获得一等奖;70分以上(含70分),90以下的学生可获得二等奖;其余学生可获得鼓励奖.根据统计图表中的数据,估计本次活动中,七年级学生获得二等奖的人数大约有()A.1200人B.120人C.60人D.600人考点:频数(率)分布表;用样本估计总体;扇形统计图.分析:根据图表和扇形统计图先求出抽取的学生数,再根据频数、频率之间的关系求出80≤x<90被抽查的人数、90≤x<100所占的百分比和70≤x<80的频数,然后用七年级参加“趣味数学竞赛”活动的总人数乘以二等奖的人数所占的百分百,即可得出答案.解答:解:根据图表和扇形统计图得:抽取的学生数是:=200(人),80≤x<90被抽查的人数是:200×30%=60(人),90≤x<100所占的百分比是:×100%=25%,70≤x<80的频数是:200×(1﹣5%﹣10%﹣30%﹣25%)=60(人),则七年级学生获得二等奖的人数大约有×2000=1200(人);故选A.点评:此题考查了频数分布表和扇形统计图,读图时要全面细致,同时,解题方法要灵活多样,切忌死记硬背,要充分运用数形结合思想来解决由统计图形式给出的数学实际问题.6.(2014•安庆一模)某校组织400名九年级学生参加英语测试,为了解他们的测试情况(满分120分),随机抽取若干名学生,将所得成绩数据整理后,画出频数分布直方图(如图).估计该校成绩在100~120分之间的人数有()A.12B.48C.60D.72考点:频数(率)分布直方图.分析:先求出该校成绩在100~120分之间的人数所占的百分比,再乘以九年级学生参加英语测试的总人数,即可得出答案.解答:解:该校成绩在100~120分之间的人数所占的百分比是:×100%=12%,则该校成绩在100~120分之间的人数有400×12%=48(人);故选B.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.7.(2013秋•船山区校级期末)某同学八年级(2)班50名同学采用无记名投票方式选班长,其中姚通得12票,杜秋得18票,黄凌得10票,则下列说法正确的是()A.全班只有40人参了投票B.姚通得票的频率是=C.杜秋得票的频率是=D.黄凌得票的频率是1﹣﹣=考点:频数与频率.分析:根据频率的计算公式:频率=即可判断.解答:解:A、全班有5人投票,故选项错误;B、姚通的得票率是:=,故选项错误;C、正确;D、黄玲得票的频率是=,故选项错误.故选C.点评:本题考查了频率的计算公式,理解公式是关键.8.(2014秋•邗江区期末)数学老师布置10道选择题作为课堂练习,学习委员将全班同学的答欢迎登陆全品中考网“题情况绘制成条形图,据统计图可知,答对8道题的同学的频率是()A.B.C.D.考点:频数与频率.分析:根据条形统计图求出总共答对的人数,再求出答对8道题的同学人数,然后利用答对8道题的同学人数÷总共的人数,即可得出答案.解答:解:解:总共的人数有4+20+18++8=50人,答对8道题的同学有20人,∴答对8道题以上的同学的频率是:20÷50=,故选:B.点评:此题主要考查了条形统计图的应用,利用条形图得出总共答对的人数与答对8道题的同学人数是解题关键.9.(2014春•雅安期末)掷一枚质地均匀的硬币50次,硬币落地后,出现正面朝上的次数为20次,则正面朝上的频率为()A.B.C.D.1考点:频数与频率.分析:根据频率=列式计算即可得解.解答:解:正面朝上的频率==.故选C.点评:本题考查了频数与频率,熟练掌握频率的求解方法是解题的关键.10.(2014秋•海口期末)若频率为,总数为100,则频数为()A.B.200C.100D.20考点:频数与频率.分析:根据频率、频数的关系:频率=频数÷数据总数,可得频数=频率×数据总数.解答:解:∵频率为,总数为100,∴频数为:100×=20,故选:D.点评:本题考查频率、频数与数据总数的关系:频数=频率×数据总数.11.(2014秋•海口期末)小东5分钟内共投篮60次,共进球15个,则小东进球的频率是()A.B.60C.D.15考点:频数与频率.分析:根据频率的计算公式代入相应的数进行计算.解答:解:∵小东5分钟内共投篮60次,共进球15个,∴小东进球的频率是:=.故选A.点评:此题主要考查了频率,频率是指每个对象出现的次数与总次数的比值(或者百分比).即频率=频数:数据总数.12.(2014春•栾城县期末)已知数据﹣1、2、3、﹣π、﹣5,其中负数出现的频率是()A.20%B.40%C.50%D.60%考点:频数与频率.分析:数据总数为5个,负数有3个,再根据频率公式:频率=频数÷总数代入计算即可.解答:解:∵在﹣1、2、3、﹣π、﹣5中,负数有3个,∴负数出现的频率是=60%;故选D.点评:本题考查了频率与频率.频率的计算方法:频率=频数÷总数.13.(2014春•临沂期末)有40个数据,其中最大值为35,最小值为12,若取组距为4,则应分为()A.4组B.5组C.6组D.7组考点:频数(率)分布表.分析:根据组数=(最大值﹣最小值)÷组距计算即可,注意小数部分要进位.解答:解:∵在样本数据中最大值与最小值的差为35﹣12=23,又∵组距为4,∴组数=23÷4=,∴应该分成6组.故选C.点评:本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.14.(2014春•乳山市期末)在绘制频数直方图时,若有50个数据,其中最大值为38,最小值为16,取组距为4,则应该分()A.4组B.5组C.6组D.7组考点:频数(率)分布直方图.分析:求得最大值与最小值的差,除以组距就是组数.解答:解:最大值与最小值的差是:38﹣16=22,则可以分成的组数是:22÷4≈6(组).故选C.点评:本题考查了数据分组的方法,是需要熟练掌握的内容.15.(2014春•邳州市期中)一个学生随手写下了一串数字2,则2出现的频率是()A.14B.10C.D.考点:频数与频率.分析:首先计算数字的总数,以及2出现的频数,根据频率公式:频率=频数÷数据总数即可求解.解答:解:数字的总数是14,有10个2,因而2出现的频率是:10÷14=.故选C.点评:本题考查了频数与频率,熟记公式:频率=频数÷数据总数是解题的关键.16.(2014春•盐城校级期中)对60个数据进行处理时,适当分组,各组数据个数之和与百分率之和分别等于()A.60,1B.60,60C.1,60D.1,1考点:频数(率)分布表.分析:各组数据个数之和为数据总个数;百分率之和为100%.解答:解:各组数据个数之和为60,百分率之和为1,故选:A.点评:此题主要考查了频数分布表,关键是掌握频数是落在每个小组内的数据个数.17.(2014春•嘉兴期中)已知样本数据个数为30,且被分成4组,各组数据个数之比为2:4:3:1,则第二小组和第三小组的频率分别为()A.和B.和9C.12和D.12和9考点:频数(率)分布表.分析:根据比例关系由频数=总数×频率即可得出第二、三组的频数,进而得出各组的频率.解答:解:∵样本数据个数为30,且被分成4组,各组数据个数之比为2:4:3:1,∴第二小组和第三小组的频数为:30×=12,30×=9,∴第二小组和第三小组的频率分别为:=,=.故选:A.点评:此题考查了频数(率)分布表,要知道,频数分布表中各个频数之比即为各组频率之比.18.(2014春•东营区校级期中)频数分布直方图由五个小长方形组成,且五个小长方形的高度的比是3:5:4:2:3,若第一小组频数为12,则数据总数共有()A.60B.64C.68D.72考点:频数(率)分布直方图.分析:用第一组的频数除以频率计算即可得解.解答:解:12÷=12÷=68.故选C.点评:本题考查了频数分布直方图,根据小长方形的高度表示出第一小组的频率是解题的关键.19.(2014春•京口区校级月考)已知样本:14、8、10、7、9、7、12、11、13、8、10、10、8、11、10、11、13、9、12、9,那么样本数据落在范围~内的频率()A.B.C.D.考点:频数与频率.分析:根据数据可得落在范围~内的数据有10个,再利用频率=频数÷总数可得答案.解答:解:样本数据落在范围~内的数据有10、9、11、10、10、11、10、11、9、9共10个,频率为:10÷20=,故选:D.点评:此题主要考查了频率,关键是掌握频率=频数÷数据总数.20.(2014春•东台市校级月考)在频数分布直方图中,各小长方形的高等于相应组的()A.组距B.组数C.频数D.频率考点:频数(率)分布直方图.分析:在频数分布直方图中,各小长方形的高等于相应组的频数.解答:解:在频数分布直方图中,各小长方形的高等于相应组的频数;故选C.点评:本题考查频数直方图中纵坐标代表的意义.21.(2014春•大丰市校级月考)样本容量为200的频率分布直方图如图.根据样本的频率分布直方图估计,样本数据落在[6,10)内的频数为()A.32B.36C.46D.64考点:频数(率)分布直方图.分析:由已知中的频率分布直方图,利用[6,10)的纵坐标(矩形的高)乘以组距得到[6,10)的频率;利用频率乘以样本容量即可求出频数;解答:解:样本数据落在[6,10)内的频率为×4=样本数据落在[6,10)内的频数为×200=64.故选D.点评:本题考查的知识点是频率分布直方图,其中频率(分布直方图中小长方形的面积)=组距×矩形的纵坐标(矩形的高)=频数÷样本容量,是解答本题的关键.22.(2013•丽水)王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是()组别A型B型AB型O型频率A.16人B.14人C.4人D.6人考点:频数与频率.分析:根据频数和频率的定义求解即可.解答:解:本班A型血的人数为:40×=16.故选:A.点评:本题考查了频数和频率的知识,属于基础题,掌握频数和频率的概念是解答本题的关键.23.(2013•永嘉县校级二模)为了支援雅安地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在~组别的频率是()A.B.C.D.考点:频数(率)分布直方图.分析:根据频率=即可求解.解答:解:捐书数量在~组的人数是:16,则书数量在~组的频率是:=.故选B.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.(2013春•武冈市校级期末)一组数据共50个,分为6组,第1~4组的频数分别为5,7,8,10,第5组的频率为,则第6组的频数为()A.10B.11C.12D.15考点:频数与频率.分析:首先根据频数=总数×频率,求得第五组频数;再根据各组的频数和等于总数,求得第六组的频数.解答:解:根据题意,得第五组频数是50×=10,故第六组的频数是50﹣5﹣7﹣8﹣10﹣10=10.故选A.点评:本题是对频率、频数灵活运用的综合考查.用到的知识点:各小组频数之和等于数据总和,各小组频率之和等于1;频率、频数的关系:频率=频数÷数据总数.25.(2013春•建德市校级期末)已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,7,6,第五组的频率是,所以第六组的频率是()A.B.C.D.考点:频数与频率.分析:根据频率=频数÷总数,以及第五组的频率是,可以求得第五组的频数;再根据各组的频数和等于1,求得第六组的频数,从而求得其频率.解答:解:根据第五组的频率是,其频数是40×=8;则第六组的频数是40﹣(10+5+7+6+8)=4.故第六组的频率是=.故选A.点评:本题是对频率=频数÷总数这一公式的灵活运用的综合考查,注意:各小组频数之和等于数据总和,各小组频率之和等于1.26.(2013秋•南安市校级期末)抛一枚普通硬币10次,其中4次出现正面,则出现正面的频率为()A.B.C.D.考点:频数与频率.分析:根据频率的求法,频率=.计算可得答案.解答:解:4÷10=,故选:D.点评:此题主要考查了频率,关键是掌握频率是指每个对象出现的次数与总次数的比值(或者百分比).27.(2013春•北流市期末)在“We like maths.”这个句子的所有字母中,字母“e”出现的频数是()A.2B.3C.4D.5考点:频数与频率.分析:数出这个句子中字母“e”出现的次数即可.解答:解:在“We like maths.”这个句子的所有字母中,字母“e”出现了2次,故字母“e”出现的频数为2.故选A.点评:此题考查频数的定义,即每个对象出现的次数.28.(2013春•奉化市校级期末)某校为了了解学生在校午餐所需的时间,抽查了20名同学在校午餐所需的时间,获得如下数据(单位:分):10,12,15,10,16,18,19,18,20,34,22,25,20,18,18,20,15,16,21,16.若将这些数据分为6组,则组距是()A.4分B.5分C.6分D.7分考点:频数(率)分布表.专题:计算题.分析:找出20名学生在校午餐所需的时间的最大值与最小值,求出最大值﹣最小值,除以6即可得到组距.解答:解:根据题意得:(34﹣10)÷6=4(分),则组距为4分.故选A.点评:此题考查了频数(率)分布表,弄清题意是解本题的关键.29.(2013春•东莞期末)一个容量为80的样本,最大值是141,最小值是50,取组距为10,可以分成()A.10组B.9组C.8组D.7组考点:频数(率)分布表.分析:先根据最大值为141,最小值为50,求出最大值与最小值的差,再根据组数=(最大值﹣最小值)÷组距,即可求出答案.解答:解:∵最大值为141,最小值为50,∴最大值与最小值的差是141﹣50=91,∵组距为10,=,∴可以分成10组.故选A.点评:本题考查了组数的计算,关键是掌握组数=(最大值﹣最小值)÷组距,注意小数部分要进位,不要舍去.30.(2013春•鄞州区期末)一组数据的极差为30,组距为4,则分成的组数为()A.7组B.组C.8组D.9组考点:频数(率)分布表.分析:根据极差的定义和组数=进行计算即可.解答:解:∵这组数据的极差为30,组距为4,∴则分成的组数应是≈8,故选:C.点评:此题考查了极差,解题的关键是掌握极差的定义以及组数=.。