基于MATLAB车牌字符分割的算法研究
用matlab编程实现车牌字符的批量分割并保存
%subplot(5,7,32),imshow(word4),title('4');
%subplot(5,7,33),imshow(word5),title('5');
subplot(5,7,16),imshow(word2),title('2');
subplot(5,7,17),imshow(word3),title('3');
subplot(5,7,18),imshow(word4),title('4');
'*.*','All Files (*.*)'};
% 利用uigetfile函数交互式选取训练样本图片
[FileName FilePath,flag] = uigetfile(PicFormat,'导入分割好的车牌图像',...
'*.jpg','MultiSelect','on');
%imshow(I1);
%I1=getplate(I);%提取车牌
I2=binaryzation3(I1);%车牌二值化
%I3=rotate(I2);
%figure,subplot(211),imshow(I1),title('定位剪切彩色车牌');
(完整版)基于matlab的车牌识别(含子程序)
基于matlab的车牌识别系统一、对车辆图像进行预处理1.载入车牌图像:function [d]=main(jpg)[filename, pathname] = uigetfile({'*.jpg', 'JPEG 文件(*.jpg)'});if(filename == 0), return, endglobal FILENAME %定义全局变量FILENAME = [pathname filename];I=imread(FILENAME);figure(1),imshow(I);title('原图像');%将车牌的原图显示出来结果如下:2.将彩图转换为灰度图并绘制直方图:I1=rgb2gray(I);%将彩图转换为灰度图figure(2),subplot(1,2,1),imshow(I1);title('灰度图像');figure(2),subplot(1,2,2),imhist(I1);title('灰度图直方图');%绘制灰度图的直方图结果如下所示:3. 用roberts算子进行边缘检测:I2=edge(I1,'roberts',0.18,'both');%选择阈值0.18,用roberts算子进行边缘检测figure(3),imshow(I2);title('roberts 算子边缘检测图像');结果如下:4.图像实施腐蚀操作:se=[1;1;1];I3=imerode(I2,se);%对图像实施腐蚀操作,即膨胀的反操作figure(4),imshow(I3);title('腐蚀后图像');5.平滑图像se=strel('rectangle',[25,25]);%构造结构元素以正方形构造一个seI4=imclose(I3,se);% 图像聚类、填充图像figure(5),imshow(I4);title('平滑图像');结果如下所示:6. 删除二值图像的小对象I5=bwareaopen(I4,2000);% 去除聚团灰度值小于2000的部分figure(6),imshow(I5);title('从对象中移除小的对象');结果如下所示:二、车牌定位[y,x,z]=size(I5);%返回I5各维的尺寸,存储在x,y,z中myI=double(I5);%将I5转换成双精度tic %tic表示计时的开始,toc表示计时的结束Blue_y=zeros(y,1);%产生一个y*1的零阵for i=1:yfor j=1:xif(myI(i,j,1)==1)%如果myI(i,j,1)即myI的图像中坐标为(i,j)的点值为1,即该点为车牌背景颜色蓝色 %则Blue_y(i,1)的值加1Blue_y(i,1)= Blue_y(i,1)+1;%蓝色像素点统计endendend[temp MaxY]=max(Blue_y);%Y方向车牌区域确定%temp为向量white_y的元素中的最大值,MaxY为该值的索引PY1=MaxY;while ((Blue_y(PY1,1)>=5)&&(PY1>1))PY1=PY1-1;endPY2=MaxY;while ((Blue_y(PY2,1)>=5)&&(PY2<y))PY2=PY2+1;endIY=I(PY1:PY2,:,:);%x方向车牌区域确定%%%%%% X方向 %%%%%%%%%Blue_x=zeros(1,x);%进一步确定x方向的车牌区域for j=1:xfor i=PY1:PY2if(myI(i,j,1)==1)Blue_x(1,j)= Blue_x(1,j)+1; endendendPX1=1;while ((Blue_x(1,PX1)<3)&&(PX1<x))PX1=PX1+1;endPX2=x;while ((Blue_x(1,PX2)<3)&&(PX2>PX1))PX2=PX2-1;endPX1=PX1-1;%对车牌区域的校正PX2=PX2+1;dw=I(PY1:PY2-8,PX1:PX2,:);t=toc;figure(7),subplot(1,2,1),imshow(IY),title('行方向合理区域');%行方向车牌区域确定figure(7),subplot(1,2,2),imshow(dw),title('定位裁剪后的车牌彩色图像');的车牌区域如下所示:三、字符分割及处理1.车牌的进一步处理对分割出的彩色车牌图像进行灰度转换、二值化、均值滤波、腐蚀膨胀以及字符分割以从车牌图像中分离出组成车牌号码的单个字符图像,对分割出来的字符进行预处理(二值化、归一化),然后分析提取,对分割出的字符图像进行识别给出文本形式的车牌号码。
如何使用Matlab技术进行车牌识别
如何使用Matlab技术进行车牌识别车牌识别技术是一种在现代交通管理、安保等领域应用广泛的技术。
通过使用Matlab软件,我们可以轻松实现车牌识别功能。
本文将介绍如何使用Matlab技术进行车牌识别。
一、图像预处理在进行车牌识别之前,首先需要对图像进行预处理。
图像预处理的目的是提取车牌信息并减小噪声干扰。
在Matlab中,我们可以使用一系列图像处理函数来实现图像预处理,包括图像二值化、边缘检测、形态学操作等。
这些函数可以帮助我们提取车牌轮廓,并去除背景和噪声。
二、车牌定位车牌定位是车牌识别的关键步骤之一。
通过车牌定位,我们可以找到图像中的车牌区域,并将其与其他区域进行区分。
在Matlab中,可以使用图像分割、形态学滤波等技术来实现车牌定位。
这些技术可以帮助我们提取车牌的形状、颜色和纹理等特征,并将其与其他区域进行区分。
三、字符分割一旦我们成功地定位了车牌区域,就需要将车牌中的字符进行分割。
字符分割是车牌识别中的一个重要环节。
通过将车牌中的字符进行分割,我们可以得到单个字符的图像,为后续的字符识别做准备。
在Matlab中,可以使用一系列图像处理函数来实现字符分割,包括边缘检测、连通性分析和投影分析等。
这些函数可以帮助我们将车牌中的字符与其他区域进行分离。
四、字符识别字符识别是车牌识别的核心任务。
通过对字符进行识别,我们可以得到车牌中的文本信息。
在Matlab中,可以使用模式识别、神经网络或者深度学习等技术来实现字符识别。
这些技术可以帮助我们训练一个分类器,将字符图像与对应的字符进行匹配。
通过匹配算法,我们可以得到车牌的文本信息。
五、车牌识别结果展示在进行车牌识别之后,我们可以将识别结果进行展示。
通过将识别结果与原始图像进行对比,我们可以验证车牌识别的准确性。
在Matlab中,可以使用图像绘制函数和文本显示函数来实现车牌识别结果的展示。
通过这些函数,我们可以在原始图像中标注出识别结果,并将结果显示在图像上。
基于MATLAB的车牌智能识别设计
基于MATLAB的车牌智能识别设计摘要:车牌智能识别技术是智能交通系统中的重要组成部分,能够提高交通管理效率和安全性。
本文基于MATLAB平台,设计了一种车牌智能识别系统,通过图像处理和模式识别技术实现车牌号码的准确识别。
该系统能够实现对车辆行驶过程中的车牌信息进行实时提取和识别,具有较高的准确性和稳定性,可以有效应用于停车场管理、交通违法抓拍等领域。
关键词:车牌智能识别;MATLAB;图像处理;模式识别一、引言随着汽车数量的快速增长,交通拥堵和交通管理成为社会发展中的一大难题。
为了提高交通管理效率和安全性,智能交通系统得到了广泛的关注和应用。
车牌智能识别技术作为智能交通系统中的重要组成部分,能够实现对车辆行驶过程中的车牌信息进行实时提取和识别,为交通管理和监控提供了重要的支持。
二、相关技术及方法1. 图像处理技术图像处理技术是车牌智能识别系统中的核心技术之一,主要包括灰度化、二值化、边缘检测、形态学处理等操作。
灰度化是将彩色图像转换为灰度图像,简化了图像信息的处理;二值化将灰度图像转换为二值图像,方便进行特征提取和分割操作;边缘检测可以准确提取车牌的轮廓信息;形态学处理可以用于去除图像中的噪声点和填充孔洞,提高字符的连通性。
2. 字符分割与特征提取字符分割是指将车牌图像中的字符分离出来,是车牌识别的关键步骤之一。
在字符分割后,需要进行字符的特征提取,包括字符的大小、形状、像素点分布等特征。
这些特征可以用于字符的识别和分类,提高识别的准确性和鲁棒性。
3. 模式识别算法模式识别算法是车牌智能识别系统中的另一个核心技术,主要包括基于模板匹配的模式识别、基于统计学习的模式识别、基于深度学习的模式识别等方法。
这些算法能够对字符进行准确的识别和分类,为车牌智能识别系统提供了强大的分析和识别能力。
三、车牌智能识别系统设计基于MATLAB平台,设计的车牌智能识别系统主要包括图像预处理、字符分割与特征提取、模式识别和结果输出四个主要模块。
车牌字符分割算法研究
1 绪论1.1 背景介绍为了实现车牌字符识别,通常要经过车牌位置检测、车牌字符分割和字符识别三个关键步骤。
车牌位置检测是根据车牌字符目标区域的特点,寻找出最符合车牌特征的区域。
车牌字符分割就是在车牌图像中找出所有字符的上下左右边界,进而分割出每个车牌字符。
在实际应用中,车牌字符分割的效果对车牌字符识别正确率会产生很大的影响,由于车牌图像亮度不均、尺度变化、透视失真、字符不完整等因素,使图像质量存在较大差异,进而影响图像分割的效果,因此车牌字符分割这一技术仍然具有很大的研究意义。
在实际的监控场景中,车牌图像的透视失真通常是由于拍摄视角的变化或车辆位置的移动,相机光轴偏离车牌平面的法线方向造成的。
由于车牌图像在整幅图像中占有较小的比例,所以车牌图像几何校正主要工作是校正车牌图像的旋转和剪切失真。
旋转投影法和直线拟合法是两种主要的偏斜校正方法。
旋转投影法是为了获取垂直倾斜角,即将车牌图像穷举逐个角度进行剪切变换,然后统计垂直投影数值为0的点数,得到最大值对应的角度。
这种方法受背景区域的干扰比较大。
另一种方法是直线拟合车牌字符的左边界点从而获得垂直倾斜角,该方法为直线拟合法。
该方法并没有逐个角度对车牌图像进行剪切变换,从左边界点拟合出的直线通常不能真正用来代表车牌的垂直倾斜方向,检测出的角度存在较大误差,且字符左侧噪声对角度检测干扰太大,鲁棒性较差。
因此找到一种更准确和迅速的车牌垂直倾斜矫正方法是十分重要的。
通过得到最小的字符投影点坐标方差,得到另一种车牌垂直矫正方法。
首先将车牌字符图像进行水平校正,根据字符的区域的上下边界,将车牌字符进行粗分割。
然后将剪切变换后的字符点进行垂直偷用。
当得到投影点最想左边方差时,便能导出两类剪切角闭合表达是,最后便是确定垂直投影的倾斜角并对此进行校正。
投影法是目前最常用的车牌分割算法之一,其算法简单并且计算复杂度低。
该方法的核心思想是将车牌图像进行水平投影和垂直投影,利用峰谷特征来定位车牌字符的上下左右边界。
车牌识别的matlab程序的难点与解决方法(一)
车牌识别的matlab程序的难点与解决方法(一)车牌识别的matlab程序的难点与解决引言车牌识别是图像处理领域的一个重要应用,它可以在不同场景下自动识别和提取车辆的车牌信息。
在实际应用中,针对车牌识别的matlab程序存在着一些难点,本文将详细介绍这些难点及相应的解决方法,以帮助资深的创作者更好地实现车牌识别程序。
难点一:车牌识别算法选择子标题一:基于颜色特征的车牌识别算法•难点:车牌颜色在不同光照条件下会发生变化,导致识别算法的准确性下降。
•解决方法:采用颜色空间的变换(例如RGB到HSV),通过调整阈值和颜色范围,去除非车牌区域的干扰。
子标题二:基于边缘检测的车牌识别算法•难点:车牌边缘与周围物体边缘相似,容易造成误判。
•解决方法:利用形态学操作(如膨胀和腐蚀)来实现边缘闭合,并通过设定合适的阈值对边缘进行提取,降低误判概率。
子标题三:基于字符分割的车牌识别算法•难点:字符之间存在粘连和重叠情况,增加了字符分割的难度。
•解决方法:基于连通区域分析的方法,通过计算字符之间的间距和像素个数,对重叠和粘连的字符进行分割。
难点二:噪声影响的处理子标题一:图像预处理•难点:采集到的车牌图像可能存在噪声和模糊问题。
•解决方法:使用图像增强算法(如直方图均衡化和高斯滤波)对车牌图像进行预处理,提高图像的质量。
子标题二:光照不均匀的情况•难点:车牌图像在不同光照条件下会出现明暗不均的问题。
•解决方法:使用自适应阈值化算法,根据图像局部区域的光照情况对图像进行二值化处理,提高车牌识别的准确性。
难点三:多样化的车牌样式和字体子标题一:车牌样式的差异•难点:不同地区和不同国家的车牌样式存在差异,增加了车牌识别的难度。
•解决方法:基于模板匹配的方法,通过建立车牌模板库,对不同样式的车牌进行匹配比对,提高识别的准确性。
子标题二:字体的多样性•难点:不同车牌使用的字体风格各不相同。
•解决方法:使用字符特征提取算法,通过对字符轮廓和特征点的统计分析,识别不同字体的字符。
基于matlab车牌的定位与分割识别程序概要
基于Matlab 的车牌定位与分割 经典算法I 二imread('car.jpg');I1=rgb2gray(l);%转化为灰度图像subplot(3,2,2),imshow(I1),title('灰度图像');I2=edge(I1,'robert',0.09,'both');%采用 robert 算子进行边缘检测 subplot(3,2,3),imshow(I2),title('边缘检测后图像');%读取图像figure 。
; subplot(3,2,1),imshow(l), title('原始图像');边绿检浪I 启图像se=[1;1;1]; %线型结构元素 I3=imerode(l2,se);%腐蚀图像subplot(3,2,4),imshow(l3),title('腐蚀后边缘图像');se=strel('recta ngle',[25,25]);矩形结构元素 I4=imclose(l3,se);%图像聚类、填充图像 subplot(3,2,5),imshow(I4),title('填充后图像');一5Hbwa「eaopen(一4200S % 卅弗W HM W 血、」丿-H 2000subp_0f(326二M X N H si z e (_5=_6Hdoub_e(_5xYlHzeros(y3_fonyf o r li-r xif(l6(i,j,1)==1)Y 1(i,1)= Y1(i,1)+1;endend[temp MaxY]=max(Y1);figure。
;subplot(3,2,1),plot(0:y-1,Y1),title('行方向像素点灰度值累计和'), xlabel('行值'),ylabel('像素');行值%求的车牌的行起始位置和终止位置PY 仁Max Y;while ((Y 1(PY1,1)>=50)&&(PY 1>1))PY 1=P Y1-1;endPY 2=Max Y;while ((Y 1(PY2,1)>=50)&&(PY2<y))endPY 2=P Y2+1;endIY=I(P Y1:P Y2,:,:);X1= zeros(1,x);for j=1:xfor i=PY1:PY2if(l6(i,j,1)==1)X1(1,j)= X1(1,j)+1;endend endsubplot(3,2,2),plot(0:x-1,X1),title('列方向像素点灰度值累计和'), xlabel('列值'),ylabel('像数');歹U方向像素点衣度值黒计环CT1OC%求的车牌的列起始位置和终止位置PX仁1;while ((X1(1,PX1)<3)&&(PX1<x))PX1= PX1+1;endPX2=x;O 2OD 400 600 800歹UfSwhile ((X1(1,PX2)<3)&&(PX2>PX1))PX2=PX2-1;endPX仁PX1-1;PX2=PX2+1;%分割出车牌图像%dw=l(P Y1:P Y2,PX1:PX2,:);subplot(3,2,3),imshow(dw),title('定位剪切后的彩色车牌图像')定位剪切后的耘色车牌图像4.2车牌字符分割确定车牌位置后下一步的任务就是进行字符切分分离出车牌号码的全部字符图像。
车牌识别matlab实验报告
车牌识别matlab实验报告标题:基于Matlab的车牌识别实验报告摘要:车牌识别是计算机视觉领域的一个重要研究方向,具有广泛的应用前景。
本实验基于Matlab平台,设计并实现了一个简单的车牌识别系统。
实验采用了图像处理和模式识别的技术,通过对车牌图像的预处理、字符分割和字符识别等步骤,成功地实现了对车牌的自动识别。
实验结果表明,该系统在不同场景下的车牌识别效果良好。
一、引言随着交通问题的日益突出,车牌识别技术在交通管理、安防等领域得到广泛应用。
车牌识别系统的核心是对车牌图像进行处理和分析,从中提取出车牌的信息。
本实验旨在利用Matlab平台,实现一个简单的车牌识别系统,并对其性能进行评估。
二、实验方法1. 数据收集:收集包含不同角度、光照条件和车牌类型的车牌图像,并建立一个图像库。
2. 图像预处理:对采集到的车牌图像进行预处理,包括图像增强、灰度化、二值化等操作,以减小光照和噪声对后续处理的影响。
3. 车牌定位:利用边缘检测和形态学处理等方法,对预处理后的图像进行车牌定位,提取出车牌区域。
4. 字符分割:对提取到的车牌区域进行字符分割,将车牌中的字符单独切割出来,以便后续的字符识别。
5. 字符识别:利用模式识别算法,对字符进行识别。
本实验采用了支持向量机(SVM)算法进行训练和分类。
6. 性能评估:对实验结果进行评估,包括准确率、召回率和F1值等指标。
三、实验结果与讨论经过实验测试,我们的车牌识别系统在不同场景下表现出良好的性能。
在收集的测试集上,系统的准确率达到了90%,召回率为85%。
在实际应用中,我们注意到系统对于光照条件较好、车牌清晰的图像处理效果更佳,对于遮挡、模糊的车牌图像处理效果有待改进。
四、结论本实验基于Matlab平台,设计并实现了一个简单的车牌识别系统。
通过图像预处理、车牌定位、字符分割和字符识别等步骤,我们成功地实现了对车牌的自动识别。
实验结果表明,该系统在不同场景下的车牌识别效果良好,并能够较为准确地提取出车牌中的字符信息。
《2024年基于MATLAB的车牌识别系统研究》范文
《基于MATLAB的车牌识别系统研究》篇一一、引言随着科技的发展,车牌识别系统在交通管理、安全监控、车辆定位等领域的应用越来越广泛。
MATLAB作为一种强大的编程语言和数据处理工具,被广泛应用于图像处理和机器视觉等领域。
本文旨在研究基于MATLAB的车牌识别系统,包括系统的基本原理、实现方法、实验结果和结论。
二、车牌识别系统的基本原理车牌识别系统是一种基于图像处理和机器视觉技术的自动识别系统。
其主要原理包括图像预处理、车牌定位、字符分割和字符识别四个部分。
在MATLAB中,这些过程通过数字图像处理算法、计算机视觉算法以及机器学习算法实现。
(一)图像预处理图像预处理是车牌识别系统的第一步,主要目的是消除图像中的噪声和干扰信息,提高图像的清晰度和对比度,以便后续的图像处理和分析。
常用的预处理方法包括灰度化、二值化、滤波等。
(二)车牌定位车牌定位是车牌识别系统的关键步骤,其主要目的是从图像中准确地检测出车牌的位置。
常用的车牌定位方法包括基于颜色特征的方法、基于形状特征的方法和基于模板匹配的方法等。
在MATLAB中,可以通过边缘检测、Hough变换等方法实现车牌的定位。
(三)字符分割字符分割是将车牌图像中的每个字符分割出来的过程。
常用的字符分割方法包括投影法、连通域法等。
在MATLAB中,可以通过图像形态学操作、阈值分割等方法实现字符的分割。
(四)字符识别字符识别是将分割后的字符进行分类和识别的过程。
常用的字符识别方法包括模板匹配法、神经网络法等。
在MATLAB中,可以通过训练分类器、使用机器学习算法等方法实现字符的识别。
三、车牌识别系统的实现方法在MATLAB中,我们可以通过编写程序实现车牌识别系统的各个步骤。
具体实现方法如下:(一)图像预处理首先,对输入的图像进行灰度化和二值化处理,消除噪声和干扰信息。
然后,通过滤波等操作提高图像的清晰度和对比度。
(二)车牌定位通过边缘检测和Hough变换等方法检测出车牌的轮廓,并确定车牌的位置。
毕业设计论文-基于matlab的车牌识别系统的设计(附程序+详解注释)
毕业设计(论文)说明书
作 者:
学 号:
学院(系):
信息工程学院
专 业:
通信技术
题 目: 基于 matlab 的车牌识别系统的设计
主 题:
指导教师:
职称 讲师
2012 年 12 月
焦作大学毕业设计说明书
II
摘要
汽车车牌的识别系统是现代智能交通管理的重要组成部分之一。车牌识别 系统使车辆管理更智能化,数字化,有效的提升了交通管理的方便性和有效性。 车牌识别系统主要包括了图像采集、图像预处理、车牌定位、字符分割、字符识 别等五大核心部分。本文主要介绍图像预处理、车牌定位、字符分割三个模块的 实现方法。本文的图像预处理模块是将图像灰度化和用 Roberts 算子进行边缘检 测的步骤。车牌定位和分割采用的是利用数学形态法来确定车牌位置,再利用车 牌彩色信息的彩色分割法来完成车牌部位分割。字符的分割采用的方法是以二值 化后的车牌部分进行垂直投影,然后在对垂直投影进行扫描,从而完成字符的分 割。本文即是针对其核心部分进行阐述并使用 MATLAB 软件环境中进行字符分割 的仿真实验。
5.实验结果和分析.............................................................................................................22 6.实验总结.........................................................................................................................24 致谢.......................................................................................................................................25 参考文献...............................................................................................................................26 程序附录...............................................................................................................................27
基于Matlab的车牌识别(完整版)
基于Matlab的车牌识别(完整版)基于Matlab的车牌识别摘要:车牌识别技术是智能交通系统的重要组成部分,在近年来得到了很大的发展。
本文从预处理、边缘检测、车牌定位、字符分割、字符识别五个方面,具体介绍了车牌自动识别的原理。
并用MATLAB软件编程来实现每一个部分,最后识别出汽车车牌。
一、设计原理车辆车牌识别系统的基本工作原理为:将摄像头拍摄到的包含车辆车牌的图像通过视频卡输入到计算机中进行预处理,再由检索模块对车牌进行搜索、检测、定位,并分割出包含车牌字符的矩形区域,然后对车牌字符进行二值化并将其分割为单个字符,然后输入JPEG或BMP格式的数字,输出则为车牌号码的数字。
车牌自动识别是一项利用车辆的动态视频或静态图像进行车牌号码、车牌颜色自动识别的模式识别技术。
其硬件基础一般包括触发设备、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。
某些车牌识别系统还具有通过视频图像判断车辆驶入视野的功能称之为视频车辆检测。
一个完整的车牌识别系统应包括车辆检测、图像采集、车牌识别等几部分。
当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。
车牌识别单元对图像进行处理,定位出车牌位置,再将车牌中的字符分割出来进行识别,然后组成车牌号码输出。
二、设计步骤总体步骤为:车辆→图像采集→图像预处理→车牌定位→字符分割→字符定位→输出结果基本的步骤:a.车牌定位,定位图片中的车牌位置;b.车牌字符分割,把车牌中的字符分割出来;c.车牌字符识别,把分割好的字符进行识别,最终组成车牌号码。
车牌识别过程中,车牌颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。
(1)车牌定位:自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定车牌区域是整个识别过程的关键。
首先对采集到的视频图像进行大范围相关搜索,找到符合汽车车牌特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳的区域作为车牌区域,并将其从图象中分割出来。
基于Matlab的车牌识别课程设计报告
导入原始 图像
图像预处理 增强效果图
进行边缘 提取
车牌具体 位置定位
对车牌进 行处理
输出 结果
对分割的字 符进行识别
字符特征 提取
对字符进 行归一化
对字符进行 分割
图1 牌照识别系统原理图
该系统是计算机 图像处理与字符识别技术在 智能化交通管理系统中的应用 ,它 主 要 由 牌 照 图 像 的 采 集 和 预 处 理 、牌 照 区 域 的 定 位 和 提 取 、牌 照 字 符 的 分 割 和 识 别 等几个部分组成,如图1 所示。其基本工作过程如下:
对比以上几幅图片,图 12 的边缘已经模糊掉了。图 11 中包含的噪声太多, 图 13 未经滤波直接提取出的边缘图像最清晰,所包含的有用信息最多。
(二)、牌照的定位和分割
牌照的定位和分 割是牌照识别系统的关键技 术之一,其主要目的是在经图象预 处 理 后 的 原 始 灰 度 图 象 中 确 定 牌 照 的 具 体 位 置 ,并 将 包 含 牌 照 字 符 的 一 块 子 图 象 从 整个图象中分割出来,供字符识别子系 统识别之用,分割的准确与否直接关系到整 个 牌 照 字 符 识 别 系 统 的 识 别 率 。根 据 其 灰 度 值 与 周 边 区 域 有 明 显 的 不 同 ,在 其 边 缘 形成了灰度突变的边界,这样就便于通过边缘检测来对图象进行分割。
牌 区 域 , 确 定 车 牌 底 色 蓝 色 RGB对 应 的 各 自 灰 度 范 围 , 然 后 行 方 向 统 计 在 此 颜 色 范
围 内 的 像 素 点 数 量 ,设 定 合 理 的 阈 值 ,确 定 车 牌 在 行 方 向 的 合 理 区 域 。然 后 ,在 分
割出的行区域内,统计列方向蓝色像素点的数量,最终确定完整的车牌区域。
基于MATLAB的车牌识别系统研究(课设参考文献)
1.2.3 车牌识别技术的发展趋势
5
上海交通大学硕士学位论文
绪论
车牌识别技术作为智能交通系统中的关键技术,在各国学者的共同努力下,已 经得到了长足的发展,并且已经得到了不同程度的实际应用,但目前还存在着种种 不足。
对于未来车牌识别产品的技术发展趋势, 汉王科 技智能 交通部 总经理 乔炬认 为。首先,由于市场需求不同,对识别产品的需求也有差异,因此就要求研发针对 不同细分市场的车牌识别产品。其次,随着算法的不断改进,基于视频触发技术的 车牌识别产品将得到大范围的应用,但是视频触发技术取代外触发装置尚需时日。 第三,现在的车牌识别系统设备过多,系统集成难度大,系统稳定性差,系统维护 是一个让人头疼的问题。随着技术不断进步,以往多个设备实现的功能可能由一个 设备实现。
为基础的车牌识别系统,识别率分别为 81.25%、85%、91.25%。日本对车牌图像的 获取也做了大量的研究,并为系统产业化做了大量工作。Luis [4]开发的系统应绪论
公路收费站,全天识别率达到了 90%以上,即使在天气不好的情况下也达到了 70%。 国外对车牌识别的研究起步早,总体来讲其技术已比较领先,同时由于他们车牌种 类单一,规范程度较高,易于定位识别,目前,已经实现了产品化,并在实际的交 通系统中得到了广泛的应用。由于中国车牌的格式与国外有较大差异,所以国外关 于识别率的报道只具有参考价值,其在中国的应用效果可能没有在其国内的应用效 果好,但其识别系统中采用的很多算法具有很好的借鉴意义。
上海交通大学硕士学位论文
绪论
1 绪论
1.1 研究背景
1990 年,美国智能交通学会 CITS America 提出了智能交通系统(ITS)的概念。 目前,智能交通系统已经在世界上经济发达国家的一些城市及高速公路系统中得到 了广泛应用。我国在该领域的研究起步较晚,但随着全球范围智能交通技术研究的 兴起及奥运会的成功举办,智能交通在我国也逐渐进入了应用阶段,相应的,我国 也加快了对智能交通技术研究的步伐,智能交通技术的研究现已进入快速发展期。
基于matlab的车牌识别系统的设计
基于matlab的车牌识别系统的设计1.摘要:汽车牌照自动识别系统是制约道路交通智能化的重要因素,包括车牌定位、字符分割和字符识别三个主要部分。
本文首先确定车辆牌照在原始图像中的水平位置和垂直位置,从而定位车辆牌照,然后采用局部投影进行字符分割。
在字符识别部分,提出了在无特征提取情况下基于支持向量机的车牌字符识别方法。
实验结果表明,本文提出的方法具有良好的识别性能。
随着公路逐渐普及,我国的公路交通事业发展迅速,所以人工管理方式已经不能满着实际的需要,微电子、通信和计算机技术在交通领域的应用极大地提高了交通管理效率。
汽车牌照的自动识别技术已经得到了广泛应用。
2.设计目的:1、使学生在巩固理论课上知识的同时,加强实践能力的提高,理论联系实践。
2、激发学生的研究潜能,提高学生的协作精神,锻炼学生的动手能力。
3.设计原理由于车辆牌照是机动车唯一的管理标识符号,在交通管理中具有不可替代的作用,因此车辆牌照识别系统应具有很高的识别正确率,对环境光照条件、拍摄位置和车辆行驶速度等因素的影响应有较大的容阈,并且要求满足实时性要求。
图1 牌照识别系统原理图该系统是计算机图像处理与字符识别技术在智能化交通管理系统中的应用,它主要由图像的采集和预处理、牌照区域的定位和提取、牌照字符的分割和识别等几个部分组成,如图1 所示。
其基本工作过程如下:(1)当行驶的车辆经过时,触发埋设在固定位置的传感器,系统被唤醒处于工作状态;一旦连接摄像头光快门的光电传感器被触发,设置在车辆前方、后方和侧面的相机同时拍摄下车辆图像;(2)由摄像机或CCD 摄像头拍摄的含有车辆牌照的图像通视频卡输入计算机进行预处理,图像预处理包括图像转换、图像增强、滤波和水平较正等;(3)由检索模块进行牌照搜索与检测,定位并分割出包含牌照字符号码的矩形区域;(4)对牌照字符进行二值化并分割出单个字符,经归一化后输入字符识别系统进行识别。
4.详细设计步骤4.1 提出总体设计方案。
MATLAB车牌识别论文加源码
xxxx大学数字图像处理本科生课程论文论文题目:___车牌识别方法研究______完成时间:___2016年6月1日_______所在专业:___软件工程______________所在年级:___大三年级______________基于MATLAB的车牌识别方法研究xxx级软件专业1班 xxx xx摘要:汽车车牌的识别是智能交通管理的重要组成部分之一。
本文主要介绍车牌区域提取、字符切割、字符识别。
车牌区域提取主要包括图像灰度图转化、图像边缘检测、灰度图腐蚀、图像平滑处理、边界值计算。
字符切割主要包括图像去噪处理、图像膨胀和腐蚀处理。
字符识别主要包括图像膨胀和腐蚀处理、字符归一化。
关键词:MATLAB、车牌区域提取、字符识别、字符切割1 研究背景随着经济社会的迅猛发展,人们的生活水平的提高,机动车辆的数量也越来越多。
为了提高车辆的管理效率,缓解公路上的交通压力,我们必须找到一种解决方案。
而作为汽车“身份证”的汽车车牌,是在公众场合能够唯一确定汽车身份的凭证。
我们可以以此为依据,设计一种车牌识别系统监控各个车辆的情况。
车牌识别的难点:① 我国汽车牌照自身特征的复杂性1) 汉字、字母、数字混合。
我国的车牌不单单有英文字母和阿拉伯数字,还有汉字。
2) 颜色种类多。
国外的车牌颜色种类相对于国内较少一些,我国的车牌颜色种类较多。
3) 人为因素复杂。
由于环境、道路或者人为因素造成车牌有严重污渍、车牌模糊不清或者车牌偏斜角度很大的车辆,在我国都可以上路行驶。
4) 车牌格式多。
我国的车牌格式很多,包括:民用车牌、公安警察车牌、武警车牌、军车车牌、外交车牌、特种车牌、消防车牌等。
② 外部环境影响1) 外部光照条件各不相同,白天和晚上的光照各不相同。
光照对采集的图像质量产生很大的影响。
不同的光照角度对车牌光照的不均匀影响也很大。
不同的气候条件、背景光照环境、车牌反光程度都决定了车牌的亮度特征。
2) 外界背景的复杂程度也影响车牌的定位准确率。
基于MATLAB的车辆识别研究
基于MATLAB的车牌识别研究摘要随着我国公路事业的发展,人工管理方式已经不能满足如今实际的需要。
车牌识别技术是计算机视频图像识别技术在车辆牌照识别中的一种应用,是现代智能交通系统(Intelligent Traffic System,简称ITS)中的重要组成部分之一。
车牌识别系统(vehicle license plate recognition system,简称LPR)使车辆管理更加智能化、数字化,有效提升了交通管理的效率。
对于交通管理、治安处罚等工作的智能化起着十分重要的作用。
它可广泛应用于交通流量检测,交通控制与诱导,机场、港口、小区的车辆管理,不停车自动收费,闯红灯等违章车辆监控以及车辆安全防盗等领域,具有广阔的应用前景。
而牌照作为机动车辆管理的唯一标识符号,使得车辆牌照识别系统的研究在机动车管理方面具有重要的实际意义。
本文通过对题目的研究,设计了一个基于Matlab软件的车牌识别程序,可实现图像预处理、车牌定位、字符分割,然后通过神经网络对车牌进行字符识别,从图像中提取车牌中的字母和数字,从而得到文本形式的车牌号码。
其中,图像预处理是通过图像灰度化及Roberts算子进行边缘检测完成。
车牌定位是通过数学形态法来确定,然后再通过车牌彩色信息的彩色分割法来完成车牌的切割。
字符分割是将车牌部分进行二值化后,进行垂直投影以及对投影部分扫描得到。
通过用该算法对三个问题中的照片和视频进行处理,可识别车辆牌照:问题1:image_1.jpg中牌照信息肉眼可识别为渝A•7Y618,但本算法未将汉字识别;image_2.jpg中牌照信息肉眼可识别为渝B•PY287,但本算法未将汉字识别,未将数字完整识别;image_3.jpg中牌照信息肉眼可识别为渝B•XW192,但本算法未能识别;问题2:image_4.jpg中牌照信息肉眼可识别为渝B•SU298,但本算法未能识别;image_5.jpg中牌照信息未能识别;问题3:video.avi中肇事车辆牌照信息未能识别。
matlab对彩色车牌字符切割代码
一、引言在计算机视觉和图像处理领域,对彩色车牌的字符进行切割是一个重要的问题。
在实际应用中,比如车牌识别系统中,准确地将车牌上的字符进行切割可以为后续的字符识别提供可靠的输入。
而MATLAB作为一种强大的科学计算软件,其丰富的图像处理工具和灵活的编程环境使得它成为了许多研究者和工程师处理图像问题的首选工具。
本文将介绍MATLAB对彩色车牌字符切割的代码实现方法。
二、彩色车牌图像预处理1. 车牌图像的读取在MATLAB中,可以使用imread函数读取彩色车牌图像,将其存储为一个三维的数组,分别表示红、绿、蓝三个通道的像素值。
2. 图像的灰度化对于彩色车牌图像,我们首先需要将其转换为灰度图像,可以使用rgb2gray函数来实现。
3. 图像的二值化我们可以对灰度图像进行二值化处理,将车牌字符部分变为白色,背景部分变为黑色。
可以使用im2bw函数并调节合适的阈值来实现。
三、车牌字符的定位1. 边缘检测在得到车牌图像的二值图像之后,可以利用MATLAB提供的边缘检测函数,比如edge函数对图像进行边缘检测,以便后续的字符定位。
2. 车牌区域的定位利用边缘检测的结果,我们可以利用MATLAB提供的连通区域分析函数,比如bwconp函数来对车牌区域进行定位,并将其提取出来。
3. 车牌字符的切割在得到车牌区域之后,可以利用MATLAB提供的图像处理函数,比如imcrop函数来对车牌区域进行字符切割,得到单独的字符图像。
四、代码实现以下是MATLAB对彩色车牌字符切割的代码实现:```读取彩色车牌图像I = imread('car_plate.jpg');将图像转换为灰度图像I_gray = rgb2gray(I);对灰度图像进行二值化处理I_bw = im2bw(I_gray, 0.5);对二值图像进行边缘检测I_edge = edge(I_bw, 'sobel');进行连通区域分析cc = bwconp(I_edge);对车牌区域进行切割plate_region = regionprops(cc, 'BoundingBox');for i = 1:cc.NumObjects切割字符区域character_image = imcrop(I_gray,plate_region(i).BoundingBox);保存字符图像imwrite(character_image, ['character' num2str(i) '.jpg']);end```五、实验结果经过以上步骤,我们可以得到彩色车牌字符切割的结果,得到单独的字符图像,为后续的字符识别提供了可靠的输入。
基于语义分割的车牌识别技术研究
基于语义分割的车牌识别技术研究一、前言车牌识别技术是智能交通系统的重要组成部分,它可以对车辆实现自动识别、记录和管理,有效地提升交通安全和治理效率。
随着人工智能技术的不断发展,基于语义分割的车牌识别技术受到了越来越多的关注。
本文将从技术原理、算法流程、实验结果等方面分析基于语义分割的车牌识别技术。
二、技术原理车牌识别技术的主要原理是通过图片识别技术对车辆的牌照信息进行自动识别。
其核心技术是图像处理技术和模式识别技术。
基于语义分割的车牌识别技术是在传统车牌识别技术的基础上,利用深度学习技术,通过语义分割算法实现对车牌图像中字符的分割,从而提高了车牌识别的准确率和鲁棒性。
语义分割是计算机视觉领域中的一个重要问题,它的主要目标是将图像中的像素进行有意义的分类,然后将其分组成不同的目标区域。
针对车牌识别,语义分割技术主要是将车牌图像中的字符区域与车牌背景区域进行分割,以进行后续的字符识别。
三、算法流程基于语义分割的车牌识别技术主要的算法流程如下:1. 图像预处理:对输入的车牌图像进行预处理,包括图像降噪、增强等。
2. 物体检测:通过物体检测技术对车牌区域进行检测和定位。
3. 语义分割:对车牌区域进行语义分割,将字符与背景进行分离。
4. 字符识别:对分割出来的字符进行识别,得到车牌的文字信息。
5. 数据库查询:将识别出来的车牌信息与数据库进行比对,完成车牌的信息识别和管理。
四、实验结果针对基于语义分割的车牌识别技术,相关研究者进行了大量的实验。
其中,在字符分割方面主要考虑了像素预测精度、字符定位精度、字符分割精度三个方面的评价,而在字符识别方面主要考虑了识别准确率、鲁棒性等指标。
通过多组实验数据的对比发现,基于语义分割的车牌识别技术的识别准确率、鲁棒性等指标均优于传统的车牌识别技术。
其中,使用U-Net、FC-DenseNet等深度学习模型实现的语义分割技术在车牌分割方面显示出了很好的效果。
五、结论基于语义分割的车牌识别技术是目前车牌识别领域的研究热点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验研究
基于MATLAB车牌字符分割的算法研究
作者/马晨,西安航空学院
摘要:车牌字符分割一直是智能交通领域的一个重要研究方向。
在实际应用中有其独特的价值。
本文主要研究的是车牌字符的分割算法,应用MATLAB软件,进行深入的分析和仿真研究。
为将车牌字符分割为单个字符,首先经过连通域寻找到字符的宽度,然后按照投影的方法找到分割点的位置,最后再通过宽度创建模板以此来进行分割。
文中,将连通域法、垂直投影法、模板匹配法相结合,适用于任何通用情况下,算法合理,实验结果表明在理想测试条件下,可以取得较好的分割结果。
关键词:车牌字符分割;MATLAB;垂直投影法;模板匹配法
引言
我国智能交通管理系统主要用于道路运行监控、交通事 故分析与现场调查、违章自动记录、高速公路管理系统监控、小区门禁系统等,而随着智能交通系统的不断完善,车牌识 别系统也扮演着愈发重要的角色,车牌字符分割作为车牌识 别系统中重要组成部分,它的作用显得尤为重要。
车牌自动 识别系统需要做到对采集到的实时车牌图像进行快速的预 处理、图像字符的分割、图像字符的识别等一系列措施,其 中车牌字符分割即要完成从原始图像的获取、图像预处理、最终的字符分割、以及单个字符输出等工作。
MATLAB强大的数据处理功能,非常适用于数字图像与 视频的处理。
文中,基于MATLAB数据处理平台,研究车 牌字符分割的算法,将连通域法、垂直投影法、模板匹配法 相结合,实验结果表明,在理想测试条件下可以得到较好的 分割结果。
1.车牌的定位和几何校正
■ 1.1车牌定位
在车牌定位时需要把车牌图像从采集到的图像中分割 出来。
能够在形式多变的环境下,如何从亮度相差很大的车 牌原始图像中,正确定位牌范围是整个车牌识别系统的关键 之处。
经过图像处理后所得到的图像,在垂直方向上的面积 投影出现了峰-谷-峰的特性。
根据这_特点,可以定位车 牌区域,在车牌初始位置之后,需要进一步进行微定位。
对 于车牌四周边界即左右、上下运用削减这就是所说的微定位 法。
微定位技术由三部分组成:横向定位、垂直定位、微定位。
目前,国内外常见的车牌定位方法有:特点定位法,数学状 态定位法,小波变换法,开运算定位法等。
■ 1.2车牌几何校正
在实际情况中,采集到的车牌图像在车牌区域的数量和 角度上有一定的差异,车牌图像中的车牌字符在一定程度上 呈倾斜趋势。
目前主要的倾斜类别有三种它们分别是:丫轴 方向上的倾斜、X轴方向上的倾斜、X轴和Y轴上的倾斜。
若检测到车牌有倾斜,则需要对倾斜的车牌进行调整,常用的几何校正技术有以下三种:(1)霍夫数量变换的倾斜校
正算法,(2)基于车牌投影变换的倾斜校正算法,(3)
基于Radon变换的倾斜校正算法。
而基于车牌投影的倾斜
校正算法,本质上就是一种基于Radon变换的校正算法。
通常一般用二维函数G(x,y)来表示采集到的原始图像坐标
为(x,y)的像素值,在某个方向上的投影一般可用该方向上
的积分表示。
积分公式如(1)所示:
R(0,x ) = jiG{x cos0-y sin0,y cos6 + x sin0)dy(1)
2.车牌字符分割
字符分割的方法通常有以下三种:投影法、模板匹配法、
聚类分析法。
本文结合连通域、投影法、模板匹配法来进行
车牌字符分割。
具体操作如下:
(1) 彩色车牌图像进行预处理,将二值化后的黑白图像 从最底将部向最上面进行逐扫描工作,统计像素值为1的
像素,每当字符中的总数值大于7 (车牌中总共7个字符)
时,确定车牌字符中的上下边界,并剔除车牌字符的除去上
下边界的区域,将车牌的高度、宽度,分别设置为H、W。
(2) 由左到右由字符图像序列在_排车牌中进行扫描,统计像素值为1的像素,最后,结果信息统一在一个阵列里,
用来存储像素总量列与1像素值。
(3) 依据汉字本身的特征,系统设置两个阀值目的是来分割_个汉字字符。
假设两个阈值可以是thresholdl,threshold〗,按照最左边方向开始进行扫描之前经过最
初处理之后的车牌字符图像,并且记下首个比阈值大的Thresholdl标记为H,然后比较得出的阈值所在列的宽度
H-S,以及Threshold 2的高低,最后,检测像素的范围是
大于阈值2,像素值为1的像素,小于阈值时,因此可以在
车牌上设置S字符的S。
在分割不连通的汉字时,使用的这
种改进方法就会起到比较显著的作用。
(4) 由于车牌上的字母和数字这两者没有存在互不连通 性的问题,故只需要利用之前第一个阈值Threshod 1就可
以很轻松的分割出车牌上面剩下的字符。
(5) 当研究中像素数大于阈值1时,可作为车牌字符的
| 29
实验研究
起始位置,比阈值threshold 1小时计为一个车牌字符结束 的位置。
以此类推,即可将车牌上的字符全部分割出来。
3.车牌字符分割的软件设计
本文以MATLAB R 2010b 为实验平台,根据所研究的车 牌字符分割方法,程序流程设计如图1所示。
图1车牌字符分割流程图
4.实验结果与分析
在理想测试环境下,其中一幅车牌图像的车牌字符分割
结果如图2所不c
,S A -7A 682i 原始彩色车牌图像
陕 A
7
A b a z
车牌二值化图像 图2
车牌灰度化图像
s w ra w s
车牌字符分割结果
通过一系列的测试结果发现,在车牌图像信息的采集这 程中,不可避免的存在外界环境的干扰,比如光线强度的大 小,汽车车牌四周的覆盖,汽车生产厂家对汽车本身的刻画 点缀等诸多因素都会很容易给车,牌定位工作造成影响。
并 且对二值化后的图像再进行字符分割时,阈值的选择非常重 要,否则会放大我国私家车牌中“点”的存在,而影响字符 分割的效果。
文中所采用的方法,在理想测试环境下,可以 取得较好的分割效果。
对于测试中出现字符分割效果不理想 的原因,分析为:⑴目标图像上有外部干扰的车牌,如光 强度和周围的附加附件的车牌存在;(2)系统采用不同的边 缘检测算法将会致使汽车牌照字符的分割效果,最终影响识 别准确性;(3)存在某些字符具有很强的相似性,字符在识 别上可能发生混淆这样的情况。
参考文献
氺[1]朱虹.数字图像处理基[M ].北京.科学出版社,2005.04氺[2]刘卫国.MATLAB 程序设计教程[M ].北京.中国水利水电出版 社,2010.10
氺[3]王晓健.车牌定位与字符分割算法研究及实现[D ].北京邮电 大学,2009
氺[4]谢伟生.车牌定位及字符分割方法研究与实现[D ].西南交通 大学,2010
氺[5]冉令峰.基于垂直投影的车牌字符分割方法[J ].通信技 术,2012(04)
氺[6]董璐.数字图像处理与识别系统的开发[D ].东南大学,2004
(上接第34页)
脸识别系统”已经集成了模式识别、机器学习、模型理论、 专家系统、视频图像处理等多种专业技术取得了长足进步。
人脸识别核心技术的实现,展现了弱人工智能向强人工智能 的转化。
参考文献
氺[1]易军.人脸识别中的特征提取与度量学习算法研究[D ].北京 邮电大学,2015.
氺[2]胡敏,程天梅,王晓华.融合全局和局部特征的人脸识别[J ]. 电子测量与仪器学报,2013,(09):817-822.
氺[3]汤德俊.人脸识别中图像特征提取与匹配技术研究[D ].大连 海事大学,2013.
氺[4]吴正文.卷积神经网络在图像分类中的应用研究[D ].电子科 技大学,2015.
氺[5]汪济民.基于卷积神经网络的人脸检测和性别识别研究[D ]. 南京理工大学,2015.
30丨电子制作2017年8
月。