复变函数与积分变换 第5章习题解答
《复变函数》第四版习题解答第5章
1 z2 +1
2
是有理函数,故奇点只是极点,满足
z
z2
+1
2
=0,故
z
=
0
,与
z
=
±i
为
其奇点, z = 0 为一级极点,而 z = ± i 为其二级极点。
(2)因 lim z→0
sin z z3
=
∞
则
z
=
0
为其极点。再确定极点的级,有两种方法:
a.
z
=
0
为
sin
z
为的一级零点;而
z
=
0
为
z3
的三级零点。故
证 因 f (z) 和 g(z) 是以 z0 为零点的两个 不恒等于零 的解析函数 ,可设 f (z) = (z − z0 )ϕ(z) , g(z) = (z − z0 )ψ (z) ,ϕ(z),ψ (z) 为解析函数,则
f (z) = (z − z0 )ϕ(z) = ϕ(z) , f '(z) = ϕ(z) + (z − z0 )ϕ '(z) , g(z) (z − z0 )ψ (z) ψ (z) g '(z) ψ (z) + (z − z0 )ψ '(z) 故 lim f (z) = lim ϕ(z) , lim f '(z) = lim ϕ(z) + (z − z0 )ϕ '(z) = lim ϕ(z) ,即 z→z0 g (z) z→z0 ψ (z) z→z0 g '(z) z→z0 ψ (z) + (z − z0 )ψ '(z) z→z0 ψ (z)
2
dz
;
(5) v∫ tan (π z) dz ; |z|=3
复变函数与积分变(北京邮电大学)课后的习题答案
复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i ① :∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y-⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭.⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+==2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z wz w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--==其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e ii =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根.⑴i 的三次根. 解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=+z .2551cos πisin πi 662=+=+z3991cos πisin πi 662=+=-z⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos isin 332=+=z2cos πisin π1=+=-z35513cos πisin πi 3322=+=--z⑶33i +的平方根.解: πi 42233i=6i 6e 22⎛⎫+⋅+=⋅ ⎪ ⎪⎝⎭∴()()1π12i 44ππ2π2π4433i 6e6cos isin 0,122k k k ⎛⎫++ ⎪+=⋅=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2 解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。
复变函数与积分变换试题及答案5
复变函数与积分变换试题及答案5复变函数与积分变换试题与答案 1.若u(x,y)与v(x,y)都是调和函数,则f(z)?u(x,y)?iv(x,y)是解析函数。
2.因为|sinz|?1,所以在复平面上sinz有界。
3.若f(z)在z0解析,则f(n)(z)也在z0解析。
24.对任意的z,Lnz?2Lnz二填空1.2.ii?arg??2?2i , ?2?2i 。
ln(?3i)? , ii? 。
2f(z)?2z?4z下,曲线C3.在映照在z?i处的伸缩率是,旋转角是。
1??0是z1?e2zRes[4,0]?z的阶极点,。
三解答题设f(z)?x2?axy?by2?i(cx2?dxy?y2)。
问常数a,b,c,d13为何值时f(z)在复平面上处处解析?并求这时的导数。
求(?1)C的所有三次方根。
其中C是z?3.4.z2dz?0到z?3?4i的直线段。
|z|2ezcoszdz。
(积分曲线指正向)dz?|z|?2z(z?1)(z?3)5.。
(积分曲线指正向)f(z)?6 将1(z?1)(z?2)在1?|z|?2上展开成罗朗级数。
|z|?1保形映照到单位圆内|w|?1且满足11πf()?0argf?()?222的分式线性映,7.求将单位圆内照。
四解答题1.求0 t?0f(t)kt?e t?0 的傅氏变换。
设f(t)?t2?te?t?e2tsin6t??(t), 求f(t)的拉氏变换。
F(s)?1s2(s2?1),求F(s)的逆变换。
设4. 应用拉氏变换求解微分方程ty2y3ye, (0) 1y(0)0y复变函数与积分变换试题答案 1若u(x,y)与v(x,y)都是调和函数,则f(z)?u(x,y)?iv(x,y)是解析函数。
|sinz|?1,所以在复平面上sinz有界。
2.因为3.若f(z)在z0解析,则f(n)(z)也在z0解析。
24.对任意的z,Lnz?2Lnz1.i2i3πππ?arg??ln(?3i)?ln3?ii??2k π?2?2i4, ?2?2i4。
《复变函数与积分变换复旦大学修订版》全部习题答案
复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭②解: ()()()()35i 17i 35i 1613i 7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 33311;;;.22n z i ⎛⎛-+-- ⎝⎭⎝⎭①: ∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xyz a x a y-⎛⎫=⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩¢. ∴当2n k =时,()()Re i 1kn=-,()Im i 0n=;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+==2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z w z w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w ++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--==其中8πarctan 19θ=-.②解:e i i θ⋅=其中π2θ=.π2e i i =③解:ππi i 1e e -==④解:()28π116ππ3θ-+==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcosisin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根.⑴i 的三次根. 解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=+z .2551cos πisin πi 662=+=+z3991cos πisin πi 662=+=-z ⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos isin 332=+=z2cos πisin π1=+=-z35513cos πisin πi 3322=+=--z ⑶33i +的平方根. 解: πi 42233i=6i 6e 22⎛⎫+⋅+=⋅ ⎪ ⎪⎝⎭∴()()1π12i 44ππ2π2π4433i 6e6cos isin 0,122k k k ⎛⎫++ ⎪+=⋅=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=L证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=L又∵n ≥2. ∴z ≠1 从而211+0n z z z -+++=L11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。
复变函数与积分变换试题及答案5
复变函数与积分变换试题及答案5复变函数与积分变换试题与答案 1.若(,)u x y 与(,)v x y 都是调和函数,则()(,)i (,)f z u x y v x y =+是解析函数。
() 2.因为|sin |1z ≤,所以在复平⾯上sin z 有界。
()3.若()f z 在0z 解析,则()()n f z 也在0z 解析。
() 4.对任意的z ,2Ln 2Ln z z =()⼆填空(每题3分)1.i 22i =-- , ia r g 22i =-- 。
2.ln(3i)-= , i i = 。
3.在映照2()24f z z z =+下,曲线C在iz =处的伸缩率是,旋转⾓是。
4.0z =是241e zz -的阶极点,241Re [,0]ze s z -=。
三解答题(每题7分)设2222()i()f z x axy by cx dxy y =++-++。
问常数,,,a b c d为何值时()f z 在复平⾯上处处解析?并求这时的导数。
求(1)-的所有三次⽅根。
3.2d Cz z其中C 是0z=到34i z =+的直线段。
4.||2e cos d z z z z=?。
(积分曲线指正向)5.||2d (1)(3)z zz z z =+-?。
(积分曲线指正向)6 将1()(1)(2)f z z z =--在1||2z <<上展开成罗朗级数。
7.求将单位圆内||1z <保形映照到单位圆内||1w <且满⾜1()02f =,1πarg ()22f '=的分式线性映照。
四解答题(1,2,3题各6分, 4题各9分)1.求0 0()e 0ktt f t t -设22()e e sin 6()t t f t t t t t δ-=+++, 求()f t 的拉⽒变换。
设221()(1)F s s s =+,求()F s 的逆变换。
4. 应⽤拉⽒变换求解微分⽅程23e (0)0, (0)1t'==? 复变函数与积分变换试题答案 1若(,)u x y 与(,)v x y 都是调和函数,则()(,)i (,)f z u x y v x y =+是解析函数。
复变函数与积分变换第五章留数测验题与答案
第五章 留 数一、选择题: 1.函数32cot -πz z在2=-i z 内的奇点个数为 ( )(A )1 (B )2 (C )3 (D )42.设函数)(z f 与)(z g 分别以a z =为本性奇点与m 级极点,则a z =为函数)()(z g z f 的( )(A )可去奇点 (B )本性奇点 (C )m 级极点 (D )小于m 级的极点3.设0=z 为函数zz e xsin 142-的m 级极点,那么=m ( )(A )5 (B )4 (C)3 (D )2 4.1=z 是函数11sin)1(--z z 的( ) (A)可去奇点 (B )一级极点 (C ) 一级零点 (D )本性奇点5.∞=z 是函数2323z z z ++的( )(A)可去奇点 (B )一级极点 (C ) 二级极点 (D )本性奇点 6.设∑∞==)(n n n z a z f 在R z <内解析,k 为正整数,那么=]0,)([Re k zz f s ( ) (A )k a (B )k a k ! (C )1-k a (D )1)!1(--k a k7.设a z =为解析函数)(z f 的m 级零点,那么='],)()([Re a z f z f s ( ) (A)m (B )m - (C ) 1-m (D ))1(--m 8.在下列函数中,0]0),([Re =z f s 的是( )(A ) 21)(z e z f z -= (B )z z z z f 1sin )(-=(C )z z z z f cos sin )(+=(D) ze zf z111)(--= 9.下列命题中,正确的是( ) (A ) 设)()()(0z z z z f mϕ--=,)(z ϕ在0z 点解析,m 为自然数,则0z 为)(z f 的m 级极点.(B ) 如果无穷远点∞是函数)(z f 的可去奇点,那么0]),([Re =∞z f s (C ) 若0=z 为偶函数)(z f 的一个孤立奇点,则0]0),([Re =z f s (D ) 若0)(=⎰c dz z f ,则)(z f 在c 内无奇点10. =∞],2cos[Re 3ziz s ( ) (A )32-(B )32 (C )i 32(D )i 32-11.=-],[Re 12i e z s iz ( )(A )i +-61 (B )i +-65 (C )i +61 (D )i +65 12.下列命题中,不正确的是( )(A )若)(0∞≠z 是)(z f 的可去奇点或解析点,则0]),([Re 0=z z f s (B )若)(z P 与)(z Q 在0z 解析,0z 为)(z Q 的一级零点,则)()(],)()([Re 000z Q z P z z Q z P s '= (C )若0z 为)(z f 的m 级极点,m n ≥为自然数,则)]()[(lim !1]),([Re 1000z f z z dzd n z z f s n n nx x +→-=(D )如果无穷远点∞为)(z f 的一级极点,则0=z 为)1(zf 的一级极点,并且)1(lim ]),([Re 0zzf z f s z →=∞13.设1>n 为正整数,则=-⎰=211z ndz z ( ) (A)0 (B )i π2 (C )niπ2 (D )i n π2 14.积分=-⎰=231091z dz z z ( ) (A )0 (B )i π2 (C )10 (D )5i π 15.积分=⎰=121sin z dz z z ( ) (A )0 (B )61- (C )3i π- (D )i π-二、填空题1.设0=z 为函数33sin z z -的m 级零点,那么=m .2.函数zz f 1cos1)(=在其孤立奇点),2,1,0(21ΛΛ±±=+=k k z k ππ处的留数=]),([Re k z z f s .3.设函数}1exp{)(22z z z f +=,则=]0),([Re z f s 4.设a z =为函数)(z f 的m 级极点,那么='],)()([Re a z f z f s . 5.双曲正切函数z tanh 在其孤立奇点处的留数为 . 6.设212)(z zz f +=,则=∞]),([Re z f s . 7.设5cos 1)(zzz f -=,则=]0),([Re z f s . 8.积分=⎰=113z zdz e z.9.积分=⎰=1sin 1z dz z . 10.积分=+⎰∞+∞-dx x xe ix21 . 三、计算积分⎰=--412)1(sin z z dz z e zz .四、利用留数计算积分)0(sin 022>+⎰a a d πθθ五、利用留数计算积分⎰∞+∞-+++-dx x x x x 9102242六、利用留数计算下列积分: 1.⎰∞++0212cos sin dx x xx x 2.⎰∞+∞-+-dx x x 1)1cos(2七、设a 为)(z f 的孤立奇点,m 为正整数,试证a 为)(z f 的m 级极点的充要条件是b z f a z m az =-→)()(lim ,其中0≠b 为有限数.八、设a 为)(z f 的孤立奇点,试证:若)(z f 是奇函数,则]),([Re ]),([Re a z f s a z f s -=;若)(z f 是偶函数,则]),([Re ]),([Re a z f s a z f s --=. 九、设)(z f 以a 为简单极点,且在a 处的留数为A ,证明Az f z f az 1)(1)(lim2=+'→. 十、若函数)(z Φ在1≤z 上解析,当z 为实数时,)(z Φ取实数而且0)0(=Φ,),(y x f 表示)(iy x +Φ的虚部,试证明)()sin ,(cos cos 21sin 202t d f tt t Φ=+-⎰πθθθθθπ)11(<<-t答案第五章 留 数一、1.(D ) 2.(B ) 3.(C ) 4.(D ) 5.(B )6.(C ) 7.(A ) 8.(D ) 9.(C ) 10.(A ) 11.(B ) 12.(D ) 13.(A ) 14.(B ) 15.(C )二、1.9 2.2)2()1(π+π-k k 3.0 4.m - 5.16.2- 7.241-8.12i π 9.i π2 10.e i π 三、i π-316. 四、12+πa a .五、π125.六、1.)(443e e e -π 2.e1cos π。
复变函数与积分变换 复旦大学出版社 习题五答案
习题五1. 求下列函数的留数. (1)()5e 1zf z z-=在z =0处.解:5e 1zz-在0<|z |<+∞的罗朗展开式为23454321111111112!3!4!2!3!4!zzzz zz z z z+++++-=+⋅+⋅+⋅+ ∴5e 111R es ,014!24z z ⎡⎤-=⋅=⎢⎥⎣⎦(2)()11e z f z -=在z =1处.解:11ez -在0<1z -| <+∞的罗朗展开式为()()()11231111111e112!3!!111z nz n z z z -=++⋅+⋅++⋅+----∴11R es e ,11z -⎡⎤=⎣⎦.2. 利用各种方法计算f (z )在有限孤立奇点处的留数. (1)()()2322z f z z z +=+解:()()2322z f z z z +=+的有限孤立奇点处有z =0,z =-2.其中z =0为二级极点z =-2为一级极点.∴()[]()()120013232324Res ,0lim lim 11!242z z z z z f z z z →→++--⎛⎫=⋅=== ⎪⎝+⎭+ ()[]2232R es ,2lim 1z z f z z→-+-==- 3. 利用罗朗展开式求函数()211sinz z+⋅在∞处的留数.解:()()()22235111sin 21sin11111213!5!z z z zzz z z z z +⋅=++⋅⎛⎫=++⋅-⋅+⋅+ ⎪⎝⎭∴()[]1R es ,013!f z =-从而()[]1R es ,13!f z ∞=-+5. 计算下列积分.(1)ctan πd z z ⎰ ,n 为正整数,c 为|z |=n 取正向.解:ccsin πtan πd d cos πz z z zz=⎰⎰.为在c 内tan πz 有12k z k =+(k =0,±1,±2…±(n -1))一级极点由于()()2sin π1R es ,πcos πk z kzf z z z =⎡⎤==-⎣⎦'∴()c1tan πd 2πi R es ,2πi 24i πk kz z f z z n n ⎛⎫=⋅⎡⎤=⋅-⋅=- ⎪⎣⎦⎝⎭∑⎰(2) ()()()10cd i 13zz z z +--⎰c :|z |=2取正向.解:因为()()()101i 13z z z +--在c 内有z =1,z =-i 两个奇点.所以()()()()[]()[]()()[]()[]()()10c10d 2πi Res ,i Res ,1i 132πi Res ,3Res ,πi3i zf z f z z z z f z f z =⋅-++--=-⋅+∞=-+⎰6. 计算下列积分. (1)π0cos d 54cos m θθθ-⎰因被积函数为θ的偶函数,所以ππ1cos d 254cos m I θθθ-=-⎰令π1π1sin d 254cos m I θθθ-=-⎰则有i π1π1ei d 254cos m I I θθθ-+=-⎰设i e z θ= d 1d i zz θ=2os 12c z zθ+=则()121211d i 2i 15421d 2i521mz mz zzI I zz z zzz ==+=⎛⎫+- ⎪⎝⎭=-+⎰⎰被积函数()()2521mzf z z z =-+在|z |=1内只有一个简单极点12z =但()()[]12211R es ,lim232521mmz zf z z z →⎡⎤==⎢⎥⎣⎦⋅'-+所以111πi 2πi 2i 3232mmI I +=⋅⋅=⋅⋅又因为π1π1sin d 254s 0co m I θθθ-=-=⎰∴π0cos d 54cos π32mm θθθ=⋅-⎰(2) 202πcos 3d 12cos aa θθθ+-⎰,|a|>1.解:令2π102cos 3d 12cos I a aθθθ+=-⎰2π202sin 3d 12cos I a aθθθ+=-⎰32π120i2e i d 12cos I I a a θθθ-++=⎰令z =e i θ.31d d i os 2c zz z zθθ==,则 ()()()3122123221321i d 1i 1221d i1112π2πi R es ,i 1z z zI I zz za az zzaz a z af z a a a ==+=⋅+-⋅+=-++--⎡⎤=⋅⋅=⎢⎥⎣⎦-⎰⎰得()1322π1I a a =-(3)()()2222d xx a x b ∞+-∞++⎰,a >0,b >0.解:令()()()22221R z z a z b =++,被积函数R (z )在上半平面有一级极点z =i a 和i b .故()[]()[]()()()()()()()()()()22222222i i 22222πi Res ,i Res ,i 112πi lim i limi 112πi 2i 2i πz a z b I R z a R z b z a z b z a z b z a z b a b a b a b ab a b →→=+⎡⎤=-+-⎢⎥++++⎣⎦⎡⎤=+⎢⎥--⎣⎦=+(4). ()2222d xx x a ∞++⎰,a >0.解:()()222222221d d 2xxx x x a x a -∞++∞∞=++⎰⎰令()()2222zR z z a =+,则z =±a i 分别为R (z )的二级极点故()()[]()[]()()()22222222i 0i 1d 2πi R es ,i R es ,i 2πi lim lim i i π2z a z a xx R z a R z a x a z z z a z a a-→∞→-=⋅⋅+-+⎛⎫''⎡⎤⎡⎤ ⎪=+⎢⎥⎢⎥ ⎪+-⎣⎦⎣⎦⎝⎭=⎰(5) ()222sin d x x x b xβ∞+⋅+⎰,β>0,b>0.解:()()()i 222222222cos sin ed d i d xxx x x xxx xx b x b x b βββ+++--∞∞∞∞∞∞-⋅⋅⋅=++++⎰⎰⎰而考知()()222zR z z b =+,则R (z )在上半平面有z =b i 一个二级极点.()()[]()i i 222i i ed 2πi R ese ,i e π2πi lim e i i 2z xzzbb xx R z b x b z z b b βββββ+--→∞∞⋅=⋅⋅+'⎡⎤=⋅=⋅⋅⎢⎥+⎣⎦⎰()222sin πd e2bbb xx x x βββ+--∞∞⋅=⋅+⎰从而()222sin ππd e44ebbx x bb xx b βββββ+-∞⋅=⋅=+⎰(6) 22i ed xx x a+-∞∞+⎰,a >0 解:令()221R z z a=+,在上半平面有z =a i 一个一级极点()[]i i i 22ieeeπd 2πi Res e ,i 2πi lim2πi i2iexzazaz a x R z a x az a a a -+-→∞∞=⋅⋅=⋅=⋅=++⎰7. 计算下列积分(1)()2sin 2d 1xx x x ∞++⎰解:令()()211R z z z =+,则R (z )在实轴上有孤立奇点z =0,作以原点为圆心、r 为半径的上半圆周c r ,使C R ,[-R , -r ], C r ,[r , R ]构成封闭曲线,此时闭曲线内只有一个奇点i ,于是:()()[]{}()222i 201e1eIm d Im 2πi Res ,i lim d 2211rr xizc I x R z z z z x x +-∞∞→⎡⎤==⋅-⎢⎥++⎣⎦⎰⎰而()202ed lim πi1rizc r z zz →⋅=-+⎰.故:()()2221e 1e πIm 2πi lim πi Im 2πi πi 1e 2222zi i z I z z i --→⎡⎤⎡⎤⎛⎫=⋅+=⋅-+=- ⎪⎢⎥⎢⎥+⎝⎭⎣⎦⎣⎦.(2)21d 2πi z Taz z⎰,其中T 为直线Re z =c ,c >0, 0<a <1解:在直线z =c +i y (-∞< y <+∞)上,令()ln 22ez z aa f z zz==,()ln 22ei c af c y c y⋅+=+,()ln 22ei d d c af c y y yc y⋅++--∞∞∞∞+=+⎰⎰收敛,所以积分()i i d c c f z z ∞∞+-⎰是存在的,并且()()()i i i i d limd limd c c c c ABR RR R f z z f z z f z z ++--→+∞→+∞∞∞==⎰⎰⎰其中AB 为复平面从c -i R 到c +i R 的线段.考虑函数f(z)沿长方形-R ≤x ≤c ,-R ≤y ≤R 周界的积分.<如下图>因为f (z )在其内仅有一个二级极点z =0,而且()[]()()20Res ,0lim ln z f z z f z a →'=⋅=所以由留数定理.()()()()d d d d 2πi ln ABBEEFFAf z z f z z f z z f z z a +++=⋅⎰⎰⎰⎰而()()()()i ln ln ln ln 22222eeeed d d d 0i x R ax aaCC aRCC R BE CR Rf z z x x x C R x RRRx R →+⋅⋅-+--∞==⋅+−−−→++⎰⎰⎰⎰≤≤.。
复变函数与积分变换第五版答案第五章
1. 下列函数有些什么奇点?如果是极点,指出它的级: 1)()2211+z z解:2. 31z z sin 1123+−−z z z ()z z lz 1+()()z e z z π++11211−z e ()112+z e z n n z z +12,n 为正整数21zsin 求证:如果0z 是()z f 的()1>m m 级零点,那么0z 是()z f'的1−m 级零点。
验证:2i z π=是chz 的一级零点。
0=z 是函数()22−−+z shz z sin 的几级极点?如果()z f 和()z g 是以0z 为零点的两个不恒等于零的解析函数,那么()()()()z g z f z g z f z z z z ''lim lim→→=(或两端均为∞)设函数()z ϕ与()z ψ分别以a z =为m 级与n 级极点(或零点),那么下列三个函数在a z =处各有什么性质:3. ()()z z ψϕ;()()z z ψϕ;()()z z ψϕ+;函数()()211−=z z z f 在1=z 处有一个二级极点;这个函数又有下列洛朗展开式:()()()()345211111111−+−−−+=−z z z z z ,11>−z ,所以“1=z 又是()z f 的本性奇点”;又其中不含()11−−z 幂,因此()[]01=,Re z f s 。
这些说法对吗?求下列各函数()z f 在有限奇点处的留数:4. z z z 212−+421z e z −()32411++z z z z cos z −11cos z z 12sin z z sin 1chz shz 计算下列各积分(利用留数;圆周均取正向)5. ⎰=23z dzz z sin ()⎰=−2221z zdz z e ⎰=−231z m dzz zcos , 其中m为整数⎰=−12i z thzdz⎰=3z zdztg π()()⎰=−−11z nndz b z a z (其中n 为正整数,且1≠a ,1≠b ,b a <)。
复变函数与积分变换(修订版-复旦大学)课后的习题答案
复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i ①:∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y -⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-, ()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭.⑤解: ∵()()1,2i 211i,knkn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+=2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z wz w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了. 下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和. 7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--===其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e ii =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根. ⑴i 的三次根.解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cos isin i 662=+=+z . 2551cos πisin πi 662=+=z3991cos πisin πi 662=+=-z⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos isin 332=+=z2cos πisin π1=+=-z3551cos πisin π332=+=-z的平方根.πi 4e ⎫⎪⎪⎝⎭)()1π12i44ππ2π2π44e6cos isin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件. 解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。
复变函数与积分变换 全套 课后答案
1 π
k 0,1
i π π ∴ z1 6 4 cos i sin 6 4 e 8 8 8 πi 9 9 z2 6 4 cos π i sin π 6 4 e 8 . 8 8 1 1 9
9.设 z e
3 2 2 2 2 x x 2 y 2 2 xy 2 y x y 2x y i
x3 3xy 2 3x 2 y y 3 i
∴ Re z 3 x 3 3xy 2 ,
Im z 3 3x 2 y y 3 .
z w z 2 Re z w w z w z 2 Re z w w
zw zw 2 z w
2 2
2
2
2
2
2
2
2
2
2
并给出最后一个等式的几何解释. 证明: z w z 2 Re z w w 在上面第五题的证明已经证明了. 下面证 z w z 2 Re z w w . ∵ z w z w z w z w z w
2 i 3 2i 2 i 3 2i 2 i 3 2i 4 7i
④解:
1 i 1 i 2 2 2 2
1 i 1 i 1 i 2 2 2 4、证明:当且仅当 z z 时,z 才是实数.
z z z w w z w w z zw z w w z w
≤
2
2
2
2
2 Re z w
复变函数与积分变换第五章
解 函数 f (z) 除点 z 0, 1, 2 外,
在 z 内解析 . 因(sin z) cos z 在 z 0, 1, 2, 处均不为零.
所以这些点都是 sin z 的一阶零点,
故这些点中除1, -1, 2外, 都是 f (z)的三阶极点.
30
因 z2 1 (z 1)(z 1), 以1与- 1为一阶零点,
展开式的前m项系数都为零 ,由泰勒级数的系数
公式知: f (n)(z0 ) 0, (n 0,1,2, m 1);
并且
f
(m)(z0 ) m!
c0
0.
(充分性) 由于 f (n)(z0 ) 0, (n 0,1,2, m 1);
f
( m ) ( z0 m!
)
c0
0.
故
邋 f (z) =
ゥ f (n) (z0 ) (z n= m n!
6
例3 sin z 1 1 z2 1 z4 中不含负幂项,
z
3! 5!
z
0
是
sin z z
的可去奇点
.
如果补充定义:
z 0 时, sin z 1, z
那末 sin z 在 z 0 解析. z
7
例4 说明 z 0 为 ez 1 的可去奇点. z
解 ez 1 1(1 z 1 z2 1 zn 1)
zz
2!
n!
1 1 z 1 zn1 , 0 z
2!
n!
无负幂项
所以 z 0 为 ez 1 的可去奇点. z
另解 因为 lim e z 1 lim ez 1, 作业2.4.8(洛必达法则)
z0 z
z0
所以 z 0 为 e z 1 的可去奇点. z
复变函数与积分变换第五章习题解答
c-1r-•
1 (1 2 7) Res[f(z),O] =Iim!!:_[z = ti ,k =土1,土2, ] = o, Res[f(z),k叶= ,�, dz k冗 (zsin z)'L,, zsinz 8) Res[f位), (k+½
叶
(ch z)' :�(k+ )汀i
一
shz
=
I k为整数。
证 由题知: J(z)=(z-z。)飞(z), <p亿)*o, 则有
一 Ill
-{,, 0
0
k=O k=,;O
l 2 (sinz )"1 z O =2, 知 z=O 是 . 2 的二级极点, smz
=
故z。是 J'(z) 的 m-1 级零点。
冗l
f'(z)=m(z-z。)m 凇(z)+(z-z。) 份'(z)=(z-z0 Y,一'[m<p(z)+(z-z。炒'(z)]
六
f'(z) = (fJ(z) + (z- Zo )(fJ'(z) g'(z) lf/(z) + (z-Zo)lf/'(z)
亡,
6. 若叫z) 与 lf/(z) 分别以 z=a 为 m 级与 n 级极点(或零点),那么下列三个函数在 z=a 处各有什 (f)(Z)lf/(Z); (2) (f)(z)llf/(Z);
汗
I
2
5) cos— = L 巨 -11>0 , 知 Res [f(z), l ] = c一 . 2 "' I- z n=O (2n) !(z-1)
1 00
I
(-1) "
《复变函数与积分变换复旦大学修订版》全部_习题答案
复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭②解: ()()()()35i 17i 35i 1613i 7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+④解: ()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i ①: ∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xyz a x a y-⎛⎫=⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩.∴当2n k =时,()()Re i 1kn=-,()Im i 0n=;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+=2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z w z w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w ++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--===其中8πarctan19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e i i =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcosisin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根.⑴i 的三次根. 解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=+z .2551cos πi sin πi 662=+=z3991cos πi sin πi 662=+=-z ⑵-1的三次根 解:()()12π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos i sin 332=+=z 2cos πisin π1=+=-z3551cos πi sin π332=+=-z的平方根. 解:πi 4e ⎫=⎪⎪⎝⎭∴)()1π1i ππ2π2π44e6cos isin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z . 9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1 从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬ ⎪⎝⎭⎩⎭,其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件. 解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。
复变函数与积分变换课后习题答案(北京邮电大学出版社)
复变函数与积分变换课后答案(北京邮电大学出版社)复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案1 / 37习题一1.用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππecos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解:()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解:()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i ① : ∵设z =x +iy 则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y-⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+-∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩ . ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明:z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z w z w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--===其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e i i =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;的平方根.⑴i 的三次根. 解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=+z .2551cos πi sin πi 662=+=z3991cos πi sin πi 662=+=-z ⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos i sin 332=+=+z2cos πisin π1=+=-z3551cos πi sin π332=+=-z的平方根.πi 4e ⎫=⎪⎪⎝⎭∴)()1π12i 44ππ2π2π44e6cos isin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2.∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2 解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。
复变函数与积分变换课后习题答案
复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i ① :∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y-⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭.⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+==2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈C ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z wz w ++≤.6、设z ,w ∈C ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--==其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e ii =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根.⑴i 的三次根. 解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=+z .2551cos πisin πi 662=+=+z3991cos πisin πi 662=+=-z⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos isin 332=+=z2cos πisin π1=+=-z35513cos πisin πi 3322=+=--z⑶33i +的平方根.解: πi 42233i=6i 6e 22⎛⎫+⋅+=⋅ ⎪ ⎪⎝⎭∴()()1π12i 44ππ2π2π4433i 6e6cos isin 0,122k k k ⎛⎫++ ⎪+=⋅=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2 解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。
复变函数与积分变换中国石油大学华东崔俭春张高民第五章答案习题五
习题五答案1. 求下列各函数的孤立奇点,说明其类型,如果是极点,指出它的级. (1)221(1)z z z −+解:函数的孤立奇点是0,z z i ==±,因222222221111111(1)(1)()()()()z z z z z z z z z i z z i z i z z i −−−−=⋅=⋅=⋅++−++− 由性质5.2知,0z =是函数的1级极点,z i =±均是函数的2级极点. (2)3sin z z 解:函数的孤立奇点是0z =,因32133sin 1((1))3!(21)!n nz z z z z z n +=−++−+",由极点定义知,0z =是函数的2级极点.(3)ln(1)z z+ 解:函数的孤立奇点是0z =,因0ln(1)lim1z z z→+=,由性质5.1知,0z =是函数可去奇点.(4)21(1)z z e −解:函数的孤立奇点是2z k i π=,①0k =,即0z =时,因4223(1)2!!n z z z z e z n +−=++++"" 所以0z =是2(1)zz e −的3级零点,由性质5.5知,它是21(1)z z e −的3级极点②2z k i π=,0k ≠时,令2()(1)z g z z e =−,'2()2(1)zzg z z e z e =−+,因(2)0g k i π=,'2(2)(2)0g k i k i ππ=≠,由定义5.2知,2(0)z k i k π=≠是()g z 的1级零点,由性质5.5知,它是21(1)z z e −的1级极点(5)2(1)(1)zzz e π++ 解:函数的孤立奇点是(21),z k i k Z =+∈,令2()(1)(1)zg z z e π=++,'2()2(1)(1)z z g z z e e z πππ=+++,''22()2(1)4(1)z z z g z e ze e z πππππ=++++① 0z i =±时, 0()0g z =,'0()0g z =,''0()0g z ≠,由定义5.2知,0z i =±是()g z 的2级零点,由性质5.5知,它是21(1)(1)z z e π++的2级极点,故0z i =±是2(1)(1)z zz e π++的2级极点.②1(21),1,2,z k i k =+=±"时,1()0g z =,'1()0g z ≠,由定义5.2知,1(21),1,2,z k i k =+=±"是()g z 的1级零点,由性质5.5知,它是21(1)(1)z z e π++的1级极点,故是2(1)(1)zzz e π++的1级极点. (6)21sin z解:函数的孤立奇点是0z =,1,2,z z k ==±=" 令2()sin g z z =,'2()2cos g z z z =,① 0z =时,因64222()sin (1)3!(21)!n nz z g z z z n +==−++−++"",所以0z =是()g z 的2级零点,从而它是21sin z 的2级极点.②1,2,z z k ==±="时,()0g z =,'()0g z ≠,由定义5.2知,1,2,z z k ==±="是()g z 的1级零点,由性质5.5知,它是21sin z的1级极点.2. 指出下列各函数的所有零点,并说明其级数. (1)sin z z解:函数的零点是,z k k Z π=∈,记()sin f z z z =,'()sin cos f z z z z =+① 0z =时,因4222sin (1)3!(21)!n nz z z z z n +=−++−++"",故0z =是sin z z 的2级零点. ②,0z k k π=≠时,()0z k f z π==,'()0z k f z π=≠,由定义5.2知,,0z k k π=≠是sin z z 的1级零点.(2)22z z e解:函数的零点是0z =,因242222(1)2!!nz z z z e z z n =+++++"",所以由性质5.4知,0z =是22z z e 的2级零点. (3)2sin (1)zz e z −解:函数的零点是00z =,1z k π=,22z k i π=,0k ≠,记2()sin (1)zf z z e z =−,'22()cos (1)sin [2(1)]zz zf z z e z z e z z e =−++−① 0z =时,0z =是sin z 的1级零点,,1ze −的1级零点,2z 的2级零点,所以0z =是2sin (1)z z e z −的4级零点.②1z k π=,0k ≠时,1()0f z =,'1()0f z ≠,由定义5.2知,1z k π=,0k ≠是()f z 的1级零点.③22z k i π=,0k ≠时,1()0f z =,'1()0f z ≠,由定义5.2知,22z k i π=,0k ≠是()f z 的1级零点.3. 0z =是函数2(sin 2)z shz z −+−的几级极点?答:记()sin 2f z z shz z =+−,则'()cos 2f z z chz =+−,''()sin f z z shz =−+,'''()cos f z z chz =−+,(4)()sin f z z shz =+,(5)()cos f z z chz =+,将0z =代入,得: ''''''(4)(0)(0)(0)(0)(0)0f f f f f =====,(5)()0f z ≠,由定义5.2知,0z =是函数()sin 2f z z shz z =+−的5级零点,故是2(sin 2)z shz z −+−的10级极点.4. 证明:如果0z 是()f z 的(1)m m >级零点,那么0z 是'()f z 的1m −级零点. 证明:因为0z 是()f z 的m 级零点,所以'''10000()()()()0m f z f z f z fz −=====",0()0m f z ≠,即''''2000()(())(())0m f z f z f z −====",'10(())0m f z −≠,由定义 5.2知,0z 是'()f z 的1m −级零点.5. 求下列函数在有限孤立奇点处的留数. (1)212z z z+−解:函数的有限孤立奇点是0,2z z ==,且0,2z z ==均是其1级极点.由定理5.2知,0011Re [(),0]lim ()lim22z z z s f z zf z z →→+===−+,0013Re [(),2]lim(2)()lim 2z z z s f z z f z z →→+=−==.(2)4231(1)z z ++ 解:函数的有限孤立奇点是z i =±,且z i =±是函数的3级极点,由定理5.2,423''''35111112123Re [(),]lim[()()]lim()lim 2!2()2()8z i z i z i z z s f z i z i f z i z i z i →→→+−=−===−++, 423''''35111112123Re [(),]lim[()()]lim()lim 2!2()2()8z i z i z i z z s f z i z i f z i z i z i →−→−→−++−=+===−−.(3)241z e z − 解:函数的有限孤立奇点是0z =,因22234443211(2)(2)2222(2)2!!2!3!!z n n n e z z z z z z n z z z n −−=−−−−−=−−−−−"""" 所以由定义5.5知,2414Re [,0]3z e s z −=−. (4)21sinz z解:函数的有限孤立奇点是0z =,因2232121111(1)1(1)sin ()3!(21)!3!(21)!n n n n z z z z z z n z z n z +−−−=−+++=−+++++"""" 所以由定义5.5知,211Re [sin ,0]6s z z =−. (5)1cos1z− 解:函数的有限孤立奇点是1z =,因2211(1)cos 112!(1)(2)!(1)nnz z n z −=−+++−−−"" 所以由定义5.5知,1Re [cos ,1]01s z=−. (6)1sin z z解:函数的有限孤立奇点是,z k k Z π=∈. ①0k =,即0z =,因为3214222sin ((1))(1)3!(21)!3!(21)!n n n nz z z z z z z z z n n ++=−++−+=−++−+++""""所以0z =是1sin z z 的2级极点.由定理5.2, 2''00011Re [,0]lim[]lim()lim 0sin sin sin 2cos z z z z z s z z z z zz z →→→====.②,0z k k π=≠时,记()sin g z z z =,则'()sin cos g z z z z =+,因为'()0,()0g k g k ππ=≠,所以由定义5.2知,,0z k k π=≠是()g z 的1级零点,故它是1sin z z的1级极点.由定理5.3, '1111Re [,](1),0sin ()cos ks k k z z g k k k k πππππ===−≠. 6. 利用留数计算下列积分(积分曲线均取正向).(1)222(1)zz e dz z =−∫v解:1z =是被积函数22(1)z e z −在积分区域内的有限孤立奇点,且为2级极点,由定理5.2,222'222211Re [,1]lim[(1)lim 22(1)(1)z z z z z e e s z e e z z →→=−==−−, 由定理5.1知,2222222Re [,1]4(1)(1)z z z e e dz i s e i z z ππ===−−∫v .(2)232(1)(3)zz e dz z z =−+∫v解:1z =是被积函数2(1)(3)z e z z −+在积分区域内的有限孤立奇点,且为1级极点,所以由定理5.1及定理5.2,22322Re [,1](1)(3)(1)(3)z zz e e dz i s z z z z π==−+−+∫v22112lim((1))2lim (1)(3)(3)8z z z z e e eii z iz z z πππ→→=−==−++.(3)1sin z z dz z =∫v解:0z =是被积函数sin zz在积分区域内的有限孤立奇点, 因为0lim 1sin z z z →=,所以由性质5.1知0z =是函数sin zz的可去奇点, 从而由定理5.1,Re [,0]0sin z s z =,由定理5.1,12Re [,0]0sin sin z z zdz i s z zπ===∫v . (4)11sin z dz z z =∫v解:0z =是被积函数1sin z z 在积分区域内的有限孤立奇点,且为2级极点,由定理5.2,2'0011Re [,0]lim()lim 0sin sin 2cos z z z s z z z z zz →→===,由定理5.1,1112Re [,0]0sin sin z dz i s z z z zπ===∫v . (5)12sin (1)z z zdz z e =−∫v解:0z =是被积函数sin (1)zzz e −在积分区域内的有限孤立奇点,由性质5.6知0z =是函数的1级极点,000sin sin sin cos Re [,0]lim(lim lim 1(1)(1)1z z z z z z z z z z zs z z e z e e e →→→====−−−−− 由定理5.1,12sin sin 2Re [,0]2(1)(1)z z z z z dz i s i z e z e ππ===−−−∫v . (6)3tan z zdz π=∫v解:被积函数tan z π在积分区域3z =内的有限孤立奇点为:1,3,2,1,02k z k k =+=−±±,由定理5.3,这些点均为tan z π的1级极点,且 sin 1Re [tan ,]sin k k kz s z z z πππππ==−−由定理5.1,2336tan 2Re [tan ,]2(12k z k zdz i s z z i i πππππ==−==⋅−=−∑∫v .7. 计算积分11()()n n z dz z a z b =−−∫v ,其中n 为正整数,1,1,a b a b ≠≠<. 解:记1()()()n nf z z a z b =−−,则()f z 的有限孤立奇点为,z a z b ==,且为n 级极点,分情况讨论如下:①1a b <<时,,z a z b ==均在积分区域内,由定理5.1,1()2Re [(),]2Re [(),]z f z dz i s f z a i s f z b ππ==+∫v(1)12121(22)!Re [(),]lim[()()](1)()(1)!((1)!)n n n n z a n s f z a z a f z a b n n −−−+→−=−=−−−− (1)12121(22)!Re [(),]lim[()()](1)()(1)!((1)!)n n n n z b n s f z b z b f z b a n n −−−+→−=−=−−−− 故有110()()n n z dz z a z b ==−−∫v .②1a b <<时,,z a z b ==均不在积分区域内,所以110()()n n z dz z a z b ==−−∫v .③1a b <<时,z a =在积分区域内,z b =不在积分区域内,所以12211(1)(22)!()2Re [(),][(1)!]()n n z n if z dz i s f z a n a b π−−=−−==−−∫v习题五8.判断z =∞是下列各函数的什么奇点?求出在∞的留数。
复变函数第五章-1
17
[证] 若 z 0 是 f (z) 的m阶零点,那么 f (z) 可表成 设 (z) 在 z 0的泰勒展开式为
f ( z ) ( z z0 )m ( z )
( z ) C0 C1 ( z z0 ) C2 ( z z0 )2
其中C0 z0 0 。 从而f (z) 在z 0 的泰勒展开式为
1 1 1 1 2 n z 1 2!( z 1) n!( z 1)
1 z 1
此级数含有无限多个负次幂项,故 z 1 是函数 e
的本性奇点。
16
§5.1.2 函数的零点与极点的关系
m 定义5.2 若 f ( z ) ( z z0 ) ( z ) , (z) 在 z 0 处解析,且 z0 0 ,m为某一正整数,那么称 z 0 为 f (z) 的
sin z sin z 如果约定 在 z 0 的值为1(即C0),那么 在z0 z z 就成为解析的了。 sin z sin z 因为 z 0 是 的可去奇点,故当z→0时, z z 有有限极限。此极限为上面展开式中的常数项。可得
重要极限
sin z lim 1 z 0 z
6
(2)极点 如果在洛朗级数中只有有限多个z-z0的负幂项,
由此可见:
如果补充定义 f (z) 在 z 0 的值为 f ( z0 ) C0 ,则 f (z) 在 z 0 解析。
因此,可去奇点的奇异性是可以除去的。
定理5.1′设 z 0 是 f (z) 的孤立奇点,则 z 0 是f (z) 的可去奇点 的充分必要条件是f (z) 在 z 0 的一个邻域内为有界。
0
[证]
必要性,因 z 0 是 f (z) 的可去奇点,故在 0 z z0 内有
复变函数 积分变换——课后答案
ln 1 z 1
( )
+
b .lim lim 1 ,故z 0 为可去奇点。
z→0 z→0 1+
----------------------- Page 1-----------------------
习题五解答
1、下列函数有些什么奇点?如果是极点,指出它的级。
z − z −
( 1)( 1) z z
( −1)( +1)
∞ z n+1 ( ) ∞ n
1 z
(4 ) ; (5) ; (6)e − ;
n +1 z n +1
n 0 n 0
3 sin z
a. z 0 为sin z 为的一级零点;而z 0 为z 的三级零点。故z 0 为 的二级极点。
z z z z 2 z 1
(7)因e −1 z∑ z(1+ + +) ,故z 0 为z (e −1) 的三级零点,因而是 2 z
1
ln(z +1) z
(2k+1)π
1+z (k 0,±1,±2,) 1+e
(5)由1+z 0 得z ±i 为 的一级零点,由1+e 0得z 2k +1 i 为
( ) 2 2 ( )
z (z +1)
其奇点,z 0 为一级极点,而z ±i 为其二级极点。
3
z
n 0 (n +1) ! 2 3! z (e −1)
的三级极点,而z 2kπi,(k ±1,±2,) 均为一级极点。
1 sin z 1
(1) ; (2 ) ; (3) ;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题五答案1. 求下列函数的留数.(1)()5e 1z f z z-=在z =0处.解:5e 1z z-在0<|z |<+∞的罗朗展开式为23454321111111112!3!4!2!3!4!z z z z z z z z z+++++-=+⋅+⋅+⋅+L L ∴5e 111Res ,014!24z z ⎡⎤-=⋅=⎢⎥⎣⎦(2)()11e zf z -=在z =1处.解:11e z -在0<1z -| <+∞的罗朗展开式为()()()11231111111e112!3!!111z nz n z z z -=++⋅+⋅++⋅+----L L ∴11Res e ,11z -⎡⎤=⎣⎦.2. 利用各种方法计算f (z )在有限孤立奇点处的留数.(1)()()2322z f z z z +=+解:()()2322z f z z z +=+的有限孤立奇点处有z =0,z =-2.其中z =0为二级极点z =-2为一级极点.∴()[]()()120013232324Res ,0lim lim 11!242z z z z z f z z z →→++--⎛⎫=⋅=== ⎪⎝+⎭+ ()[]2232Res ,2lim 1z z f z z→-+-==-3. 利用罗朗展开式求函数()211sin z z +⋅在∞处的留数.解:()()()22235111sin 21sin11111213!5!z z z z z z z z zz +⋅=++⋅⎛⎫=++⋅-⋅+⋅+ ⎪⎝⎭L∴()[]1Res ,013!f z =-从而()[]1Res ,13!f z ∞=-+5. 计算下列积分.(1)ctan πd z z ⎰Ñ,n 为正整数,c 为|z |=n 取正向.解:cc sin πtan πd d cos πzz z z z =⎰⎰蜒.在C 内tan πz 有12k z k =+(k =0,±1,±2…±(n -1),-n )一级极点 由于()()2sin π1Res ,πcos πk z kz f z z z =⎡⎤==-⎣⎦'∴()c1tan πd 2πi Res ,2πi 24i πk kz z f z z n n ⎛⎫=⋅⎡⎤=⋅-⋅=- ⎪⎣⎦⎝⎭∑⎰Ñ (2)()()()10cd i 13zz z z +--⎰Ñ C :|z |=2取正向.解:因为()()()101i 13z z z +--在C 内有z =1,z =-i 两个奇点.所以()()()()[]()[]()()[]()[]()()10c 10d 2πi Res ,i Res ,1i 132πi Res ,3Res ,πi3i zf z f z z z z f z f z =⋅-++--=-⋅+∞=-+⎰Ñ6. 计算下列积分. (1)π0cos d 54cos m θθθ-⎰因被积函数为θ的偶函数,所以ππ1cos d 254cos m I θθθ-=-⎰令π1π1sin d 254cos m I θθθ-=-⎰则有i π1π1e i d 254cos m I I θθθ-+=-⎰设i e z θ= d 1d i z zθ= 2os 12c z z θ+=则()121211d i 2i 15421d 2i 521m z m z z zI I z z z z z z==+=⎛⎫+- ⎪⎝⎭=-+⎰⎰ÑÑ 被积函数()()2521mz f z z z=-+在|z |=1内只有一个简单极点12z = 但()()[]12211Res ,lim232521mmz z f z z z →⎡⎤==⎢⎥⎣⎦⋅'-+ 所以111πi 2πi 2i 3232m mI I +=⋅⋅=⋅⋅ 又因为π1π1sin d 254s 0co m I θθθ-=-=⎰∴πcos d 54cos π32mm θθθ=⋅-⎰ (2)202πcos3d 12cos a a θθθ+-⎰,|a|>1.解:令2π102cos3d 12cos I a a θθθ+=-⎰ 2π202sin3d 12cos I a a θθθ+=-⎰ 32π120i2e i d 12cos I I a a θθθ-++=⎰令z =e i θ.31d d i os 2c z z zzθθ==,则 ()()()3122123221321i d 1i 1221d i 1112π2πi Res ,i 1z z z I I z z za azz z az a z a f z a a a ==+=⋅+-⋅+=-++--⎡⎤=⋅⋅=⎢⎥⎣⎦-⎰⎰ÑÑ 得()1322π1I a a =-(3)()()2222d x x a x b∞+-∞++⎰,a >0,b >0. 解:令()()()22221R z z a z b =++,被积函数R (z )在上半平面有一级极点z =i a 和i b .故()[]()[]()()()()()()()()()()22222222i i 22222πi Res ,i Res ,i 112πi lim i lim i112πi 2i 2i πz a z b I R z a R z b z a z b z a z b z a z b a b a b a b ab a b →→=+⎡⎤=-+-⎢⎥++++⎣⎦⎡⎤=+⎢⎥--⎣⎦=+4.()2222d x x x a ∞++⎰,a >0.解:()()2222022221d d 2x x x x x a x a -∞++∞∞=++⎰⎰令()()2222z R z z a =+,则z =±a i 分别为R (z )的二级极点故()()[]()[]()()()22222222i 0i 1d 2πi Res ,i Res ,i 2πi lim lim i i π2z a z a x x R z a R z a x a z z z a z a a-→∞→-=⋅⋅+-+⎛⎫''⎡⎤⎡⎤ ⎪=+⎢⎥⎢⎥ ⎪+-⎣⎦⎣⎦⎝⎭=⎰(5)()222sin d x x x b xβ∞+⋅+⎰,β>0,b>0. 解:()()()i 222222222cos sin e d d i d x x x x x xxx x x b x b x b βββ+++--∞∞∞∞∞∞-⋅⋅⋅=++++⎰⎰⎰而考知()()222zR z z b =+,则R (z )在上半平面有z =b i 一个二级极点.()()[]()i i 222i i e d 2πi Res e ,i e π2πi lim e i i 2z x z zbb xx R z b x b z z b b βββββ+--→∞∞⋅=⋅⋅+'⎡⎤=⋅=⋅⋅⎢⎥+⎣⎦⎰()222sin πd e 2bb b xx x x βββ+--∞∞⋅=⋅+⎰从而()222sin ππd e 44e b bx x b b xx b βββββ+-∞⋅=⋅=+⎰ (6)22i e d xx x a+-∞∞+⎰,a >0 解:令()221R z z a =+,在上半平面有z =a i 一个一级极点 ()[]i i i 22i e e e πd 2πi Res e ,i 2πi lim 2πi i 2i e x z a zaz a x R z a x a z a a a -+-→∞∞=⋅⋅=⋅=⋅=++⎰ 7. 计算下列积分(1)()20sin 2d 1x x x x ∞++⎰解:令()()211R z z z =+,则R (z )在实轴上有孤立奇点z =0作的原点为圆心r 为半径的上半圆周c r ,使c r ,[-R ,-r ],c r ,[r ,R ]构成封装曲线,此时闭曲线内只有一个奇点i ,是()()[]{}()z 22i 201e 1eIm d Im 2πi Res ,i lim d 2211r r x izc I x R z z z z x x +-∞∞→⎡⎤==⋅-⎢⎥++⎣⎦⎰⎰ 而()202e d lim πi 1r iz c r zzz →⋅=-+⎰. 设()()2221e 1e πIm 2πi lim πi Im 2πi πi 1e 21222zz i i I z z --→⎡⎤⎡⎤⎛⎫=⋅+=⋅-+=- ⎪⎢⎥⎢⎥+⎝⎭⎣⎦⎣⎦. (2)21d 2πi zT a z z⎰,其中T 为直线Re z =c ,c >0,0<a <1解:在直线z =c +i y (-∞<y <+∞)上,令()ln 22ez z aa f z z z==,()ln 22e i c a f c y c y ⋅+=+,()ln 22e i d d c af c y y y c y⋅++--∞∞∞∞+=+⎰⎰收敛,所以积分()i i d c c f z z ∞∞+-⎰是存在的,并且 ()()()i i i i d limd limd c c c c ABR RR Rf z z f z z f z z ++--→+∞→+∞∞∞==⎰⎰⎰其中AB 为复平面从c -i R 到c +i R 的线段.考虑函数f(z)沿长方形-R ≤x ≤c ,-R ≤y ≤R 周界的积分.<如图>因为f (z )在其内仅有一个二级极点z =0,而且()[]()()20Res ,0lim ln z f z z f z a →'=⋅=所以由留数定理.()()()()d d d d 2πi ln ABBEEFFAf z z f z z f z z f z z a +++=⋅⎰⎰⎰⎰而()()()()i ln ln ln ln 22222e e e e d d d d 0i x R ax a aC C a RCC R BECR R f z z xx x C R x R R R x R →+⋅⋅-+--∞==⋅+−−−→++⎰⎰⎰⎰≤≤.。