继电保护课件PPT距离保护复习课程
合集下载
继电保护培训课件PPT课件
详细描述
继电保护是指在电力系统发生异常或故障时,通过特定的装置和设备,快速、 准确地切除故障元件,以防止事故扩大,保障电力系统的安全稳定运行。
继电保护的基本原理
总结词
继电保护基于电流、电压、阻抗等电气量的变化进行工作, 通过比较正常与异常时的电气量差异来判断是否发生故障。
详细描述
继电保护装置通过检测电力系统中的电流、电压、阻抗等电 气量,根据正常运行时的电气量与异常运行时的电气量进行 比较,判断是否发生故障。一旦检测到故障,保护装置会迅 速动作,切除故障元件,防止事故扩大。
继电保护培训课件ppt课件
contents
目录
• 继电保护概述 • 继电保护装置 • 继电保护技术 • 继电保护系统的运行和维护 • 继电保护的发展趋势和展望
01 继电保护概述
继电保护的定义和作用
总结词
继电保护是电力系统中的重要组成部分,用于快速、准确地切除故障元件,保 障电力系统的安全稳定运行。
坏。
距离保护装置
根据电压、电流的相位差测量 阻抗,判断是否发生短路故障
。
零序保护装置
利用零序电流分量检测单相接 地故障。
差动保护装置
通过比较线路两端电流的大小 和相位,检测线路是否发生故
障。
继电保护装置的选择与配置
01
02
03
04
根据设备的重要性和故 障后果选择相应的保护 装置。
根据系统的运行方式和 负荷状况配置保护装置。
继电保护系统的故障处理和预防措施
01
继电保护系统故障的分类和处理
根据故障的性质和影响范围,将继电保护系统故障分为不同类型,并分
别介绍相应的处理方法。
02
继电保护系统故障的预防措施
继电保护是指在电力系统发生异常或故障时,通过特定的装置和设备,快速、 准确地切除故障元件,以防止事故扩大,保障电力系统的安全稳定运行。
继电保护的基本原理
总结词
继电保护基于电流、电压、阻抗等电气量的变化进行工作, 通过比较正常与异常时的电气量差异来判断是否发生故障。
详细描述
继电保护装置通过检测电力系统中的电流、电压、阻抗等电 气量,根据正常运行时的电气量与异常运行时的电气量进行 比较,判断是否发生故障。一旦检测到故障,保护装置会迅 速动作,切除故障元件,防止事故扩大。
继电保护培训课件ppt课件
contents
目录
• 继电保护概述 • 继电保护装置 • 继电保护技术 • 继电保护系统的运行和维护 • 继电保护的发展趋势和展望
01 继电保护概述
继电保护的定义和作用
总结词
继电保护是电力系统中的重要组成部分,用于快速、准确地切除故障元件,保 障电力系统的安全稳定运行。
坏。
距离保护装置
根据电压、电流的相位差测量 阻抗,判断是否发生短路故障
。
零序保护装置
利用零序电流分量检测单相接 地故障。
差动保护装置
通过比较线路两端电流的大小 和相位,检测线路是否发生故
障。
继电保护装置的选择与配置
01
02
03
04
根据设备的重要性和故 障后果选择相应的保护 装置。
根据系统的运行方式和 负荷状况配置保护装置。
继电保护系统的故障处理和预防措施
01
继电保护系统故障的分类和处理
根据故障的性质和影响范围,将继电保护系统故障分为不同类型,并分
别介绍相应的处理方法。
02
继电保护系统故障的预防措施
电力系统继电保护--距离保护的基本原理、阻抗继电器及其动作特性 ppt课件
PPT课件
8
三、三相系统中测量电压和测量电流的选取
K:零序电流补偿系数 PPT课件
9
三、三相系统中测量电压和测量电流的选取
单相接地短路(以A相接地为例)
PPT课件
10
三、三相系统中测量电压和测量电流的选取
两相接地短路1(以B,C两相接地为例)
PPT课件
11
三、三相系统中测量电压和测量电流的选取
两相短路、三相短路和两相短路接地:两故障相的电压差
和电流差。
PPT课件
15
四、距离保护的延时特性
距离保护的动作延时t与故障点到保护安装处的距离Lk 之间的关系称为距离保护的延时特性
PPT课件
16
五、距离保护的构成
1.启动部分:模拟式距离保护中,由硬件电路元
件实现,大多反应负序电流、零序电流或负序与 零序复合电流的判断原理;数字式保护中,由实 时逐点检测电流突变量或零序电流的变化的软件 来实现。
PPT课件
7
三、三相系统中测量电压和测量电流的选取
U A UkA I A1z1Lk I A2 z2Lk I A0 z0Lk
UkA
(I A1
I A2
I A0 ) 3I A0
z0 z1 3z1
z1Lk
UkA (I A K 3I0 )z1Lk
电气工程及其自动化专业课程
电力系统继电保护
PPT课件
1
距离保护的基本原理与构成
一、距离保护的概念 二、测量阻抗及其与故障距离的关系 三、三相系统中测量电压和测量电流的选取 四、距离保护的延时特性 五、距离保护的构成PPTຫໍສະໝຸດ 件2一、距离保护的概念
大学课件 电力系统继电保护 第三章第五节 距离保护的振荡闭锁
1 2
即振荡中心在保护的反方向上,振荡时测量阻抗末端轨迹
的直线OO’在第三象限内与Z∑相交,不会引起方向阻抗特 性保护的误动作。
• 3 电力系统振荡对距离测量元件特性的影响
在图3-29所示的双侧电源系统
中,假设M、N两处均装有距离保
护,其测量元件均采用圆特性的
方向阻抗元件,距离Ⅰ段的整定
阻抗为线路阻抗的80%,则两侧
TDW的选择原则:
正向区内 Ⅰ段保护有足够时间可靠跳闸 故障时 Ⅱ段保护能可靠起动并实现自保持
时间不应小于0.1s
区外故障引 测量阻抗不会在故障后的 起振荡时 TDW时间内进入动作区
将故障线路跳开
所以,通常情况下取TDW=0.1s~0.3s,现代数字保护中, 开放时间一般取0.15s左右。
系统正常运行或静态稳定被破坏时:
KZ1----整定值 较高的阻抗元件 KZ2----整定值 较低的阻抗元件
在Z1动作后开 放△t的时间
这段时 Z2动作 间内
Z2不动作
开放保护直到Z2返回 保护不会被开放
它利用短路时阻抗的变化率较大,Z1、Z2的动作时间差
小于△t,适时开放。测量阻抗每次进入Z1的动作后,都会
开放一定时间。
由于对测量阻抗变化率的判断是由两个不同大小的阻抗 圆完成的,所以这种振荡闭锁通常俗称“大圆套小圆”振荡闭 锁原理。
系统振荡时,安装在M点处的测量元件的测量阻抗为:
Zm
UM IM
EM
IM ZM IM
EM IM
ZM
1 1 e j
Z ZM (3 130)
Im
E Z
EM (1 e j ) Z
1 e j
1 cos
j sin
继电保护.ppt
此时保护范围
- 应调整继电器的灵敏角等于被保护线路的阻抗角 - 特点:
有明确的方向性
3.2.2 利用复数平面分析阻抗继电器的特性
2、比幅式方向阻抗继电器
3、比相式方向阻抗继电器
3.2.2 利用复数平面分析阻抗继电器的特性
三、偏移特性阻抗继电器 1、 偏移特性阻抗继电器的动作特性
3.2.2 利用复数平面分析阻抗继电器的特性
电力系统继电保护原理
第七讲
第三章、电网的距离保护
3.1 距离保护的作用原理 3.1.1 距离保护的基本概念
- 距离保护是反应保护安装处至故障点的距离,并根据距离的远 近而确定动作时限的一种保护装置。
- 实际上是测量保护安装处至故障点之间的阻抗大小,故有时又 称阻抗保护
- 当短路点在保护范围以内时,即当 时保护动作。 - 当短路点在保护范围以外时,即当 时,保护不动作。
3.2.1 构成阻抗继电器的动作特性
- 对于单相式阻抗继电器,电压 和电流 抗。
的比值称为测量阻
3.2.1 构成阻抗继电器的动作特性
- 常见阻抗继电器的特性
圆1:以OC为半径----全阻抗继电器(反方向故障时,会误动,没 有方向性)
圆2:以OC为直径----方向阻抗继电器(本身具有方向性) 圆3:偏移特性继电器
二、距离保护第II段(距离II段) - 动作时限和起动值要与相邻下一条线路保护的I段或II段相配合。
三、距离III段 - 为本线路(近)和相邻线路(元件)的后备保护 - 其动作时限的整定原则与过电流保护相同,即大于下一条变电 站母线出线保护的最大动作时限一个时间级差 - 其动作阻抗应按躲过正常运行时的最小负荷阻抗来整定。
2、比幅式偏移特性阻抗继电器
电网的距离保护 距离保护过渡电阻振荡整定计算 PPT精品课件
Ig
接地短路:杆塔等电阻,可达数十欧姆。
220kV系统中一般考虑最大100Ω; 500kV系统中一般考虑最大300Ω。
4.4过渡电阻对距离保护的影响
二、单侧电源线路上过渡电阻的影响★★★
M
N
P
QF1
Zm2 Rg
QF2 Rg k(3)
Zm1 ZMN Rg
各测量阻抗均增大, 保护范围缩小;
两个保护可能同时以 第Ⅱ段的时间动作,将会 失去选择性。
k2
二、距离Ⅰ段
1.定值: 躲过相邻元件出口短路时的测量阻抗
ZI set1
KI rel
Z
MN
KI rel
0.8
~
0.85
2.时间: t1 0
3.保护范围:
线路全长的80~85%,不受运行方式、故障 类型的影响。
4.3距离保护整定计算★★★
I1
I2 k
三、距离Ⅱ段
1.定值: 与相邻元件保护配合。
相邻元件保护范围末端故障时本保护的测量阻抗:
Z L min
K III rel
Kss
Kre
cos(set
L )
Z III set1
sZetopL
L
ZL min
4.3距离保护整定计算★★★
k1
Hale Waihona Puke k2四、距离Ⅲ段2.灵敏度校验
(1)近后备:故障点取本线路末端k1
III
Z
set1
K sen近
ZMN
要求
K sen近
1.5
(2)远后备:故障点取相邻线路末端k2
五、多边形特性的整定★
jX X set
P
N
Rset
接地短路:杆塔等电阻,可达数十欧姆。
220kV系统中一般考虑最大100Ω; 500kV系统中一般考虑最大300Ω。
4.4过渡电阻对距离保护的影响
二、单侧电源线路上过渡电阻的影响★★★
M
N
P
QF1
Zm2 Rg
QF2 Rg k(3)
Zm1 ZMN Rg
各测量阻抗均增大, 保护范围缩小;
两个保护可能同时以 第Ⅱ段的时间动作,将会 失去选择性。
k2
二、距离Ⅰ段
1.定值: 躲过相邻元件出口短路时的测量阻抗
ZI set1
KI rel
Z
MN
KI rel
0.8
~
0.85
2.时间: t1 0
3.保护范围:
线路全长的80~85%,不受运行方式、故障 类型的影响。
4.3距离保护整定计算★★★
I1
I2 k
三、距离Ⅱ段
1.定值: 与相邻元件保护配合。
相邻元件保护范围末端故障时本保护的测量阻抗:
Z L min
K III rel
Kss
Kre
cos(set
L )
Z III set1
sZetopL
L
ZL min
4.3距离保护整定计算★★★
k1
Hale Waihona Puke k2四、距离Ⅲ段2.灵敏度校验
(1)近后备:故障点取本线路末端k1
III
Z
set1
K sen近
ZMN
要求
K sen近
1.5
(2)远后备:故障点取相邻线路末端k2
五、多边形特性的整定★
jX X set
P
N
Rset
电力系统继电保护复习大纲及习题精讲ppt课件
✓高频通道的构成及各部分的作用 ✓高频通道的工作方式 ✓高频信号的分类及作用 2.纵联保护的特点 3.闭锁式方向纵联保护的工作原理 ✓构成的各个元件及其作用 ✓区内外发生故障动作行为分析 ✓通道破坏、收发信机故障对保护的影响
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
✓ 过渡电阻对阻抗继电器的影响 ✓ 对不同地点的阻抗继电器的影响 ✓ 对不同特性的阻抗继电器的影响
✓ 减小过渡电阻影响的措施
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
思考题
1、教材3.1、3.2、3.5、3.9、3.12、3.17、3.19、3.20 2、
3. 电网的电流保护
• 继电器的有关概念 动作值、返回值、返回系数
• 三段式电流保护工作原理和整定计算方法 • 相间短路电流保护的基本接线方式及其特 点与应用范围
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
2、分别画出正方向接地和反方向接地时零序电压和 零序电流的向量图。分别说明零序功率方向继电器的 最大灵敏角为-110°和70°时应如何接线?
3、零序功率方向继电器有无死区?为什么?
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
6.系统振荡对阻抗继电器的影响
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
✓ 过渡电阻对阻抗继电器的影响 ✓ 对不同地点的阻抗继电器的影响 ✓ 对不同特性的阻抗继电器的影响
✓ 减小过渡电阻影响的措施
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
思考题
1、教材3.1、3.2、3.5、3.9、3.12、3.17、3.19、3.20 2、
3. 电网的电流保护
• 继电器的有关概念 动作值、返回值、返回系数
• 三段式电流保护工作原理和整定计算方法 • 相间短路电流保护的基本接线方式及其特 点与应用范围
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
2、分别画出正方向接地和反方向接地时零序电压和 零序电流的向量图。分别说明零序功率方向继电器的 最大灵敏角为-110°和70°时应如何接线?
3、零序功率方向继电器有无死区?为什么?
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
6.系统振荡对阻抗继电器的影响
国家电网继电保护培训课程----继电保护原理 PPT课件
微机保护
6
第三讲:电网的电流电压保护
电网相间短路的电流电压保护
– 三段式电流保护
– 电流电压连锁速断保护
– 低电压闭锁的定时限过电流保护
– 方向性电流保护
电网接地保护
线路差响距离保护正确动作的因素及其对策 距离保护的优缺点
距离保护
9
第五讲:发电机保护
电动机保护
12
第八讲:母线保护
分类 元件固定连接的母差保护 电流相位比较式母差保护 比率制动母差保护 不完全母差
13
继电保护原理
1
继电保护原理
继电保护基础 微机保护原理 电网的电流、电压保护 距离保护 发电机保护 变压器保护 电动机保护 母线保护
2
第一讲:继电保护基础
继电保护的任务和基本要求 电流互感器 电压互感器 短路电流计算 时间级差的计算与选择
3
电流互感器
定义
极性
P类、TP类、TPE类电流互感器的区别
发电机的故障及异常 发电机的保护种类 失磁的危害 低励及失磁保护的实现 励磁回路一点、二点接地保护 定子单相接地保护 逆功率保护 差动保护
发电机
10
第六讲:变压器保护
变压器的故障及异常 变压器的保护种类 各种保护介绍 变压器差动保护
变压器保护
11
第七讲:电动机保护
电动机的故障及异常 电动机的保护种类 各种保护介绍
影响饱和的因素
电流互感器的配置
电流互感器的接线方式
电流互感器的负荷
CT
4
电压互感器
电压互感器的接线方式 电磁式电压互感器的铁磁谐振 一次侧、二次侧、铁心的接地 系统接地时状态分析 PT断线与系统接地的处理
PT
5
6
第三讲:电网的电流电压保护
电网相间短路的电流电压保护
– 三段式电流保护
– 电流电压连锁速断保护
– 低电压闭锁的定时限过电流保护
– 方向性电流保护
电网接地保护
线路差响距离保护正确动作的因素及其对策 距离保护的优缺点
距离保护
9
第五讲:发电机保护
电动机保护
12
第八讲:母线保护
分类 元件固定连接的母差保护 电流相位比较式母差保护 比率制动母差保护 不完全母差
13
继电保护原理
1
继电保护原理
继电保护基础 微机保护原理 电网的电流、电压保护 距离保护 发电机保护 变压器保护 电动机保护 母线保护
2
第一讲:继电保护基础
继电保护的任务和基本要求 电流互感器 电压互感器 短路电流计算 时间级差的计算与选择
3
电流互感器
定义
极性
P类、TP类、TPE类电流互感器的区别
发电机的故障及异常 发电机的保护种类 失磁的危害 低励及失磁保护的实现 励磁回路一点、二点接地保护 定子单相接地保护 逆功率保护 差动保护
发电机
10
第六讲:变压器保护
变压器的故障及异常 变压器的保护种类 各种保护介绍 变压器差动保护
变压器保护
11
第七讲:电动机保护
电动机的故障及异常 电动机的保护种类 各种保护介绍
影响饱和的因素
电流互感器的配置
电流互感器的接线方式
电流互感器的负荷
CT
4
电压互感器
电压互感器的接线方式 电磁式电压互感器的铁磁谐振 一次侧、二次侧、铁心的接地 系统接地时状态分析 PT断线与系统接地的处理
PT
5
继电保护培训ppt(PPT43页)
A相复压过流动作
控制字投入
&
压板投入
复合电压过流保护(以A相过流为例)逻辑框图
零序方向过流保护(后备保护)
方向元件所采用的零序电流、零序电压采用各侧自产零序电流、零序电压。
1、零序过流元件 选自产零序3I0=Ia+Ib+Ic,其动作判据为: 3I0>I0L.set。
其中为Ia、Ib、Ic三相电流,I0L.set为零序过流定值。 注1:零序过流I段方向指向母线,零序过流II段不带方向。
差动速断保护
当任一相差动电流大于差动速断整定值时瞬时动作跳开
变压器各侧开关。差动速断保护不经任何闭锁条件直接 出口。
差动保护启动 差动速断元件动作
& &
差动速断跳闸
差动速断控制字投入 &
主保护压板投入
差动速断保护逻辑图
比率制动
稳态比例差动保护采用经傅氏变换后得到的电流有效值 进行差流计算,用来区分差流是由于内部故障还是外部
Ie---基准侧额定电流(即高压侧)。
复合电压闭锁过流保护(后备保护)
复合电压闭锁过流保护作为外部相间短路和变压器内部相间短路的后备保 护。采用复合电压闭锁防止误动。延时跳开变压器各侧断路器。 过流元件
电流取自本侧TA。动作判据为:(Ia>IL.set)或(Ib>IL.set)或(Ic>IL.set)。 其中Ia、Ib、I c为三相电流,IL.set为过流定值。 复合电压元件 复合电压指相间低电压或负序电压。
压板设置 通信设置 HMI设置
工厂设置
保护设置 开入强制 辅助设置
开出传动 开入检查 交流测试 硬件测试
综自功能
版本信息 屏幕校准
码表打印
继电保护PPT课件
Page 7
处的距离Ik,并将Ik 与Iset 相比较,若Ik 小于Iset ,说明故障发生在 保护范围之内,这时保护应立即动作,跳开对应的断路器;若Ik 大 于Iset ,说明故障发生在保护范围之外,保护不应动作,对应的断路 器不会跳开。若故障位于保护区的反方向上,则无需进行比较和测 量,直接判为区外故障。 通常情况下,距离保护可以通过测量短路阻抗的方法来间接地 测量和判断故障距离。测量阻抗通常用来表示,它定义为保护安装 处测量电压与测量电流之比,即:
ZⅠ ZⅡ ZⅢ tⅡ tⅢ
图1-4 三段式距离保护原理框图
1、启动部分 启动部分用来判别系统是否处于故障状态。系统正常运行时,该部 分不动作,距离保护装置的测量、逻辑等部分不投入工作;当系统 发生故障时,它立即动作,使整套保护迅速投入工作。在传统的模 拟式距离保护中,启动部分是由硬件电路元件实现的,大多都采用
Page 17
Z
式中 I Z set --距离I段的整定阻抗; Z m⋅end --本线路末端短路时的测量阻抗; Z1 --被保护线路全长的正序阻抗,它与 Z m⋅end 相等; K rel --可靠系数,由于距离保护为欠量动作,所以 K rel <1 , 考虑到继电器误差,互感器误差和参数测量误差等因素,一般 取K rel = 0.8 ~ 0.85 。 该式表明,距离保护I段的整定阻抗值为线路全长正序阻抗值 的 0.8~ 0.85倍,整定阻抗的阻抗角与线路正序阻抗的阻抗角相同。 这样,在线路发生金属性短路时,若不考虑测量误差,其最大保 护范围为线路全长的80%~85%。 距离保护第II II段的整定 2、距离保护第II段的整定 (1)分支电路对测量阻抗的影响 在距离II段整定时,应考虑分支电路对测量阻抗的影响,如图16所示。
处的距离Ik,并将Ik 与Iset 相比较,若Ik 小于Iset ,说明故障发生在 保护范围之内,这时保护应立即动作,跳开对应的断路器;若Ik 大 于Iset ,说明故障发生在保护范围之外,保护不应动作,对应的断路 器不会跳开。若故障位于保护区的反方向上,则无需进行比较和测 量,直接判为区外故障。 通常情况下,距离保护可以通过测量短路阻抗的方法来间接地 测量和判断故障距离。测量阻抗通常用来表示,它定义为保护安装 处测量电压与测量电流之比,即:
ZⅠ ZⅡ ZⅢ tⅡ tⅢ
图1-4 三段式距离保护原理框图
1、启动部分 启动部分用来判别系统是否处于故障状态。系统正常运行时,该部 分不动作,距离保护装置的测量、逻辑等部分不投入工作;当系统 发生故障时,它立即动作,使整套保护迅速投入工作。在传统的模 拟式距离保护中,启动部分是由硬件电路元件实现的,大多都采用
Page 17
Z
式中 I Z set --距离I段的整定阻抗; Z m⋅end --本线路末端短路时的测量阻抗; Z1 --被保护线路全长的正序阻抗,它与 Z m⋅end 相等; K rel --可靠系数,由于距离保护为欠量动作,所以 K rel <1 , 考虑到继电器误差,互感器误差和参数测量误差等因素,一般 取K rel = 0.8 ~ 0.85 。 该式表明,距离保护I段的整定阻抗值为线路全长正序阻抗值 的 0.8~ 0.85倍,整定阻抗的阻抗角与线路正序阻抗的阻抗角相同。 这样,在线路发生金属性短路时,若不考虑测量误差,其最大保 护范围为线路全长的80%~85%。 距离保护第II II段的整定 2、距离保护第II段的整定 (1)分支电路对测量阻抗的影响 在距离II段整定时,应考虑分支电路对测量阻抗的影响,如图16所示。
《距离保护全》PPT课件
测量阻抗的变化轨迹
3.5.2 电力系统振荡对距离保护测量元件的影 响
当两侧电动势不相同时测量阻抗的变化轨迹
3.5.2 电力系统振荡对距离保护测量元件的影响
Zm
1 2
Z
ZM
j
1 2
Zctg
2
O
1 2
m
Zj1 2源自Zctg2jX
N
N
保护安装处M到振荡中心的阻抗
为 12 m Z
。
当ρm <1/2时,振荡中心位于保 护范围的正方向,测量阻抗可能
384工频故障分量距离保护的特点及应用1不反应故障前的负荷量和系统振荡动作性能基本不受非故不反应故障前的负荷量和系统振荡动作性能基本不受非故障状态的影响无需加振荡闭锁障状态的影响无需加振荡闭锁2仅反应故障分量中的工频稳态量不反应其中的暂态分量仅反应故障分量中的工频稳态量不反应其中的暂态分量动作性能较为稳定动作性能较为稳定3动作判据简单因而实现方便动作速度快动作判据简单因而实现方便动作速度快4具有明确的方向性既可作为距离元件也可作为方向元件具有明确的方向性既可作为距离元件也可作为方向元件5具有很好的选相能力具有很好的选相能力优点
j
1 2
Zctg
2
1 2
m
Z
j
1 2
Zctg
2
当ρm为不同数值时,测量阻
抗变化的轨迹应是平行于 OO
线的一直线簇。
1 2
Z
M
N
1 2
Z
M 0
M 0.25
M
R
M 0.5
M 0.75
M 1
3.5.2 电力系统振荡对距离保护测量元件的影 响
3、电力系统振荡对距离保护的影响
振荡中心位于本线路保护范
继电保护课件PPT距离保护解析
方向阻抗继电器的死区消除的方法
1.记忆回路 利用故障前的电压相位来代替故障后的电压相位。 电磁型阻抗继电器是采用模拟记忆回路来实现用故障前 的电压相位来代替故障后的电压相位。
• 模拟的记忆回路:一个串联谐振回路。 回路的自由振荡角频率为:
对于快速动作的继电器,可以选择以下振荡角频率:
1 L(即 1 )
U : 补偿电压
幅值比较和相位比较之间的关系(互换性):
(1)幅值比较原理: A B
(2)相位比较原理:
270
arg
C D
90
A C D
B
C
D
C
A B (极化电压) 2
D
A B(补偿电压) 2
,或
C A B(极化电压) D A B(补偿电压)
平行四边型法则:
•
•
•
U B (I B K 3 I 0 ) Z1l , Z J 2 Z1l
3. 三相短路
Z J1 Z J 2 Z J 3 Z1l
结论:各故障相的阻抗继电器的测量阻抗均能正确动作; 在每个保护安装地点需要装设三个接于不同相的阻 抗继电器,以反应不同相的接地短路。
第四节 集成电路型方向阻抗继电器 的接线和特性分析
阶梯型时限特性,距离I、II、III段。
距离Ⅰ段: (1)保护本线路全长的80~85%; (2)瞬时动作,即动作时限为0s。
距离Ⅱ段: (1)保护本线路全长,但不超过下一条线路距离Ⅰ段的保 护范围; (2)延时t动作,一般动作时限为0.5s。
距离Ⅲ段:
(1)保护本线路全长,下一级线路全长,甚至更远;
距离保护:反应故障点至保护安装点之间的距离(或阻抗),并根 据距离的远近而确定动作时间。是反应测量阻抗降低而动 作的阻抗保护。
《继电保护》PPT课件
在正常运行,或者外部故障已经趋于稳定以后,对应的不平衡电流 情况。 2)、暂态不平衡电流
发生短路这个过程中的不平衡电流
精选课件ppt
11
4.1.2 纵联差动保护的不平衡电流
1、稳定情况下的不平衡电流 稳态不平衡电流实际上就是两侧LH励磁电流的差。应采用外部故障
时流过LH的最大短路电流,当LH进行10%误差校验后,每个LH的 误差均不会大于10%,电流互感器的误差为负误差,其差动回路中产 生的不平衡电流最大值为
差回路出现的不平衡电流。在短路后的暂态过程中,短路电流中除周 期分量电流外,还有按指数规律衰减的非周期分量(不能变换到二次 侧,主要作为励磁电流,使二次电流误差增大)由于LH原副边回路对 非周期分量电流衰减时间常数不同,两侧电流互感器直流励磁程度不 同,所以使暂态不平衡电流加大。在纵差保护计算中,其最大值为
面还有根较细线路,最主要作用是起到引雷的作用,防止输电线路直
接被雷击) 三相不区分哪一相故障
3)、允许式纵联方向保护、允许式纵联距离保护、行波保护
(FSK音频接口、电力载波机、微波、光纤等)
4)、分相式线路纵差保护 与导引线相类似,相对相(微波、光
纤)超高压输电线路中以及110KV输电线路中往往采用作为主保护,
精选课件ppt
3
输电线的纵联保护
输电线纵联保护的概念及分类 1、纵联保护: - 所谓输电线路的纵联保护,就是用某种通信信道(简称通道) 将输电线首末两端的保护装置纵向联接起来,将各端的电气量 (电流。功率的方向等)传送到对端,将两端的电气量比较, 以判断故障在本线路范围内还是在线路范围之外。从而决定是 否切断被保护线路。 - 因此,理论上这种纵联保护具有绝对的选择性。
小结: 由于区内故障时,流入差动继电器的故障电流远大于继电
发生短路这个过程中的不平衡电流
精选课件ppt
11
4.1.2 纵联差动保护的不平衡电流
1、稳定情况下的不平衡电流 稳态不平衡电流实际上就是两侧LH励磁电流的差。应采用外部故障
时流过LH的最大短路电流,当LH进行10%误差校验后,每个LH的 误差均不会大于10%,电流互感器的误差为负误差,其差动回路中产 生的不平衡电流最大值为
差回路出现的不平衡电流。在短路后的暂态过程中,短路电流中除周 期分量电流外,还有按指数规律衰减的非周期分量(不能变换到二次 侧,主要作为励磁电流,使二次电流误差增大)由于LH原副边回路对 非周期分量电流衰减时间常数不同,两侧电流互感器直流励磁程度不 同,所以使暂态不平衡电流加大。在纵差保护计算中,其最大值为
面还有根较细线路,最主要作用是起到引雷的作用,防止输电线路直
接被雷击) 三相不区分哪一相故障
3)、允许式纵联方向保护、允许式纵联距离保护、行波保护
(FSK音频接口、电力载波机、微波、光纤等)
4)、分相式线路纵差保护 与导引线相类似,相对相(微波、光
纤)超高压输电线路中以及110KV输电线路中往往采用作为主保护,
精选课件ppt
3
输电线的纵联保护
输电线纵联保护的概念及分类 1、纵联保护: - 所谓输电线路的纵联保护,就是用某种通信信道(简称通道) 将输电线首末两端的保护装置纵向联接起来,将各端的电气量 (电流。功率的方向等)传送到对端,将两端的电气量比较, 以判断故障在本线路范围内还是在线路范围之外。从而决定是 否切断被保护线路。 - 因此,理论上这种纵联保护具有绝对的选择性。
小结: 由于区内故障时,流入差动继电器的故障电流远大于继电
电力系统继电保护课件第四章 距离保护
通过引入人工智能技术,提高距离保护的自动化水平和智能化能力。
2
通信协议
距离保护的通信协议将不断改进,以支持更高效和更可靠的数据传输。
3
多功能化
距离保护将逐渐融合其他保护功能,实现集成化和多功能化。
局限性
• 对系统参数变化敏感 • 不适用于所有类型的故障 • 需要准确的线路模型
距离保护的主要技术指标
保护动作速度 灵敏度 抗干扰能力 配置灵活性
快速响应故障,减少损失 准确判断故障位置,提高保护的可靠性 抵御外部干扰,确保保护的准确性 可根据实际需求调整和配置保护参数
距离保护的未来发展趋势
1
智能化
距离保护的特点
1 快速准确
距离保护能够迅速响应故障并准确判断故障位置,有助于及时采取措施进行修复。
2 灵活可靠
距离保护具有灵活的配置和调整选项,可适应不同的电力系统,并提供可靠的保护。
3 适用范围广
距离保护适用于各种电力设备和系统,包括输电线路、变电站、发电厂等。
距离保护的常见应用场景
输电线路
距离保护广泛用于长距离输电线路,以保护线 路免受短路故障和过电流等异常情况的影响。
发电厂
距离保护在发电厂应用中,主要用于保护发电 机、ห้องสมุดไป่ตู้压器和主变等关键设备,确保电力系统 的可靠性。
变电站
在变电站中,距离保护用于保护变压器、开关 设备和其他电力设备,确保其正常运行。
配电系统
距离保护也适用于配电系统,用于保护配电线 路和其他低压设备免受故障的影响。
距离保护的优点和局限性
优点
• 准确判断故障位置 • 快速响应故障 • 灵活可靠
电力系统继电保护课件第 四章 距离保护
电力系统继电保护PPT课件第3章电网的距离保护
电力系统继电保护 ppt课件第3章电网 的距离保护
contents
目录
• 引言 • 距离保护基本原理 • 距离保护的配置与整定 • 距离保护的优缺点 • 实际应用中的问题与对策
01
CATALOGUE
引言
背景介绍
01
电力系统规模不断扩大,对继电 保护的要求也越来越高。
02
距离保护作为继电保护的重要手 段,在保障电网安全稳定运行中 发挥着重要作用。
某地区电网改造项目
针对原有距离保护存在的问题,采用上述解决对策进行改造,提高了保护的可靠 性和准确性,减少了误动作和越级跳闸等问题。
某高压输电线路的运维实践
在高压输电线路的运维中,采用先进的监测技术和自适应算法动态调整保护定值 ,有效避免了因运行方式变化和故障电流过大导致的误动作问题。
THANKS
距离保护的意义
提高电网的稳定性和可靠性
距离保护能够快速准确地切除故障线路,减少故障对整个电网的 影响,提高电网的稳定性和可靠性。
降低设备损坏和停电损失
距离保护能够有效地避免设备损坏和停电事故,减少经济损失和社 会影响。
提高运行管理的智能化水平
距离保护能够实现自动化和智能化控制,提高运行管理的效率和智 能化水平。
总结词
距离保护通常由启动元件、测量元件和执行元件三部分组成 。
详细描述
启动元件的作用是检测故障发生,一旦检测到故障,启动元 件会立即动作;测量元件用于测量故障距离,根据测量结果 判断故障位置;执行元件则根据测量元件的输出信号,执行 相应的动作,如切断故障线路。
距离保护的工作原理
总结词
距离保护通过比较故障点的距离与设定值,来判断是否发生故障。
改进距离保护算法,降低对系统运行 方式和故障类型的敏感度,提高保护 的可靠性和选择性。
contents
目录
• 引言 • 距离保护基本原理 • 距离保护的配置与整定 • 距离保护的优缺点 • 实际应用中的问题与对策
01
CATALOGUE
引言
背景介绍
01
电力系统规模不断扩大,对继电 保护的要求也越来越高。
02
距离保护作为继电保护的重要手 段,在保障电网安全稳定运行中 发挥着重要作用。
某地区电网改造项目
针对原有距离保护存在的问题,采用上述解决对策进行改造,提高了保护的可靠 性和准确性,减少了误动作和越级跳闸等问题。
某高压输电线路的运维实践
在高压输电线路的运维中,采用先进的监测技术和自适应算法动态调整保护定值 ,有效避免了因运行方式变化和故障电流过大导致的误动作问题。
THANKS
距离保护的意义
提高电网的稳定性和可靠性
距离保护能够快速准确地切除故障线路,减少故障对整个电网的 影响,提高电网的稳定性和可靠性。
降低设备损坏和停电损失
距离保护能够有效地避免设备损坏和停电事故,减少经济损失和社 会影响。
提高运行管理的智能化水平
距离保护能够实现自动化和智能化控制,提高运行管理的效率和智 能化水平。
总结词
距离保护通常由启动元件、测量元件和执行元件三部分组成 。
详细描述
启动元件的作用是检测故障发生,一旦检测到故障,启动元 件会立即动作;测量元件用于测量故障距离,根据测量结果 判断故障位置;执行元件则根据测量元件的输出信号,执行 相应的动作,如切断故障线路。
距离保护的工作原理
总结词
距离保护通过比较故障点的距离与设定值,来判断是否发生故障。
改进距离保护算法,降低对系统运行 方式和故障类型的敏感度,提高保护 的可靠性和选择性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Z zd 是整定阻抗。
jX
Zzd
缺点:无方向性,即反方向短路故 障时也可能动作。
zd
ZJ
J
R
动作方程:
(1)比幅式
阻抗形式: Z J Z zd 电压形式: UJ IJ Z zd
(2)比相式
阻抗形式: 270 arg Z J Z zd 90 ZJ Zzd
电压形式: 270
arg
UJ UJ
第五章
电网的距离保护
第三章 电网的距离保护
一、距离保护的作用原理 二、阻抗继电器 三、阻抗继电器的接线方式 四、集成电路型方向阻抗继电器的接线和特性分析 五、距离保护的整定原则及对距离保护的评价 六、影响距离保护正确工作的因素及防止方法
第一节 距离保护作用原理
一、距离保护的基本概念
电流保护:反映故障电流大小。 简单、经济、接线可靠; 受运行方式的影响,很难保证选择性、灵敏性、快速性。
ZJ
e jJ
测量阻抗 Z J 是复数。 IJ l
UJ
ZJ
K
设线路单位长度阻抗为Z1
K ZJ Zd Z1l
Zs
Zd
Z d是保护安装处至短路故障处之间线路的阻抗。
二、距离保护的时限特性 t = f ( l )
短路点距离保护安装点近时,Z J 小,动作时间短; 短路点距离保护安装点远时,Z J 大,动作时间长;
U UJ IJ Zzd
测量阻抗、整定阻抗、起动阻抗的意义和区别
1、测量阻抗
ZJ
:ZJ
UJ IJ
由加入继电器的测量电压和测量 电流计算得出。
2、整定阻抗 Z zd :取继电器安装点到保护范围末端的线路阻
抗作为整定阻抗。由线路阻抗整定计算得出。
1. 全阻抗继电器特性 2. 方向阻抗继电器特性 3. 偏移阻抗继电器特性
二、复平面分析圆或直线特性的阻抗继电器
1. 全阻抗继电器
动作特性:阻抗动作区是一个以原点为圆心、Z zd 为半径
的圆。即唯一取决于短路点到保护安装处的阻抗大小(幅
值),与测量阻抗的阻抗角无关,也与短路发生在保护安
装处的正向或反向无关。
Zzd 为直径,以
1 2
Z
zd
为圆心的圆。动作区的圆弧经过原点。
方向阻抗继电器的阻抗动作 区主要位于第一象限。
方向阻抗继电器具有方向性。 当线路正向故障时,测量阻 抗位于阻抗复平面图上的第 一象限。如果线路反向故障 时,测量阻抗位于阻抗复平 面图上的第三象限。
(1)比幅式动作方程
阻抗形式: Z J
阶梯型时限特性,距离I、II、III段。
距离Ⅰ段: (1)保护本线路全长的80~85%; (2)瞬时动作,即动作时限为0s。
距离Ⅱ段: (1)保护本线路全长,但不超过下一条线路距离Ⅰ段的保 护范围; (2)延时t动作,一般动作时限为0.5s。
距离Ⅲ段:
(1)保护本线路全长,下一级线路全长,甚至更远;
(2)延时动作,一般动作时限为:t1 t2+ t
三、距离保护的主要组成元件
三段式距离保护的组成元件和逻辑框图 起动元件构成:过电流继电器、低阻抗继电器、
反映负序、零序电流的继电器。
第二节 阻抗继电器
阻抗继电器:计算保护安装点至短路点之间的测量阻抗,与 整定阻抗比较,确定保护是否应该动作。 是距离保护中的核心元件。
Z0
1 2
1 Z zd
电压形式:UJ IJ Z0 IJ Zzd IJ Z0
(2)比相式动作方程
阻抗形式:270 arg ZJ Zzd 90
ZJ Zzd
电压形式:270
arg
UJ IJ Zzd
UJ IJ Zzd
90
其中,极化电压为 UP UJ IJ Zzd
,补偿电压为
距离保护:反应故障点至保护安装点之间的距离(或阻抗),并根 据距离的远近而确定动作时间。是反应测量阻抗降低而动 作的阻抗保护。
阻抗继电器:输入为电压(UJ)、电流(IJ), 测量阻抗ZJ(保护安装点至短路点之间护是反应测量阻抗变化的阻抗保护。
ZJ
UJ IJ
RJ
jX J
测量阻抗:Z J
UJ IJ
R
jX
UJ:输入阻抗继电器的相电压或线电压
IJ :输入阻抗继电器的相电流或相电流之差
反映的短路类型:接地或相间短路
阻抗是复数,是向量,既有大小(幅值),也有方向(相位)
ZJ
UJ IJ
UB / ny IBC / nl
Zd
nl ny
;
nl 是电流互感器TA的变比;
ny 是电压互感器TV的变比;
IJ Z zd IJ Z zd
90
270
arg
UP U
90
UP : 极化电压
U : 补偿电压
幅值比较和相位比较之间的关系(互换性):
(1)幅值比较原理: A B
(2)相位比较原理: 270 arg CD 90
A C D
B
C
D
C
A B(极化电压) 2
D
A B(补偿电压) 2
,或
C A B(极化电压) D A B(补偿电压)
该动作区圆偏向第三象限。 Z0 (Zzd Zzd ) 2 阻抗动作圆的直径为:Zzd Zzd
是介于0~1之间的实数。
可以把方向阻抗继电器和全阻 抗继电器看成是偏移特性阻抗 继电器的两个特例。
(1)全阻抗继电器:
即当 1
(2)方向阻抗继电器:
即当 0
(1)比幅式动作方程
阻抗形式: Z J Z0 Z zd Z0
1 2
Z zd
1 2
Z zd
电压形式: UJ
1 2
IJ Z zd
1 2
IJ Z zd
(2)比相式动作方程
阻抗形式: 270 arg ZJ 90 ZJ Zzd
电压形式:
270
arg UJ
UJ IJ Z zd
90
270
arg
UP U
90
3. 偏移特性阻抗继电器
阻抗动作区是一个以 Z0 为圆心,以 Zzd Z0 为半径的圆。
平行四边型法则:
C B
A
C B
A C B
A
D
A B 90 arg CD 90
D
A B
arg CD 90
D
A B 270 arg CD 90
成立条件: (1)A、B、C、D为同一频率正弦交流量; (2)短路暂态过程中的非周期分量和谐波分量不成立。
2. 方向阻抗继电器
动作特性:阻抗动作区是以
阻抗继电器的测量阻抗可以在 阻抗复平面图上进行表示。
测量阻抗 Z J 是阻抗复平面图
上的一个向量。
阻抗继电器的动作特性
阻抗继电器的动作特性由阻抗复平面图上的阻抗 动作区来表示。
阻抗动作区:是阻抗复平面图 上的一个区域,当测量阻抗落 在区域内,则阻抗继电器认为 是内部故障,继电器动作
三种阻抗动作区: