在线拉曼光谱分析仪及其在PX装置中的应用
原位在线拉曼光谱仪的用途

原位在线拉曼光谱仪的用途
原位在线拉曼光谱仪的用途主要包括以下几个方面:
1.材料研究:在材料科学中,原位拉曼光谱技术可以用来研究材料的结构、晶体缺陷、微观形态等信息,例如可以用来分析纳米颗粒、纤维、高分子等材料的结构信息。
2.化学反应研究:原位拉曼光谱技术还可以用来研究材料的化学反应过程,例如可以用来观察化学反应中的中间体或产物。
在电化学领域,它可以通过原位获取电极上或界面上的变化信息,实现对电池反应机理、界面反应、中间产物等的化学变化研究。
3.生物医学应用:在生物医学领域中,原位拉曼光谱技术可以用来研究生物分子的结构和特性,例如可以用来分析蛋白质、DNA、RNA 等生物分子的结构、构象变化等信息。
4.鉴别物质缺陷:例如在金刚石晶体中,由于内部质点的热振动或受到辐射、高压作用等,通常会存在一些晶格缺陷,如研究较多的缺陷中心即色心。
天然金刚石或人工改造金刚石在形成过程中可能还会存在一些微区结构缺陷,如包裹体、微裂隙等。
缺陷可能分布在金刚石的表面也可能在内部。
以上信息仅供参考,如需了解更多信息,请查阅相关文献资料或咨询专业人士。
拉曼光谱原理及应用简介

拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用;这些技术是:CCD系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头;这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪;一含义光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光;在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应;由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关;因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息;目前拉曼光谱技术已广泛应用于物质的鉴定,分子结构的研究谱线特征二拉曼散射光谱具有以下明显的特征:a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关;b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量;c. 一般情况下,斯托克斯线比反斯托克斯线的强度大;这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数;三拉曼光谱技术的优越性提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量;此外1 由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具;2 拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析;相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器3 拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究;在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关;4 因为激光束的直径在它的聚焦部位通常只有毫米,常规拉曼光谱只需要少量的样品就可以得到;这是拉曼光谱相对常规红外光谱一个很大的优势;而且,拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品;5 共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍;四几种重要的拉曼光谱分析技术1、单道检测的拉曼光谱分析技术2、以CCD为代表的多通道探测器用于拉曼光谱的检测仪的分析技术3、采用傅立叶变换技术的FT-Raman光谱分析技术4、共振拉曼光谱分析技术5、表面增强拉曼效应分析技术五拉曼频移,拉曼光谱与分子极化率的关系1、拉曼频移:散射光频与激发光频之差,取决于分子振动能级的改变,所以它是特征的,与入射光的波长无关,适应于分子结构的分析2、拉曼光谱与分子极化率的关系分子在静电场E中,极化感应偶极矩P为静电场E与极化率的乘积诱导偶极矩与外电场的强度之比为分子的极化率分子中两原子距离最大时,极化率也最大拉曼散射强度与极化率成正比例六应用激光光源的拉曼光谱法应用激光具有单色性好、方向性强、亮度高、相干性好等特性,与表面增强拉曼效应相结合,便产生了表面增强拉曼光谱;其灵敏度比常规拉曼光谱可提高104~107倍,加之活性载体表面选择吸附分子对荧光发射的抑制,使分析的信噪比大大提高;已应用于生物、药物及环境分析中痕量物质的检测;共振拉曼光谱是建立在共振拉曼效应基础上的另一种激光拉曼光谱法;共振拉曼效应产生于激发光频率与待测分子的某个电子吸收峰接近或重合时,这一分子的某个或几个特征拉曼谱带强度可达到正常拉曼谱带的104~106倍,有利于低浓度和微量样品的检测;已用于无机、有机、生物大分子、离子乃至活体组成的测定和研究;激光拉曼光谱与傅里叶变换红外光谱相配合,已成为分子结构研究的主要手段1、共振拉曼光谱的特点:1、基频的强度可以达到瑞利线的强度;2、泛频和合频的强度有时大于或等于基频的强度;3、通过改变激发频率,使之仅与样品中某一物质发生共振,从而选择性的研究某一物质;4、和普通拉曼相比,其散射时间短,一般为10-12~10-5S;2、共振拉曼光谱的缺点:需要连续可调的激光器,以满足不同样品在不同区域的吸收;七电化学原位拉曼光谱法电化学原位拉曼光谱法, 是利用物质分子对入射光所产生的频率发生较大变化的散射现象, 将单色入射光包括圆偏振光和线偏振光激发受电极电位调制的电极表面, 通过测定散射回来的拉曼光谱信号频率、强度和偏振性能的变化与电极电位或电流强度等的变化关系;一般物质分子的拉曼光谱很微弱, 为了获得增强的信号, 可采用电极表面粗化的办法, 可以得到强度高104-107倍的表面增强拉曼散射Surface Enahanced Raman Scattering, SERS 光谱, 当具有共振拉曼效应的分子吸附在粗化的电极表面时, 得到的是表面增强共振拉曼散射SERRS光谱, 其强度又能增强102-103;电化学原位拉曼光谱法的测量装置主要包括拉曼光谱仪和原位电化学拉曼池两个部分;拉曼光谱仪由激光源、收集系统、分光系统和检测系统构成, 光源一般采用能量集中、功率密度高的激光, 收集系统由透镜组构成, 分光系统采用光栅或陷波滤光片结合光栅以滤除瑞利散射和杂散光以及分光检测系统采用光电倍增管检测器、半导体阵检测器或多通道的电荷藕合器件;原位电化学拉曼池一般具有工作电极、辅助电极和参比电极以及通气装置;为了避免腐蚀性溶液和气体侵蚀仪器, 拉曼池必须配备光学窗口的密封体系;在实验条件允许的情况下, 为了尽量避免溶液信号的干扰, 应采用薄层溶液电极与窗口间距为~1mm , 这对于显微拉曼系统很重要, 光学窗片或溶液层太厚会导致显微系统的光路改变, 使表面拉曼信号的收集效率降低;电极表面粗化的最常用方法是电化学氧化- 还原循环Oxidation-Reduction Cycle,ORC法, 一般可进行原位或非原位ORC处理;目前采用电化学原位拉曼光谱法测定的研究进展主要有: 一是通过表面增强处理把测检体系拓宽到过渡金属和半导体电极;虽然电化学原位拉曼光谱是现场检测较灵敏的方法, 但仅能有银、铜、金三种电极在可见光区能给出较强的SERS;许多学者试图在具有重要应用背景的过渡金属电极和半导体电极上实现表面增强拉曼散射;二是通过分析研究电极表面吸附物种的结构、取向及对象的SERS 光谱与电化学参数的关系,对电化学吸附现象作分子水平上的描述;三是通过改变调制电位的频率, 可以得到在两个电位下变化的“时间分辨谱”, 以分析体系的SERS 谱峰与电位的关系, 解决了由于电极表面的SERS 活性位随电位而变化而带来的问题;八拉曼信号的选择入射激光的功率,样品池厚度和光学系统的参数也对拉曼信号强度有很大的影响,故多选用能产生较强拉曼信号并且其拉曼峰不与待测拉曼峰重叠的基质或外加物质的分子作内标加以校正;其内标的选择原则和定量分析方法与其他光谱分析方法基本相同;斯托克斯线能量减少,波长变长反斯托克斯线能量增加,波长变短九拉曼光谱的应用方向拉曼光谱分析技术是以拉曼效应为基础建立起来的分子结构表征技术,其信号来源与分子的振动和转动;拉曼光谱的分析方向有:定性分析:不同的物质具有不同的特征光谱,因此可以通过光谱进行定性分析;结构分析:对光谱谱带的分析,又是进行物质结构分析的基础;定量分析:根据物质对光谱的吸光度的特点,可以对物质的量有很好的分析能力;十拉曼光谱用于分析的优点和缺点1、拉曼光谱用于分析的优点拉曼光谱的分析方法不需要对样品进行前处理,也没有样品的制备过程,避免了一些误差的产生,并且在分析过程中操作简便,测定时间短,灵敏度高等优点2、拉曼光谱用于分析的不足1拉曼散射面积2不同振动峰重叠和拉曼散射强度容易受光学系统参数等因素的影响3荧光现象对傅立叶变换拉曼光谱分析的干扰4在进行傅立叶变换光谱分析时,常出现曲线的非线性的问题5任何一物质的引入都会对被测体体系带来某种程度的污染,这等于引入了一些误差的可能性,会对分析的结果产生一定的影响十一新进展及发展前景十多年来,虽然已经有一些关于在高真空体系、大气下、以及固/液体系电化学体系中研究单晶金属体系表面拉曼光谱的报道89~91,但直至近年光滑单晶电极体系的SERS研究才取得了重要进展.Bryant等记录了以单分子层吸附在光滑Pt 电极表面的噻吩拉曼谱89,Furtak等使用具有Kretchmann光学构型的ATR电解池并利用表面等离子体增强效应,获得了吸附物种在平滑的Ag111单晶面上的弱SERS信号90.由于拉曼光谱系统的检测灵敏度的限制,所获得的表面信号极弱,无法进行较为详细的研究.Otto小组和Futamata小组分别成功地采用Otto光学构造的ATR电解池,利用表面等离子激元增强方法获得了光滑单晶电极上相对较强的表面Raman信号92~94.前者发现不同的Cu单晶电极表面的增强因子有所不同,有较高指数或台阶的晶面的信号明显增强92.Futamata等甚至可在Pt和Ni 金属的单晶表面上观察到SERS信号, 计算表明其表面增强因子为1~2个数量级93.目前可用于单晶表面电极体系的SERS研究还局限于Raman散射截面很大的极少数分子,尚需进一步改进和寻找实验方法,以拓宽可研究的分子体系.若能成功地将各种单晶表面电极的SERS信号与经过不同粗糙方式处理的电极表面信号进行系统地比较和研究, 不但对定量研究SERS机理和区分不同增强机制的贡献大有益处, 而且将有利于提出正确和可靠的拉曼光谱的表面选择定律.随着科学技术的迅速发展, 各类制备不同纳米颗粒以及二维有序纳米图案的技术和方法将日益成熟, 人们可以比较方便地在理论的指导下,寻找在过渡金属上产生强SERS效应的最佳实验条件.这些突破无疑将为拉曼光谱技术广泛应用于各种过渡金属电极和单晶电极体系的研究开创新局面.总之,通过摸索合适的表面处理方法并采用新一代高灵敏度的拉曼谱仪, 可将拉曼光谱研究拓展至一系列重要的过渡金属和半导体体系, 进而将该技术发展成为一个适用性广、研究能力强的表面界面谱学工具,同时推动有关表面界面谱学理论的发展.各种相关的检测和研究方法也很可能得到较迅速的发展和提高.在提高检测灵敏度的基础上,人们已不满足于仅仅检测电极表面物种, 而是注重通过提高其检测分辨率包括谱带分辨、时间分辨和空间分辨来研究电化学界面结构和表面分子的细节和动态过程.今后的主要研究内容可能从稳态的界面结构和表面吸附逐渐扩展至其反应的动态过程,并深入至分子内部的各基团, 揭示分子水平上的化学反应吸附动力学规律, 研究表面物种间以及同电解质离子或溶剂分子间的弱相互作用等.例如将电化学暂态技术时间-电流法、超高速循环伏安法同时间分辨光谱技术结合, 开展时间分辨为ms或μs级的研究95.采用SERS同电化学暂态技术结合进行的时间分辨实验可检测鉴别电化学反应的产物及中间物96, 新一代的增强型电荷耦合列阵检测器ICCD和新一代的拉曼谱仪如:富立叶变换拉曼仪和哈德玛变换仪的推出, 都将为时间分辨拉曼光谱在电化学的研究提供新手段.最近, 我们利用电化学本身的优势, 提出的电位平均表面增强拉曼散射hePotential Averaged SERS, PASERS新方法17, 通过在Ag和Pt微电极上采集在不同调制电位频率下的PASERS谱, 并进行解谱, 可在不具备从事时间分辨研究条件的仪器上进行时间分辨为μs级的电化学时间分辨拉曼光谱研究.拉曼光谱研究的另一发展方向是采用激光拉曼光谱微区显微技术97开展空间分辨研究并进而开展电极表面微区结构与行为的研究.Fujishima等人利用共焦显微拉曼系统和SERS技术发展了表面增强拉曼成像技术,并研究了SERS活性银表面吸附物以及自组装膜的SERI图象98,99.该技术和具有三维空间分辨的共焦显光谱方法在研究导电高聚物、L-B膜和自组装膜电极以及电极钝化膜和微区腐蚀等方面将发挥其重要作用98~100.突破光学衍射极限的、空间分辨值达数十纳米的近场光学Raman 显微技术则很可能异军突起101.为多方位获得详细信息,达到取长补短的目的,开展Raman光谱与其他先进技术联用的研究势在必行.光导纤维技术可在联用耦合方面发挥关键作用102,103,如将表面Raman光谱技术与扫描探针显微技术进行实时联用104.针对性的联用技术可望较全面地研究复杂体系并准确地解释疑难的实验现象,为各种理论模型和表面选则定律提供实验数据, 促进谱学电化学的有关理论和表面量子化学理论的发展.可以预见, 在不久的将来,随着表面检测技术的快速发展,SERS及其应用于电化学的研究将进入一个新的阶段.。
拉曼光谱仪原理及应用

拉曼光谱仪原理及应用
拉曼光谱仪是一种用于分析物质的工具,它基于拉曼散射效应。
拉曼散射是指当光通过物质时,光子与物质分子发生相互作用,产生散射光时的现象。
拉曼光谱仪可以通过测量散射光的强度和频率来确定物质的结构和组成。
拉曼光谱仪的基本原理是使用一束单色激光照射到待测样品上,部分光子与样品内的分子相互作用后发生频率变化,即拉曼散射。
散射光中的频移与分子的振动能级差有关,因此可以得到物质的特征振动光谱。
为了提高测量的灵敏度和精度,拉曼光谱仪通常采用光栅或干涉仪作为色散元件,将散射光按频率分离成不同的波长。
通过光检测器和光谱仪等装置,可以得到关于频率和强度的光谱图像。
拉曼光谱仪有广泛的应用领域。
例如:
1. 物质组成分析:拉曼光谱可以提供物质的分子结构和组成信息,用于化学、生物医药等领域的物质鉴定和分析。
2. 药物研发:通过拉曼光谱仪可以对药物分子的结构进行表征,用于药物研发、质量控制和药物相互作用的研究。
3. 环境监测:拉曼光谱仪可以用于检测空气中的有害气体、污染物和化学物质,对环境污染进行监测和分析。
4. 生命科学研究:拉曼光谱技术可以用于生物分子的结构和功能研究,如蛋白质结构、DNA/RNA序列和细胞代谢等。
5. 材料分析:拉曼光谱可以用于分析材料的成分、相变和结构变化,对材料科学和工程中的材料研究和品质控制具有重要意义。
总的来说,拉曼光谱仪通过测量散射光的频率和强度,可以提供关于物质结构和组成的有用信息,广泛应用于许多科学领域和工业应用中。
拉曼光谱仪的原理及应用

拉曼光谱仪的原理及应用拉曼光谱是一种非常有用的分析物质的技术,在许多不同的领域都有广泛的应用。
本文将介绍拉曼光谱仪的原理及其应用。
一、拉曼光谱仪的原理拉曼光谱仪是一种光谱学仪器,通过测量物质散射光谱的强度和频率,可以得到物质分子的结构信息。
具体来说,拉曼光谱仪使用激光束照射样品,然后收集样品散射的光线。
激光光线通过样品时,光子与分子发生相互作用,由于分子的振动和旋转,样品发生拉曼散射,即分子振动产生的光子的频率发生变化,这种频率变化可以用来确定分子的结构。
拉曼散射强度与样品成分和激光功率直接相关,所以需要准确控制激光功率和光路。
同时,为了获得高质量的拉曼信号,需要在光路中加入滤光器和光谱仪等装置,确保能够测量样品发出的散射光线的频率和强度。
二、拉曼光谱仪的应用1. 化学分析拉曼光谱仪在化学分析中被广泛应用,因为它可以进行非接触测量,无需样品准备和可能使样品受到损害的化学处理。
此外,拉曼光谱仪还能够检测低浓度的物质。
利用拉曼光谱仪进行化学分析,可以得到关于分子结构、组成及相互作用等信息。
其中,一次红外光谱不足以解决分析问题时,拉曼光谱仪就可以发挥它的优势。
2. 材料分析使用拉曼光谱仪可以分析固体、液体和气体材料的结构和组成。
例如,可以据此确定药品中的成分,鉴别不同的聚合物和塑料材料,以及分析碳纳米管和其他纳米材料的结构。
其他一些应用包括燃料和材料研究,温度和压力传感器等。
3. 生物技术和医学拉曼光谱仪在生物技术和医学领域中也有许多应用。
例如,使用拉曼光谱可以确定蛋白质和DNA组成的结构,检测细胞状态和生物分子交互作用。
在医学领域,可以利用拉曼光谱进行肿瘤诊断和治疗,以及神经系统疾病的诊断。
总之,拉曼光谱仪是一种独特的分析工具,在各种不同领域中都有广泛应用。
它可以为科学家、工程师和医生提供宝贵的信息,同时也为各个领域的进一步研究和发展提供了支持。
拉曼光谱仪的作用

拉曼光谱仪的作用拉曼光谱仪的作用拉曼光谱仪是化学分析领域中一种非常重要的仪器。
其通过激光照射样品并分析样品反射或散射的光谱信息,可以获得关于样品物质信息的详细、准确的分析结果。
本文将探讨拉曼光谱仪在研究分析化学、材料化学、生物化学等方面的应用。
一、研究分析化学中的应用拉曼光谱仪可用于研究分析化学中各种材料的分子结构和化学反应机理等。
在药品研发中,可以通过拉曼光谱仪来鉴定化合物的结构和对其进行质量控制。
此外,拉曼光谱仪还可以应用于分析食品中添加的物质是否符合国家标准。
在环境污染领域,可通过分析水、空气等中各种污染物的拉曼光谱,来测定其中各种化合物的浓度和种类,为环境治理提供科学依据。
二、研究材料化学中的应用拉曼光谱仪在材料分析中也有广泛应用。
通过分析材料的拉曼光谱信息,可以确定材料的表面结构、界面特性、表面相互作用等。
在材料界面的研究中,拉曼光谱仪常用于分析材料之间的相互作用,比如表面改性和颗粒间的相互作用等。
利用拉曼光谱仪,还可以探索材料在高温、高压等特殊条件下的性质变化。
因此,拉曼光谱仪在新材料研究、材料制备和材料表征等领域占有非常重要的地位。
三、研究生物化学中的应用在生命科学领域中,拉曼光谱仪在生物化学分析中也有着广泛的应用前景。
生物化学中,分子的结构、构象和功能都是十分重要的方面。
利用拉曼光谱仪,可对生物分子进行非常准确的结构分析,比如对蛋白质、核酸、酶等分子的结构、构象和功能等进行分析研究。
另外,拉曼光谱仪还可以用于生物标记和细胞成像的研究。
在生命科学中,拉曼光谱仪为生物分子的研究提供了一种非侵入性和无损的方法。
综上所述,拉曼光谱仪作为一种分析工具,在化学、材料和生命科学领域均有着不可替代的作用。
拉曼光谱仪的发展不但能够为科学研究提供丰富的数据来源,还为各个领域的技术发展提供新的方向和契机。
因此,在今后的科学研究中,拉曼光谱仪将继续发挥重要作用,推动科学技术的发展。
拉曼光谱仪应用

拉曼光谱仪应用
拉曼光谱仪是一种通过测量样品中感兴趣分子振动和转动能级的光谱来获取样品信息的仪器。
其应用广泛,涵盖了多个领域:
1. 化学领域:拉曼光谱仪可以用于分析和鉴定化学物质,识别有机和无机化合物的结构,检测和分析液体、固体和气体样品中的成分和污染物。
2. 材料科学:拉曼光谱仪可以用于材料的表征和分析,例如研究晶体的晶体结构和缺陷,监测材料的相变和变形行为,分析材料表面的化学性质和结构。
3. 生命科学:拉曼光谱仪可以用于生物分子的研究和分析,例如蛋白质、核酸和多糖的结构和相互作用,酶活性的研究,细胞生物化学和生物分子的显微成像。
4. 环境监测:拉曼光谱仪可以用于环境样品的监测和分析,例如水体中的溶解物和污染物、土壤中的有机物和无机物、大气中的气体和颗粒物质。
5. 药学和医学:拉曼光谱仪可以用于药物分析和质量控制,例如分析药物的成分和纯度,研究药物与体内分子的相互作用。
在医学方面,拉曼光谱仪可用于实时监测患者的体液成分,例如血液中的代谢产物和药物浓度。
总之,拉曼光谱仪广泛应用于化学、材料科学、生命科学、环
境监测、药学和医学等领域,提供了一种非常有用的光谱学技术来研究和分析不同样品的组成和结构。
拉曼光谱技术的应用及其实验方法

拉曼光谱技术的应用及其实验方法拉曼光谱技术是一种非常重要的分析方法,被广泛应用于材料科学、生物化学、环境科学、药物研究等领域。
本文将介绍拉曼光谱技术的基本原理、应用及其实验方法。
一、拉曼光谱技术的基本原理拉曼光谱技术是一种非常重要的分析方法,其原理是通过激发样品中的原子、分子等物质产生震动,这些震动会散射出一个比入射光子的能量低的光子,即拉曼散射光。
拉曼散射光中的能量差,就是样品的震动特性,也就是样品的拉曼光谱特性。
测量得到的拉曼光谱特性可以通过比对参照样品或文献中的数据进行分析,从而得到样品的组成、结构等信息。
因此,拉曼光谱技术可以用于分析物质的结构、组成、变化等方面,是一种非常强大的分析方法。
二、拉曼光谱技术的应用1、材料科学在材料科学研究中,拉曼光谱技术被广泛应用于固体材料的分析和表征。
例如,拉曼光谱技术可以用于分析和表征纳米材料、碳材料、化合物材料、半导体材料等。
通过测量样品的拉曼光谱特性,可以得到其化学组成、晶体结构、晶格振动等信息,从而进一步了解材料的特性和性能。
2、生物化学在生物化学研究中,拉曼光谱技术可以用于分析和表征生物大分子、细胞、微生物等。
例如,拉曼光谱技术可以用于研究蛋白质、核酸、多糖等大分子的结构和构象变化,从而了解生物分子的功能和作用机制。
此外,拉曼光谱技术还可以用于检测和鉴定微生物等生物体,从而得到更精确的病原菌、药物抗性等信息。
3、环境科学在环境科学研究中,拉曼光谱技术可以用于分析和监测大气、水体、土壤等环境中的污染物。
例如,拉曼光谱技术可以用于检测大气中的有机污染物、水体中的微塑料、土壤中的重金属等物质,从而发现环境污染问题并采取相应的措施。
4、药物研究在药物研究中,拉曼光谱技术被广泛应用于药物分析和表征。
例如,拉曼光谱技术可以用于检测药物中的成分、控制药物的质量等。
此外,拉曼光谱技术还可以用于研究药物和药物分子与生物体的相互作用,从而优化药物设计和治疗方案。
三、拉曼光谱技术的实验方法拉曼光谱技术实验一般包括样品制备、样品测量和数据分析三个部分。
拉曼光谱的原理和应用

拉曼光谱的原理和应用1. 拉曼光谱的原理拉曼光谱是一种用来分析物质结构和成分的无损分析技术,基于物质与激发光发生散射,从而产生频率偏移的原理。
其原理主要包括以下几个方面:1.1 原子和分子的散射光谱拉曼光谱的原理基于分子和原子能级之间的相互作用。
在激光照射下,物质中的分子或原子将散射光以不同频率的方式返回。
这种散射光的频率与分子或原子的能级差有关。
1.2 可视化分子/晶格的振动模式拉曼光谱可以提供关于分子或晶格振动模式的信息。
当分子或晶格发生振动时,它们会在散射光中引起频率的变化。
通过测量这些频率的变化,可以推断出分子或晶格的结构和性质。
1.3 拉曼散射的选择规则拉曼散射具有一些特殊的选择规则。
根据这些规则,只有那些在对称群的表示中具有非零矩阵元的振动模式才能产生明显的拉曼散射。
1.4 拉曼光谱的特点拉曼光谱具有以下几个特点:•非破坏性:拉曼光谱是一种非破坏性的分析技术,可以对样品进行实时、在线的观测和分析,不会对样品造成永久性损坏。
•高分辨率:拉曼光谱具有很高的分辨率,可以区分出非常接近的波数峰,从而提供详细的结构信息。
•快速性:拉曼光谱分析速度快,只需几秒钟就可以得到样品的光谱信息。
2. 拉曼光谱的应用拉曼光谱是一种非常重要的光谱分析技术,被广泛应用于物质科学、生物医学、环境监测等领域。
以下列举了一些拉曼光谱的常见应用:2.1 化学物质分析拉曼光谱可以用于化学物质的定性和定量分析。
通过比对样品的光谱图与已知物质的光谱数据库,可以确定样品的成分和结构。
这对于药物研究、环境污染物分析等具有重要意义。
2.2 药物研究拉曼光谱在药物研究中被广泛应用。
通过测量药物的拉曼光谱,可以了解药物的成分、结构和稳定性,进一步优化药物的合成和制备过程。
2.3 生物医学应用拉曼光谱在生物医学领域具有重要的应用价值。
通过测量生物组织或体液的拉曼光谱,可以诊断疾病、检测肿瘤、鉴定细菌等。
由于拉曼光谱是非破坏性的,因此可以实时监测药物的疗效。
PX装置RAMAN简要介绍

PX装置RAMAN分析仪介绍ELUXYL系统介绍提纲一RAMAN介绍拉曼光谱的原理分析仪介绍二仪器操作使用软件故障处理1928年印度科学家拉曼(RAMAN)首次观察到拉曼散射光谱,后来,人们以他的姓氏命名了拉曼光谱学。
这项工作也使拉曼获得了1930年诺贝尔物理学奖。
该项工作也同时验证了光的量子化理论。
¾由于拉曼散射的信号非常微弱,拉曼测量相当困难。
激光技术、光谱仪和探测技术的发展促进了拉曼测量技术的发展¾“ELUXYL 系统”最佳解决方案¾在测量点上,系统安装更加容易:只需进行机械连接,在室内,使用标准市电110/220VAC,不需要冷却水系统。
由于系统中电气部分和光学部分分离,同时大大提升了系统可维护性。
¾在每一个测量点上配置一个激光器(每一个激光器通过光纤各自独立地进入拉曼系统中)。
这样可以保证即使有一个激光器无法使用,拉曼系统仍然可以正常工作,因为剩余的3个测量点仍然可以提供Para-Xylen的浓度信息。
拉曼散射是一种光散射效应:单色光与某些材料相互作用后发出散射光。
部分散射光的频率发生改变,这部分散射光即为拉曼散射,拉曼散射在总的散射光强中比例很小。
散射光频率的改变是由入射光和样品的分子能级耦合作用的结果。
在散射光中观察到的与入射光频率不一样的光信号即为拉曼散射信号。
解释拉曼光谱机制的最简单的方法是使用能级图, ,如图1示。
能量为hν0(h-普朗克常数6.626×10-34 J s;ν-频率Hz=1/s;拉曼光谱通常使用波数这个单位[cm-1] ,即用频率ν除以光速C=2.998X1010cm/s)的入射光子与分子振动能级ν1、ν2 ……相互作用。
大多数入射光与材料作用后能量不发生改变,既使这部分入射光经过透射、反射、折射、甚至散射,其能量也不会改变,此即为“瑞利线”。
散射光中有一小部分损失能量,如能带图所示,损失能量为h(ν0-ν1), h(ν0-ν2)……此即为人们所关注的拉曼散射中的能量变化,如图1示。
拉曼光谱及其应用

拉曼光谱及其应用拉曼光谱是一种分析物质结构和化学组成的非侵入性技术,并广泛应用于许多领域,包括材料科学、生命科学和环境科学。
本文将介绍拉曼光谱的原理、仪器和一些常见的应用。
一、拉曼光谱的原理拉曼光谱是一种基于拉曼散射现象的光谱技术。
当激光等能量较高的光与物质相互作用时,光子会与物质中的分子相互作用,产生散射现象。
拉曼散射分为斯托克斯散射和反斯托克斯散射两种类型,它们分别与物质的低频和高频振动模式相对应。
根据拉曼散射现象,我们可以获得物质的拉曼光谱。
拉曼光谱是由于分子振动引起的光散射频移所产生的谱线,可以提供关于物质结构、键合性质和化学组成的信息。
每个物质都有独特的拉曼光谱,因此拉曼光谱可以用于研究和识别不同的物质。
二、拉曼光谱的仪器为了获取物质的拉曼光谱,我们需要使用拉曼光谱仪。
一般的拉曼光谱仪包括激光光源、样品台、光学系统和光谱仪。
首先,激光光源是产生高能量光束的关键组件。
常见的激光光源包括氩离子激光器、二极管激光器和红外激光器。
不同的激光光源可以提供不同的波长范围和功率输出,以适应不同样品的测量需求。
其次,样品台是用于支撑和定位样品的平台。
样品台需要具备良好的稳定性和精确度,以确保样品在测量期间的位置和姿态不变。
然后,光学系统包括镜头、滤光片和光纤等组件,用于操控和导引激光光束。
光学系统的设计和优化可以提高信号强度和降低背景噪音,从而提高拉曼信号的检测灵敏度。
最后,光谱仪用于测量和分析样品散射的光谱。
它通常包括光栅、光电二极管和数据采集系统等部分。
光谱仪的性能决定了拉曼光谱的分辨率和信噪比,因此选择合适的光谱仪非常重要。
三、拉曼光谱的应用1. 材料科学领域拉曼光谱在材料科学中具有广泛的应用。
通过测量材料的拉曼光谱,我们可以了解材料的晶格结构、键合状态和纳米尺度的相变等信息。
拉曼光谱还可以用于研究材料缺陷、应力分布和化学反应等过程。
因此,在材料设计、合成和评估中,拉曼光谱起到了重要的作用。
2. 生命科学领域在生命科学中,拉曼光谱被广泛应用于细胞学、生物医药等领域。
拉曼光谱及其应用

1800000
900 700 800 600 700
56000
500400
400 300 300
202000
100
Wavenumber cm-1
中的样品等尤其有用)
Non-destructive analysis: 无损分析 Almost no sample preparation: 几乎不用样品制备 Very small amount of sample:所须样品量少
Characteristic vibrational spectrum: 指纹性振动谱
❖ Induced dipole moment ❖ 拉曼光谱与红外光谱是相互补充
拉曼光谱的发展――RR与SERS技术
拉曼效应问题:信号太弱
共振拉曼效应
(ResonanceR aman ,RR)
表面增强拉曼散射 (Surface Enhanced Raman spectroscopy ,SERS)
以频率能激发电子至激激发态的 入射光去激发一個化合物,此時 部分的拉曼譜線強度會加強,這 是分子能階的电子转移与振动耦 合的結果,称为共振拉曼散射。
从图中可以看出,不同的碳材料其拉曼光谱不同, 因此可以彼此区分。
Analysis of Artwork
Ancient tibetian Mandala
RRaammaann IInntteennssiittyy 0.0.0006 0.0080.020.010 00..00142 0.0104.060.016 00..00818 0.020.010
拉曼光谱及其应用
拉曼光谱简介及其在分析化学中 的应用
1 拉曼光谱简介
2 拉曼光谱与红外光谱的比较
3 拉曼光谱的发展――RR与SERS技术 拉曼光谱及其联用技术应用
拉曼光谱技术的原理及应用

拉曼光谱技术的原理及应用拉曼光谱技术是一种分析样品中分子的非常有效的方法。
在该技术中,利用拉曼效应同样也可以识别特定的纳米颗粒和其他不透明的物质。
本文将详细阐述拉曼光谱技术的原理及应用。
1. 拉曼光谱技术的原理拉曼光谱技术是一种激光光谱技术,它利用样品的分子振动模式(横振动、伸缩和扭曲等模式),使分子发生光散射,并将散射的光收集起来进行分析。
在拉曼光谱技术中,将激光照射到样品上,样品分子中的大部分仍然是以核的振动模式存在。
但当激光的频率与分子的振动频率相同时,由于拉曼效应的作用,部分光子将分离并产生红移或蓝移。
这个现象就是拉曼散射现象。
拉曼效应的原理是,当光子入射到分子上时,分子表现出类似摆动的运动,这种运动随着时间的推移而释放出特定频率的光子,这样就形成了拉曼散射光谱特征峰。
拉曼光谱学中的光谱特征包括波数(公式1)和相对强度(公式2),如下所示:公式1:wavenumber(cm^-1)=1/wavelength(cm)公式2:Relative intensity(I/I0)在拉曼光谱图中,相对强度是指各个峰的高度比较,波数则表示各个峰所对应到的分子振动能量。
实验室中常用的拉曼光谱仪的波数精度一般在1 cm^-1左右。
2. 拉曼光谱技术的应用2.1 分子结构和化学成分的分析拉曼光谱技术可以为分子结构和化学成分的分析提供非常重要的信息。
如在红外光谱技术中,只有具有矢量性的分子振动模式才能产生吸收峰,因此该技术对于分析非常规的分子结构并不适用。
而拉曼光谱技术可以用于任何分子结构的振动分析,可以检测出如异构体、杂质或药物的不同形式等信息。
由于拉曼光谱可以通过常压、接触以及非接触的方法进行采集,因此这使得样品的限制条件相对较少。
2.2 生物检测和药品品质检测拉曼光谱技术在生物医学分析领域中也得到广泛应用。
在这个领域中,拉曼光谱技术可以用于检测血液中的各种生物分子,如细胞、蛋白质、DNA、荷尔蒙、抗生素和维生素等。
在线拉曼分析仪的研制及其在PX装置中的应用

纪9 0年代 以来 , 激 光 、 纤 、 电子 、 算 机 及 在 光 微 计 化学 计量 学等 与光谱 仪器 相关新 技术 不断 发展 的 带动 下 , 出现 了许 多新 型光 谱类 过程 分析仪 器 , 如
红外 、 红外及 拉曼 等 , 得原来 只 能在实 验 室 中 近 使
进行 物质 成分分 析 的光谱 分析仪 器也 能用 于 工业
强弱 可 以灵敏 地反 映 出有 关物 质 的结构及 其 变化
信 息 ; 于 同一激 发光 , 一 特征谱 峰 的高度 或 对 某
面 积与其 对应 基 团的 含 量几 乎 成 线 性关 系 , 大 可
幅度减少 建模 工 作 量 。此 外 , 由于 拉 曼 光谱 仪 的
激 发光 源及 其拉 曼 散 射 都 在 可见 或 近 红 外 区 , 因 此 可采用 石英 光纤 来进 行激 发光 的传输 和散 射 光 的收集 与传 送 , 在 线 应用 提 供 了便 利 。拉 曼 光 为 谱 具有 诸多 优 势 , 由 于可 见 或 近 红外 区 的单 色 但 激 光可 能 同时 激发 样 品产 生 强烈 的荧 光 , 不 少 使 组 成复 杂 的样 品 ( 中药 ) 难 得 到 理 想 的 拉 曼 如 很 光谱 。此外 , 于 近红 外 有 严重 吸 收 的黑 色 样 品 对 ( 如重 油 ) 由于 吸 收红 外 光 后 出 现 的 热辐 射 , , 也
工作 量 少等 优 势 , 主要 技 术 指标 已达 到 国 际 先进 水 平 。 其 关键词 拉 曼光 谱 分 析 仪 T 74 1 H4. P X装 置 在 线 分 析 文 献 标 识 码 B 组分 应用
中 图分 类 号
ቤተ መጻሕፍቲ ባይዱ
文 章 编 号 1 0 —9 2 2 1 ) 4 0 6 — 0 0 3 3 ( 0 2 0 —4 70 4
拉曼光谱仪用途

拉曼光谱仪用途
拉曼光谱仪是一款专业用于现场快速检测的便携式光谱仪,它采用工业级的防水、防尘、抗震、防摔设计,适合在各种恶劣环境下使用,具有高可靠性和稳定性。
采用共焦光路设计以获得更高分辨率,可对样品表面进行um级的微区检测,也可用此进行显微影像测量。
拉曼光谱仪主要用于食品违禁添加物、色素加加、农兽药残留检验,爆炸物、危险化工品、易燃易爆品检测,珠宝玉石鉴定、文物鉴别,生物医药检测、材料表征、详细地质勘探等领域。
拉曼光谱仪的作用

拉曼光谱仪的作用关键信息项:1、拉曼光谱仪的定义与工作原理定义:____________________________工作原理:____________________________2、拉曼光谱仪在不同领域的应用化学领域:____________________________生物医学领域:____________________________材料科学领域:____________________________环境监测领域:____________________________ 3、拉曼光谱仪的优势高灵敏度:____________________________非破坏性检测:____________________________快速分析:____________________________适用范围广:____________________________ 4、拉曼光谱仪的操作要点样品制备:____________________________仪器校准:____________________________数据采集与处理:____________________________5、拉曼光谱仪的维护与保养日常清洁:____________________________定期检查:____________________________部件更换:____________________________11 拉曼光谱仪的定义与工作原理拉曼光谱仪是一种用于分析物质分子结构和化学组成的光谱分析仪器。
它基于拉曼散射效应,当一束单色光照射到物质上时,大部分光子会发生弹性散射,即瑞利散射,其频率与入射光相同。
而一小部分光子会与分子发生非弹性碰撞,导致光子的频率发生改变,这种散射现象称为拉曼散射。
拉曼光谱仪通过检测拉曼散射光的频率和强度,从而获取物质的分子振动和转动信息,进而推断出物质的化学结构和成分。
拉曼光谱仪应用领域

拉曼光谱仪应用领域
拉曼光谱仪是一种能够通过测量样品散射光的波长和强度来确定其分子结构和化学成分的仪器。
它在许多领域都有广泛的应用,包括:
1. 化学分析:拉曼光谱仪可以用于快速、非破坏性地分析化学物质的成分和结构。
它可以用于检测和鉴定有机化合物、无机化合物、药物、食品、化妆品等。
2. 材料科学:拉曼光谱仪可以用于材料的结构和组分分析。
它可以帮助研究人员了解材料的晶体结构、相变、应力分布等关键信息,对材料的性能和制备过程进行表征和优化。
3. 生物医学:拉曼光谱仪可以用于生物标本的分析和诊断。
它可以帮助鉴定和定量生物体内的分子,诊断和监测疾病,例如肿瘤、癌症、心血管疾病等。
4. 环境监测:拉曼光谱仪可以用于环境样品的分析和监测。
通过分析样品中的有机物、无机物和污染物,可以了解环境中的污染源、水质、空气质量等。
5. 法医学:拉曼光谱仪可以用于犯罪现场的化学物质分析和证据鉴定。
它可以帮助刑事调查人员鉴定毒品、爆炸物、火灾痕迹等。
总之,拉曼光谱仪在化学、材料、生物医学、环境监测和法医学等领域都有广泛的应用。
它可用于纯度分析、组分鉴定、结
构表征、质量控制等方面,具有非破坏性、快速、高灵敏度和高分辨率等优点。
拉曼光谱仪的原理和应用

拉曼光谱仪的原理和应用1. 什么是拉曼光谱仪拉曼光谱仪是一种用于测量物质的拉曼散射光谱的仪器。
拉曼散射是指当光线通过物质时,其中部分光子与物质分子相互作用后的能量差被散射出来,产生了波长偏移的现象。
通过测量这种波长偏移,可以得到物质的结构、成分及其分子间的相互作用等信息。
2. 拉曼光谱仪的原理拉曼光谱仪基于拉曼散射的原理工作。
当一束单色激光照射到样品上时,由于样品分子的振动和旋转引起的能级变化,会使得激光光子与样品分子发生相互作用,散射出去的光子中会有波长发生偏移的情况。
这种发生波长偏移的光称为拉曼散射光。
拉曼光谱仪通常包括以下主要组成部分: - 激光光源:用于提供单色激光,通常使用激光二极管或激光器。
- 光路系统:包括收光系统和散光系统,用于将光收集、分散和聚焦。
- 光谱仪:用于分散不同波长的光,并将其转化为电信号。
- 检测器:将收集到的光信号转化为电信号进行处理和分析。
- 数据处理系统:用于分析和处理从检测器得到的信号,并生成拉曼光谱图。
3. 拉曼光谱仪的应用拉曼光谱仪在许多领域得到了广泛的应用,主要包括以下几个方面:3.1 材料科学和表面分析拉曼光谱仪可以用于材料表面的分析和表征。
通过测量材料表面的拉曼散射光谱,可以了解材料的化学成分、结构特征以及表面性质等信息。
这对于表面涂覆、材料加工和功能材料设计等具有重要意义。
3.2 生物医学和药物研发拉曼技术在生物医学和药物研发领域中有着广泛的应用。
通过测量生物体内部或药物分子的拉曼散射光谱,可以获得关于蛋白质、核酸、药物等的结构信息,有助于了解其功能、相互作用和代谢过程等。
3.3 环境和食品安全拉曼光谱仪可以用于环境和食品安全领域的分析和检测。
通过测量水、土壤、空气、食品等样品的拉曼光谱,可以快速、无损地获得样品的成分、污染物含量以及质量和安全性等信息。
3.4 能源和材料研究在能源和材料研究领域,拉曼光谱仪也得到了广泛的应用。
通过测量材料的拉曼光谱,可以了解材料的结构、晶格振动、电子结构等信息,对于新能源材料和光电材料的开发和研究具有重要意义。
拉曼光谱仪原理及应用

拉曼光谱仪原理及应用拉曼光谱是一种非常重要的光谱分析技术,它可以用于物质的结构分析、成分鉴定、化学反应动力学研究等领域。
拉曼光谱仪是实现拉曼光谱分析的关键设备,下面我们将介绍拉曼光谱仪的原理及应用。
1. 拉曼光谱仪原理。
拉曼光谱是指物质受到激发光的照射后,散射光中出现了频率改变的现象。
这种频率改变是由于物质的分子振动和转动引起的,称为拉曼散射。
拉曼光谱仪利用拉曼散射现象进行光谱分析,其原理主要包括激发光源、样品、光谱仪和数据处理系统四个部分。
激发光源通常采用激光器,通过单色器产生单色激发光,照射到样品上。
样品受到激发光的激发后,会发生拉曼散射,产生频率改变的散射光。
光谱仪通过单色器和光电倍增管等光学元件收集和分析样品散射光的频率变化,得到拉曼光谱图谱。
数据处理系统对光谱图谱进行处理和分析,得到样品的拉曼光谱信息。
2. 拉曼光谱仪应用。
拉曼光谱仪在化学、生物、材料、环境等领域具有广泛的应用价值。
在化学领域,拉曼光谱仪可以用于物质的结构表征、化学反应动力学研究、药物分析等方面。
在生物领域,拉曼光谱仪可以用于生物分子的结构分析、生物标志物的检测、细胞成分的定量分析等方面。
在材料领域,拉曼光谱仪可以用于材料的成分鉴定、晶体结构分析、表面和界面分析等方面。
在环境领域,拉曼光谱仪可以用于环境污染物的检测、土壤和水质分析、大气颗粒物的监测等方面。
除此之外,拉曼光谱仪还可以应用于食品安全检测、药品质量控制、文物保护等领域。
随着科学技术的不断发展,拉曼光谱仪的应用领域将会越来越广泛,为人类社会的发展进步提供更多的支持和帮助。
总结而言,拉曼光谱仪作为一种重要的光谱分析设备,其原理和应用具有重要的科学研究和实际应用价值。
通过对拉曼光谱仪的深入了解和应用,我们可以更好地开展物质的分析和研究工作,为人类社会的发展进步做出更大的贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析仪主机内部结构
分析结果 显示 数据 通信 至上位 计算机
连接 现场 采样 光纤 系统
光纤 光谱仪
嵌入式 计算机
D/A 输出
至DCS
电源系统 激光器
在线分析仪软件结构
待测 样本 谱图检测 与预处理 X1 谱图特征波段提 取与异常检测 X2 实时在线 定量分析 Ye
在线检测分析 模型 谱图检测 与预处理 标准方法 物性测试 X1S 谱图波段 选择与 训练样本 检验 训练样本 分析数据库
总结
作为最新研制的国产化在线拉曼分析仪,RS6130已成功地应用于PX装置吸附塔进料C8芳烃 的在线组成分析。 经现场连续运行表明,该在线拉曼仪具有分析 速度快、分析精度高、接近免维护等优势
由于拉曼特征峰面积与含量成线性,无需复杂 的模型维护工作,只需一次标定即可。
拉曼仪的国产化大幅度地降低了仪器的应用成 本,其价格约为进口同类仪器的1/3。
出样 激发光纤 激光器 嵌入式计算机 采 样 池 拉曼探头 收集光纤 光纤 光谱仪 进样 X0 光谱预 处理 X1 定量 分析模型 Ye
拉曼散射与拉曼光谱
瑞利 散射光 反射光
样 品 透射 或折射光
入射光
Raman 散射光
拉曼光谱技术的适用性
光谱意义
拉曼光谱直接反映了分子基团如C=C、C-C、C=O、苯环 等的分子振动信息。
技术特点
(1)广谱性。几乎所有的有机化合物和混合物都可获取 相应的拉曼光谱,但拉曼强度存在较大差异。 (2)特征性。拉曼光谱的谱峰具有很强的特征性,直接 反映某一分子基团的含量信息。 (3)易受样品荧光光谱的干扰。在激光器照射下,部分 样品会产生强荧光,此时拉曼信号就完全可能被覆盖。
在线拉曼分析仪RS-6130 的硬件组成
分析仪 输出
差压旁路式 采样机构 激发 光纤 采 样 管
工 艺 管 道
拉曼 探头 收集 光纤
冷却器
过滤器
光谱仪 光谱
分析仪
工业现场
操作室
嵌入式 计算机系统
激 光 器
在线拉曼分析系统组成
采样装置
系统采用旁路式采样装置,由工艺管线的差压驱动, 除采样管外,还包括样本降温、降压与过滤等功能。
光谱检测单元
在线分析仪中的光学系统,用于获取原始拉曼光谱, 包括:激光器、光谱预处理、定量模型计算及计算结果的显 示与输出,包括一套完整的嵌入式PC与I/O模块等。
现场采样管
在线拉曼分析仪主体外形
(正压防爆式)
宜放置地点:距离取样点 较近的分析小屋。 优点:所需光纤短,拉曼 信号强,分析仪信噪比高, 检测限低; 基本要求:需要专门的分 析小室,并要求配备防爆 型制冷空调,以确保仪器 对环境温湿度的要求。
装置,可用于检测产品的族组成等指标;
常用场合3:反应过程监控。
……
感谢您的光临!
训练 样本
YS
分析仪软件界面设计
在线拉曼分析仪RS-6130 在PX装置中的应用
循环甲苯 苯产品 RA 歧 化 反 应 装 置 苯 塔 甲 苯 塔 二 甲 苯 分 离 塔 吸 附 塔 抽 出 液 塔 PX 成 品 塔 甲苯 PX 成品
C8A
甲苯 原料
循环 解吸液 C9A
抽 余 液 塔
混合 C 8A 解吸 剂再 生塔
平均分析误差≤±0.3 %(与色谱法比较)
最小采样时间≤60秒,开机预热时间:5 分钟 正压防爆, 防爆等级:p II T6,整体不锈钢
信号输出
主机供电 主机尺寸重量
4 ~ 20 mA DDZ-III型电流输出(≤8路)
RS485数字通信输出 交流电(220 V,50Hz),功率500W 600(宽)×1750(高)×450mm(深), 重量:80 kg
国产化在线拉曼分析仪的研制 及其在PX装置中的应用示范
戴连奎 浙江大学控制系 lkdai@
2011/10/28
内 容
拉曼光谱分析原理 在线拉曼分析仪的硬软件组成 拉曼分析仪在PX装置中的应用 结论
拉曼光谱分析原理
单色激光经光纤与拉曼探头照射采样管内的待测液体,激 发的拉曼散射光经光纤探头收集,并由专用光纤传输到光 纤光谱仪进行分光与模数转换,最后由计算机对拉曼光谱 进行预处理、分析模型计算,以获得待测样本相应的组成 含量或属性等指标。
吸附分离装置
重 芳烃
C8芳烃纯物质的拉曼光谱
3 x 10
4
2.5
EB MX OX PX
2
Intensity
1.5
1
0.5
0 400
600
800
1000 cm-1
1200
1400
1600
在线拉曼分析仪的原始光谱 (吸收塔进料组成)
在线拉曼分析动态趋势图
在线拉曼分析仪RS-6130
主要技术指标
测量介质 测量参数 测量精度 采样周期 防爆箱系统 芳烃生产装置中含BTEX的液相混合物 B/T/PX/MX/OX/EB的质量含量(w %) 测量范围为0 ~ 100%,重复性误差≤±0.1 %
关于在线拉曼分析仪的
应用场合
应用限制:
检测对象为透明性与均匀性较好的混合液体,要求激光 诱导荧光背景干扰不强; 对于检测指标:常量检测(检测限为0.01%),检测指 标与样品分子基团含量有明确的相关性。
常用场合1:各分离设备(如精馏塔)塔顶/塔底产品
的组成与含量检测;
常用场合2:石脑油、汽油、芳烃、烯烃等相关生产