【机能实验】神经干动作电位
神经干动作电位实验报告
神经干动作电位实验报告
神经干动作电位实验报告
一、实验目的
1. 学习蛙的坐骨神经干标本的剥制方法;
2.学习动作电位的测定方法;
3.了解双相和单相神经动作电位产生的基本原理。
二.原理
神经或肌肉发生兴奋时,兴奋部位发生电位变化,这种可扩布性的电位变化即为动作电位。
三、试剂与器材
蟾蜍或蛙、计算机、生物信号处理系统、解剖针、手术剪、眼科剪、圆头手术镊、尖头手术镊、玻璃勾针、神经屏蔽盒及连接导线,任氏液、棉花、蛙板、烧杯。
四、实验内容(步骤)
(一)坐骨神经标本的制备(看示范和录象)
(二)连接实验装置
(三)实验观察
1. 动作电位的观察:
2. 倒换神经干的放置方向,动作电位有无变化。
3. 在两记录电极之间滴上KCl溶液,观察动作电位的变化。
观察到变化后,用任氏液洗掉KCl溶液,直至动作电位恢复。
4. 在两电极之间滴上普鲁卡因,观察动作电位的变化。
(四)不应期的测定
采用双刺激。
调节刺激器的“延时”,逐渐缩短两刺激之间的时间间隔。
观察出现的效应
五.注意事项
标本剥制过程,尽量减少神经的损伤;
刺激参数设置要合理,过大会损毁神经。
双刺激的参数要一致。
六、结果和目标
观察和记录神经干动作电位并对其特性进行分析;测出动作电位的各个时期;
测出绝对不应期和相对不应期。
机能实验学 神经干动作电位的引导及其传导速度的测定
实验原理
细心观察、认真分析、科学总结
Experiment is father of science
双相动作电位形成的示意图(引导电极间距小于兴奋 区域长度时)
ห้องสมุดไป่ตู้冲动
电R位1RRR- 111坐--- 标,越往上负值越大
R1-
动动 R之 冲动 当1作作后动电作某电电,过位电一位位后R比位时2传未,R电继刻到2传恢位低续RR1到复继越1传R,,静2续多导电R无息下,,1位电波降负兴相位形,向奋等低R波区,1于幅上域波R值升继2形,越,续图负高出平回向现移到波正,基产相R线生1波R处2电位差RR开1R+1RR+1+始11++ 缩小,波形开始向下
神经干动作电位的引导及其传导速度的测定
实验内容
细心观察、认真分析、科学总结
Experiment is father of science
1. 实验目的与原理 2. 实验材料 3. 实验方法 4. 注意事项
实验目的
细心观察、认真分析、科学总结
Experiment is father of science
神经干双相动作电位与单根神经纤维的动作电位是不一样的! 两者既有联系,又有区别。
动作电位的引导
动作电位是神经细胞兴奋的客观标志,当神经纤维或 神经干受到有效刺激时,必然会产生可传导的动作电位, 也称为神经冲动。由于神经干动作电位是许多单根神经 纤维动作电位的复合,所以它的特征不同于单根神经纤 维的动作电位。本实验采用离体细胞外记录法,记录神 经干兴奋时两个记录电极之间的电位变化。
++++++++++++++
实验8神经干动作电位
兴奋性和动作电位的传导。
05 实验结论
CHAPTER
神经干动作电位的形成机制与传导方式
形成机制
神经干动作电位是由多个神经元 兴奋产生的电位变化,通过神经 元之间的电信号传递,最终形成 动作电位。
传导方式
神经干动作电位通过神经元之间 的突触连接传递,通过电信号的 传递,使兴奋在神经元之间传递 ,最终传导至整个神经干。
学习神经干动作电位的实验方法
01
学习如何使用电生理仪器记录神经干动作电位,包 括电极放置、信号放大、滤波等操作。
02
学习如何处理实验数据,包括数据采集、整理、分 析和解释等步骤。
03
了解实验过程中的注意事项和操作规范,以保证实 验结果的准确性和可靠性。
分析神经干动作电位的特点
01 分析神经干动作电位的波形特征,包括幅度、时 程、阈值等参数。
VS
影响因素
神经干动作电位的传导速度受到多种因素 的影响,包括神经元的直径、髓鞘的完整 性、温度等。这些因素通过影响神经元的 电导性和兴奋性来影响动作电位的传导速 度。
神经干动作电位的影响因素分析
01
刺激强度和频率
实验结果表明,神经干动作电位的产生和传导受到刺激强度和频率的影
响。在一定范围内,刺激强度和频率的增加会使神经元更容易兴奋并产
改进方向
未来研究可以进一步探讨不同条件下的神经 干动作电位,以及神经干动作电位与其他生 理过程之间的关系,以更全面地了解其形成 机制和传导方式。
谢谢
THANKS
数据处理与分析
对记录的神经干动作电位数据进行处理,如滤波、降噪等。
分析处理后的数据,如测量峰电位、阈电位等参数,并计算神经干的动作 电位传导速度。
根据实验结果,得出结论并分析可能的原因。
神经干动作电位实验报告
神经干动作电位实验报告一、实验目的研究神经干动作电位的基本特征及产生机制。
二、实验原理神经细胞的兴奋状态可以通过记录神经干动作电位来研究。
神经干动作电位是由大量神经细胞同时产生的、电位差较大的电信号。
当神经细胞兴奋峰值超过一定阈值时,会产生神经冲动,传导到轴突末梢,并触发神经干动作电位。
三、实验器材和试剂1.脉冲发生器2.示波器3.探针4.青蛙腓肠神经5.盐水试剂四、实验步骤1.准备工作:将青蛙放入盐水中,使其神经麻痹,然后取出青蛙腓肠神经进行实验。
2.将脉冲发生器的输出端与示波器的输入端相连接,将示波器的探针分别连接到接地端和腓肠神经上。
3.调整脉冲发生器的参数,包括幅值、频率和脉冲宽度等,观察示波器上的波形变化。
4.记录神经干动作电位的波形、幅值和频率等特征。
五、实验结果和分析根据实验结果及已知知识,我们可以进一步分析神经干动作电位的产生机制。
神经细胞内外的离子浓度存在差异,细胞外Na+浓度较高,而细胞内K+浓度较高。
当神经细胞兴奋时,细胞膜上的离子通道会打开,导致Na+离子大量进入细胞内,从而产生快速上升期;随后,Na+通道关闭,而K+通道打开,导致K+离子大量流出,产生快速下降期。
在超极化期,细胞膜上的Na+/K+泵恢复细胞内外离子的平衡,使细胞膜电位恢复至静息状态。
六、实验结论通过神经干动作电位实验,我们掌握了神经干动作电位的基本特征和产生机制。
神经干动作电位具有典型的波形特征,包括快速上升期、峰值期、快速下降期和超极化期。
神经细胞的兴奋状态可以通过记录神经干动作电位来研究,并且神经干动作电位的产生是由于细胞内外离子浓度差异以及离子通道的打开和关闭所导致的。
七、实验总结神经干动作电位是研究神经细胞兴奋状态的重要方法之一、通过实验,我们不仅了解了神经干动作电位的基本特征和产生机制,还掌握了记录和观察神经干动作电位的实验技巧。
该实验对于进一步研究神经细胞的功能和机制具有重要意义。
神经干动作电位的实验报告
神经干动作电位的实验报告神经干动作电位的实验报告引言:神经干动作电位(nerve conduction action potential)是指神经细胞在受到刺激后产生的电信号,它是神经系统正常功能的重要指标之一。
本实验旨在研究神经干动作电位的特征及其在临床应用中的意义。
实验方法:本次实验采用了小鼠尾神经为研究对象。
首先,将小鼠固定在实验台上,用电刺激仪器对尾神经进行刺激。
刺激强度和频率分别为10mA和1Hz。
同时,使用电极记录尾神经上的动作电位,并将信号放大放大后通过示波器显示和记录。
实验结果:经过实验记录和数据分析,我们得到了以下结果:1. 动作电位的波形特征:在实验中,我们观察到尾神经上的动作电位呈现出典型的波形特征。
首先是负向的初始反应,随后是正向的峰值反应,最后是负向的复极化反应。
这一波形特征反映了神经细胞在受到刺激后的电活动过程。
2. 动作电位的幅值和潜伏期:通过测量动作电位的幅值和潜伏期,我们可以评估神经传导速度和神经细胞的兴奋性。
实验结果显示,动作电位的幅值和潜伏期与刺激强度和频率呈正相关关系。
这一结果表明,神经传导速度和神经细胞的兴奋性受到刺激强度和频率的调节。
3. 动作电位的传导速度:实验结果显示,动作电位在尾神经中的传导速度为Xm/s。
这一结果与已有的文献报道相符,进一步验证了本实验的可靠性。
实验讨论:神经干动作电位的实验结果对于临床应用具有重要意义。
首先,通过测量动作电位的幅值和潜伏期,我们可以评估神经传导速度和神经细胞的兴奋性,从而诊断和监测神经系统疾病。
例如,在神经病学领域,动作电位的异常可以提示神经疾病的存在和发展。
其次,动作电位的传导速度可以用来评估神经损伤的程度和康复进展。
在临床上,这对于神经损伤患者的康复治疗和预后评估非常重要。
此外,神经干动作电位的实验方法还可以应用于药物研发和毒理学研究中。
通过测量动作电位的变化,我们可以评估药物对神经细胞兴奋性的影响,从而指导药物的合理使用和毒性评估。
神经干电位实验报告
一、实验目的1. 理解神经干动作电位的基本概念和形成机制。
2. 掌握神经干动作电位的引导方法和步骤。
3. 通过实验观察神经干动作电位的特点,包括波形、传导速度和不应期。
4. 分析神经干动作电位在不同条件下的变化,如刺激强度、损伤和药物作用等。
二、实验原理神经干动作电位是神经纤维在受到有效刺激时产生的可传导的电位变化,是神经细胞兴奋的客观标志。
神经干动作电位是由许多单根神经纤维的动作电位复合而成的,其特征与单根神经纤维的动作电位有所不同。
三、实验材料1. 实验对象:青蛙或蟾蜍2. 实验药品和器材:任氏液,2%普鲁卡因,各种带USB接口或插头的连接导线,神经屏蔽盒,蛙板,玻璃分针,粗剪刀,眼科剪,眼科镊,培养皿,烧杯,滴管,蛙毁髓探针,BL-420N系统四、实验方法和步骤1. 制备神经标本:将青蛙或蟾蜍处死,解剖出坐骨神经干,用任氏液浸泡并保持湿润。
2. 安放引导电极:将引导电极固定在神经干上,确保电极与神经干良好接触。
3. 安放刺激电极:将刺激电极固定在神经干上,距离引导电极适当距离。
4. 启动试验系统:连接BL-420N系统,打开软件,设置实验参数。
5. 观察记录:逐渐增加刺激强度,观察并记录神经干动作电位的波形、传导速度和不应期。
6. 分析实验结果:分析不同刺激强度下神经干动作电位的变化,以及损伤和药物作用对神经干动作电位的影响。
五、实验结果1. 神经干动作电位波形:观察到神经干动作电位呈双相波形,第一相为上升支,第二相为下降支。
2. 神经干动作电位传导速度:随着刺激强度的增加,神经干动作电位传导速度逐渐提高。
3. 神经干动作电位不应期:观察到神经干动作电位存在不应期,不应期随刺激强度的增加而缩短。
六、讨论1. 神经干动作电位的形成机制:神经干动作电位是由许多单根神经纤维的动作电位复合而成的,其特征与单根神经纤维的动作电位有所不同。
2. 刺激强度对神经干动作电位的影响:随着刺激强度的增加,神经干动作电位传导速度逐渐提高,不应期缩短。
机能实验学 神经干动作电位
姚伟 医学院生理研究所
实验目的
• 掌握蛙类坐骨神经干单项及双相动作电位的记录 方法,了解电生理学试验研究方法。
• 掌握神经干动作电位的基本波形、潜伏期、幅值 和时程。
• 掌握神经兴奋的传导速度和不应期测量方法。
理论概述
① 安静时—— 静息电位 ② 受刺激时— 动作电位
理论概述
【实验内容和实验步骤】
(三)讨论
1.刺激伪迹是如何产生的? 2.记录神经干动作电位时,常在神经中枢端给予刺激,
而在外周端引导动作电位,为什么?
【实验内容和实验步骤】
(一)实验步骤
1、手术 (1)破坏蛙的脑和脊髓。 (2)剪除躯干上部及内脏。 (3)破皮及分离下肢。 (4)制备坐骨神经和腓神经标本
【实验内容和实验步骤】
2、仪器连接。
【实验内容和实验步骤】 (二)观察项目
1. 双相动作电位的波形特点、测定潜伏期、幅值及时程。 2. 测定阈强度和最大刺激强度。 3. 测定不应期。 4.测定神经干动作电位传到速度。
神经干动作实验报告
一、实验目的1. 了解神经干动作电位的基本原理和传导过程;2. 掌握神经干动作电位传导速度和不应期的测定方法;3. 分析神经干动作电位在不同条件下的变化规律。
二、实验原理神经干动作电位是指神经纤维在受到刺激时,产生的一系列电生理现象。
当神经纤维膜电位达到一定阈值时,钠离子内流,产生动作电位,进而引起邻近神经纤维的兴奋和传导。
本实验通过观察和测量神经干动作电位,了解其传导速度和不应期等参数。
三、实验材料1. 实验动物:蟾蜍;2. 实验器材:坐骨神经干标本、任氏液、刺激器、示波器、记录仪、玻璃分针、粗剪刀、眼科剪、眼科镊、培养皿、烧杯、滴管、蛙毁髓探针、BL-420N系统;3. 实验药品:2%普鲁卡因。
四、实验方法1. 制备坐骨神经干标本:将蟾蜍麻醉后,解剖出坐骨神经干,置于任氏液中,用玻璃分针轻轻挑起,去除周围组织;2. 安装电极:将刺激电极和记录电极分别固定在坐骨神经干的两端,连接BL-420N系统;3. 刺激和记录:启动刺激器,给予坐骨神经干一定强度的刺激,观察示波器上的波形,记录动作电位传导速度和不应期;4. 重复实验:改变刺激强度,重复实验,观察动作电位传导速度和不应期的变化规律。
五、实验结果1. 动作电位传导速度:在实验条件下,坐骨神经干动作电位传导速度约为15.2 m/s;2. 不应期:在实验条件下,坐骨神经干动作电位不应期约为0.5 ms;3. 刺激强度与传导速度的关系:随着刺激强度的增加,动作电位传导速度逐渐增加,但增加幅度逐渐减小;4. 刺激强度与不应期的关系:随着刺激强度的增加,动作电位不应期逐渐延长。
六、实验讨论1. 神经干动作电位传导速度的测定原理:神经干动作电位传导速度的测定原理是,通过测量动作电位在神经干上的传播距离和时间,计算出传导速度;2. 不应期的产生原因:神经干动作电位不应期的产生原因是,神经纤维在兴奋时,膜电位处于超极化状态,此时钠离子内流受到抑制,导致动作电位不能立即产生;3. 刺激强度与传导速度、不应期的关系:刺激强度与传导速度呈正相关,但并非线性关系;刺激强度与不应期呈正相关。
实验8 神经干动作电位
实验步骤
2、神经干复合动作电位的引导
目的要求 基本原理
(1)双向AP引导:中枢端靠近刺激电极,记录正常 AP;
(2)兴奋阈值的测定:刺激强度从0.1v开始,逐渐 增大刺激强度,至刚出现AP。 (3)倒置神经干,观察记录的AP有何变化
实验步骤
(4)单相AP引导:在两引导电极之间结扎神经干, 观察AP的变化(所有实验做完后再做)
神经屏蔽盒
目的要求
第二对记 录电极 第一对记 录电极
地线
刺激电极
基本原理
实验步骤
记录输出
刺激输入
神经屏蔽盒
目的要求
第二对记 录电极
第一对记 录电极
地线
刺激电极
基本原理
实验步骤
记录输出
刺激输入
目的要求 基本原理
1、剥制坐骨神经干标本 2、神经干复合动作电位的引导 3、神经干兴奋传导速度的测定 4、神经干不应期的测定
注意事项: 1、神经干首先用滤纸吸干表面的溶液,再放入屏蔽 盒中;实验过程中屏蔽盒盖应保持关闭。 2、标本要尽量长一些,并应仔细清除附着于神经干 上的结缔组织及血管。
3、神经干兴奋传导速度的的测定 目的要求 基本原理
第二对记录电极 第一对记录电极 地线 刺激电极
-
+
S 方法一:
M
实验步骤
两对引导电极 传导速度(V)= 之间的距离(S) 两动作电位起点 之间的时间差(t)
神经干复合动作电位 目的要求
基本原理
实验步骤
神经干是由许多结构、功能相互独立,阈值和传导速度不 同的神经纤维组成的混合神经。其动作电位不同于单根神经纤 维的跨膜动作电位,是许多动作电位组成的复合动作电位。 将两个引导电极分别置于正常完整的神经干表面,可引导 出两个方向相反的电位偏转,称为双相动作电位。如将两引导 电极之间的神经麻醉或损伤,则可引导出来只有一个方向的电 位偏转,称为单相动作电位。
神经干动作电位实验报告
神经干动作电位实验报告实验目的,通过对神经干动作电位的测定,了解神经细胞的兴奋传导特性,探究不同刺激条件下神经细胞的反应。
实验原理,神经细胞在受到刺激时,会产生电位变化,即动作电位。
通过电极记录这种电位变化,可以观察神经细胞的兴奋传导过程。
实验仪器,本次实验使用的仪器包括生理记录仪、电极、刺激器等。
实验步骤:1. 将动物神经干置于生理盐水中,使其保持活性。
2. 将电极插入神经干内,通过生理记录仪记录下神经干的基础电位。
3. 使用刺激器对神经干进行刺激,记录下不同刺激条件下的动作电位变化。
4. 分析实验数据,观察神经细胞在不同刺激条件下的反应特点。
实验结果:经过实验记录和数据分析,我们得到了以下结论:1. 在不同刺激条件下,神经细胞产生的动作电位幅度和频率均有所不同。
2. 强刺激下,动作电位幅度较大,频率较高;弱刺激下,动作电位幅度较小,频率较低。
3. 在一定范围内,刺激强度与动作电位幅度呈正相关关系,刺激强度与动作电位频率呈正相关关系。
实验讨论:通过本次实验,我们深入了解了神经细胞的兴奋传导特性。
神经细胞在受到刺激时,会产生电位变化,这种动作电位的幅度和频率受到刺激强度的影响。
这为我们进一步研究神经细胞的兴奋传导机制提供了重要的实验基础。
实验结论:本次实验通过对神经干动作电位的测定,深入了解了神经细胞的兴奋传导特性。
不同刺激条件下,神经细胞产生的动作电位幅度和频率均有所不同,刺激强度与动作电位幅度、频率呈正相关关系。
这为进一步研究神经细胞的兴奋传导机制提供了重要的实验基础。
结语:通过本次实验,我们对神经细胞的兴奋传导特性有了更深入的了解。
希望通过这一实验,能够为相关领域的研究工作提供一定的参考和帮助。
神经科学是一个充满挑战和机遇的领域,我们将继续努力,探索更多神经细胞的奥秘。
机能实验神经干复合动作电位及其传导速和兴奋不应期的测定
【实验目的与原理】
本实验的目的是学习蛙类坐骨神经干动作电位的记录方并观察几种因素对 动作电位波形的影响,测定神经干动作电位传导速度与不应期,并观察神经干 动作电位的兴奋性变化以及损伤后波形的改变。
当前第5页\共有30页\编于星期五\9点
单根神经纤维动作电位具有两个主要特征:(一)“全或无”特性,即动作电位幅度不随 刺激强度和传导距离而改变.引起动作电位产生的刺激需要有一定强度,刺激达不到阈强 度,动作电位就不出现;刺激强度达到阈值后就引发动作电位,而且动作电位的幅度也就 达到最大值,再继续加大刺激强度,动作电位的幅度不会随刺激的加强而增加;(二)可扩 布性,即动作电位产生后并不局限于受刺激部位,而是迅速向周围扩布,直至整个细胞膜都 依次产生动作电位.因形成的动作电位幅值比静息电位到达阈电位值要大数倍,所以,其扩 布非常安全,且呈非衰减性扩布,即动作电位的幅度、传播速度和波形不随传导距离远近 而改变.动作电位幅度不随刺激强度和传导距离而改变的原因主要是其幅度大小接近于K+ 平衡电位与Na+平衡电位之和,以及同一细胞各部位膜内外Na+、K+浓差都相同的原故.
4.如何记录神经干动作电位?神经功干动作电位波形与神纤维作电位有何不同?
神经组织是可兴奋的组织,当收到阈强度的刺激时,膜电位将发生一短暂的变化,即动作电位。动作电位可沿神经纤维 传导,使已兴奋的部位的神经细胞外表面带负电,未兴奋部位带正电。如果将两个引导电极分别置于正常的神经干表面 (细胞外记录),当神经干兴奋从一端向另一端传导依次通过这两个记录电极时,则可记录到两个方向相反的电位偏转 波形,此即神经干的动作电位,形成的波形为双向,而神经纤维动作电位的记录为细胞内记录,将无关电极置于细胞外, 记录电极插入细胞内,记录到的神经纤维动作电位时程很短,呈尖峰状单波形。神经干动作电位是用细胞外记录法记录 到的已兴奋部位和未兴奋部位的电位差。
设计机能学实验报告
实验名称:神经干、肌膜动作电位和骨骼肌收缩同步观察实验目的:1. 理解神经干、肌膜动作电位和骨骼肌收缩之间的关系。
2. 学习观察和分析神经干、肌膜动作电位和骨骼肌收缩的同步性。
3. 掌握实验操作技巧,提高实验技能。
实验原理:神经干、肌膜动作电位和骨骼肌收缩是人体运动过程中不可或缺的生理现象。
神经干负责传递神经冲动,肌膜动作电位是神经冲动在肌细胞膜上的表现形式,而骨骼肌收缩则是肌肉活动的直接表现。
本实验通过同步记录神经干、肌膜动作电位和骨骼肌收缩,分析三者之间的关系,为进一步研究人体运动机制提供实验依据。
实验材料:1. 实验动物:成年家兔2. 实验器材:生理信号采集系统、手术显微镜、神经干刺激器、肌电图仪、手术器械、生理盐水等实验步骤:1. 家兔麻醉,固定于手术台上。
2. 暴露神经干,记录神经干动作电位。
3. 暴露肌肉,记录肌膜动作电位。
4. 激活神经干,观察骨骼肌收缩。
5. 分析神经干、肌膜动作电位和骨骼肌收缩的同步性。
实验结果:1. 神经干动作电位:记录到明显的动作电位波形,峰值为-70mV~-90mV。
2. 肌膜动作电位:记录到明显的动作电位波形,峰值为-90mV~-100mV。
3. 骨骼肌收缩:激活神经干后,观察到骨骼肌收缩。
实验讨论:1. 本实验成功同步记录了神经干、肌膜动作电位和骨骼肌收缩,验证了三者之间的同步性。
2. 神经干动作电位是骨骼肌收缩的先导,肌膜动作电位是骨骼肌收缩的直接原因。
3. 实验结果表明,神经干、肌膜动作电位和骨骼肌收缩在人体运动过程中具有密切的关联。
实验结论:1. 神经干、肌膜动作电位和骨骼肌收缩在人体运动过程中具有密切的关联。
2. 本实验为研究人体运动机制提供了实验依据。
注意事项:1. 实验操作过程中,注意保持动物生命体征的稳定。
2. 激活神经干时,避免过度刺激,以免造成动物痛苦。
3. 实验结果分析时,注意观察数据的准确性。
参考文献:1. 《生理学》第8版,人民卫生出版社。
神经干动作电位及其速度测定
- - - - - - - - - - - - - - -+ + + + + + + + + + + + + + + + + + +- - - -
动作电位以局部电流的形式传导
实验原理:
如果两个引导电极之间的神经纤维完全损伤,兴奋波只 通过第一个引导电极,不能传至第二个引导电极,则只 能引导出一个方向的电位偏向波形,称单向动作电位
4.讨论
4.1 在两引导电极间夹伤神经,神经冲动传导被阻断,双相动作电位负 相波消失,形成一相正波,于此可见,双相动作电位是神经冲动先后通 过两个引导电极形成的,冲动通过第1个电极,形成动作电位的正相波, 冲动通过第2个电极,形成动作电位的负相波。
4.2 刺激电压从Uth增加至Umax,神经干动作电位振幅随刺激电压增 加而增高。神经干动作电位不具有“全或无”性质
作相电表极 动膜经 即次化维在
电反极面置 作外纤 动可达膜刺
位的处,于 电记维 作传到内激
电,兴兴 位录组 电导阈产电
位便奋奋
方成 位的电生极
。
双相动作电位 Biphasic Action Potential
兴奋区 细胞外引导电极 检流计
动作电位的传导 Conduction of
AP
+ + + +- +- +- +- + + + + + + + +
R2- R2 +
Peripheral end
Ap
1
Dp2
Ap
2
Dp1
Ap
Ap
1
2
2.观察(observations)
2.3 传导速度测 定
+-
条件:刺激电压1.2V,刺激波宽0.1ms R1- R1 + R2- R2 +
神经干动作电位实验报告
神经干动作电位实验报告Experimental report of neural stem action potentialInternship report实验报告一、实验目的:1.学习蛙坐骨神经干标本的制备2.观察坐骨神经干的双相动作电位波形,并测定最大刺激强度3.测定坐骨神经干双相动作电位的传导速度4.学习绝对不应期和相对不应期的测定方法5.观察机械损伤或局麻药对神经兴奋和传导的影响二、实验材料1.实验对象:牛蛙2.实验药品和器材:任氏液,2%普鲁卡因,各种带USB接口或插头的连接导线,神经屏蔽盒,蛙板,玻璃分针,粗剪刀,眼科剪,眼科镊,培养皿,烧杯,滴管,蛙毁髓探针,BL-420N系统三、主要方法和步骤:1.捣毁脑脊髓2.分离坐骨神经3.安放引导电极4.安放刺激电极5.启动试验系统6.观察记录7.保存8.编辑输出四、实验结果和讨论1.观察神经干双相动作电位引导(单通道,单刺激)如图,观察到一个双相动作电位波形。
2.神经干双相动作电位传导速度测定(双通道,单刺激)(1)选择“神经骨骼肌实验”—“…传导速度测定”(2)改变单刺激强度(3)传导速度 = 传导距离(R1--R2-)/传导时间(t2-t1)如图所示,两个波峰之间的传导时间△t = (t2-t1) = 0.66ms实验中,我们设定在引导电极1和3之间的距离△R = (R1--R2-) = 1cm故传导速度v = △R/△t = 1cm / 0.66ms = 15.2 m/s3.神经干双相动作电位不应期观察由上图可知,当刺激间隔时间为4.61ms时,两双相动作电位开始融合,此时为总不应期;当刺激间隔时间为1.05ms时,双相动作电位完全融合,此时为绝对不应期。
故相对不应期= 总不应期–绝对不应期= 4.61ms – 1.05ms = 3.56ms4.普鲁卡因对神经冲动传导的阻滞作用如图所示,在两通道之间滴加普鲁卡因后,两双相电位间的波峰间隔时间为1.03ms,由引导电极之间的间隔距离1cm,得此时传导速度:V1 = 1cm/1.03ms = 9.71 m/s5.机械损伤对坐骨神经干双向动作电位的影响由图可知,当剪断两引导电极之间的神经干时,第二通道的双相动作电位消失。
机能实验
为什么神经干动作电位波形随着刺激强度而增加,达到一定幅度就不再增加?这是否与单根纤维动作电位“全”或“无”相矛盾,为什么?答:(1)给予刺激达到个别细胞阈强度,则个别细胞产生动作电位,随着刺激强度增加,产生动作电位的细胞数量增加,波形增大,当所有细胞都兴奋产生动作电位后,波形就不在增大。
(2)不矛盾。
因为神经干是由许多单一神经纤维组成的,每个神经纤维的兴奋性、阈值以及产生动作电位的幅度不一样,当给予神经干一个电刺激时,刺激强度的不同会引起一个到多个纤维同时兴奋,记录电极会把多个动作电位同时记录下来,因此他反应的是综合电位变化。
下述因素对尿量有何影响?分析其影响机制。
1)静注垂体后叶素2)静注大量生理盐水3)静注速尿4)静注20%葡萄糖答:(1)静注垂体后叶素:主要含ADH,提高远曲小管和集合管上皮细胞对水的通透性,水重吸收增加,尿液浓缩,尿量减少(2)静注大量生理盐水:血浆胶体渗透压减小,有效滤过压增加,肾小球滤过率增加;血容量增加,血压上升,容量感受器与压力感受器兴奋,ADH分泌减少,尿量增加。
(3)速尿作用于髓袢升支粗段,与氯离子竞争Na+ -K+-2CL-共同转运体的氯离子作用部位,使氯化钠重吸收减少,抑制肾对尿浓缩和稀释功能,引起大量水排泄,故尿量升高。
(4)20%葡萄糖:血糖超过肾糖阈,肾小管液渗透压升高,对抗肾小管对水的重吸收,故尿量增多,又称为渗透性利尿。
离体蛙心实验中,试分析下列实验因素对蛙心的影响及影响机理1)0.65Nacl 2ml2)2%CaCl2 1-2滴3)1%KCl 1-2滴答:(1) 加0.65%氯化钠,心肌收缩力下降,心率下降, 0.65%氯化钠是两栖类动物血浆等渗液,但缺乏钾离子,钙离子等,心肌细胞终末池不发达,贮钙能力差,心肌收缩则更多依赖外源性钙离子,钙离子减少.(2) 加钙离子,心肌收缩力增加,心率增加,钙离子浓度增加,平台期钙离子内流增加,心肌兴奋,收缩耦联增加,心肌收缩力增加;静脉窦自律细胞4期自动去极增加,自律性增加,心率增加(3) 加钾离子,心肌收缩力下降,心率下降,血钾离子增加,细胞内外差距减小,静息电位绝对值减小,减小到-55或-60毫伏,快钠通道失活,兴奋性下降;竞争性抑制钙离子内流,钙离子延缓,心肌兴奋,收缩耦联增加,心肌收缩力增加.试述下列各实验的结果,并分析结果产生的机理1)心血管活动的神经体液调节实验中,刺激迷走神经外周端;2)尿生成试验中,刺激迷走神经外周端。
神经干动作电位实验报告
神经干动作电位实验报告神经干动作电位实验报告引言:神经干动作电位是一种记录和研究神经元活动的重要方法。
通过测量神经元在受到刺激时产生的电信号,我们可以了解神经元的兴奋性、传导速度以及神经网络的功能。
本实验旨在探究神经干动作电位的特性和应用,并通过实际操作来加深对该实验的理解。
实验步骤:1. 实验前准备:将被试者坐于舒适的位置,确保其放松且不受干扰。
将电极贴于被试者的皮肤上,通常选择头皮、手腕或脚踝等部位。
2. 刺激信号的产生:使用外部刺激器,如电极或光纤,对被试者进行刺激。
可以选择不同的刺激方式,如电流、光线或声音等。
3. 信号采集:使用生物电放大器将神经干动作电位信号放大,并通过电极将信号输入到计算机或记录设备上。
确保信号的质量和稳定性,以获取准确的实验结果。
4. 数据分析:通过对采集到的信号进行处理和分析,可以得到神经干动作电位的特征参数,如幅值、潜伏期和传导速度等。
同时,还可以对不同刺激条件下的实验结果进行比较和统计。
实验结果与讨论:1. 神经干动作电位的特征参数:根据实验数据的分析,我们可以得到神经干动作电位的幅值、潜伏期和传导速度等参数。
这些参数可以反映神经元的兴奋性和传导能力,从而帮助我们了解神经系统的功能和病理变化。
2. 神经干动作电位的应用:神经干动作电位在临床医学和科学研究中有着广泛的应用。
例如,通过测量神经干动作电位,可以评估神经系统的功能状态,如神经病变、神经损伤和神经炎等。
此外,神经干动作电位还可以用于研究神经网络的连接和传导机制,对于理解大脑的工作原理和神经系统疾病的发生机制具有重要意义。
3. 实验的局限性和改进方向:在进行神经干动作电位实验时,也存在一些局限性。
例如,信号的稳定性和噪声的干扰可能影响实验结果的准确性。
此外,实验中使用的刺激方式和参数的选择也可能对结果产生影响。
因此,未来的研究可以进一步改进实验设计和信号处理方法,以提高实验的可重复性和准确性。
结论:神经干动作电位实验是一种重要的方法,用于研究神经元活动和神经系统功能。
机能实验神经干复合动作电位及其传导速度和兴奋不应期的测定
实验原理2 单相动作电位(Monophasic Action Potential)
如果两个引导电极之间的神经纤维完全损伤, 兴奋波只通过第一个引导电极,不能传至第二 个引导电极,则只能引导出一个方向的电位偏
向波形,称单向动作电位。
医学PPT
下一7 页
单相动作电位(Monophasic Action Potential)
医学PPT
下1一3 页
实验步骤2
连接实验装置 Central end
Peripheral end
医学PPT
返回 14
观察项目
1.引导神经干双向动作电位
2.测量动作电位传导速度:v =s/t
3.观察不应期条件:双刺激(串数2) 时间间隔↓
4.观察单向动作电位
医学PPT
返回
15
模拟结果
1.双相动作电位(Biphasic Action Potential)
实验目的
1.学习神经干标本的制备。
2.观察坐骨神经干的单相、双相动作电位、双 向性传导并测定其传导速度。
3.观察机械损伤对神经兴奋和传导的影响
4.学习绝对不应期和相对不应期的测定方法
5.了解蛙类坐骨神经干产生动作电位后其兴奋性 的规律性变化
医学PPT
返回 12
实验步骤1
制备蟾蜍坐骨神经干标本:
1:破坏脑和脊髓 2:去除头、上肢和内脏 3:剥去皮肤 4:清洗手和器械 5 :分离两腿 6:分离坐骨神经
相反的电位波形,称双相动作电位。
医学PPT
下一4 页
实验原理1 双相动作电位 (Biphasic Action Potential)
细胞外引导电极
检流计
兴奋区
医学PPT
【机能实验】神经干动作电位
3.测定传导速度(自动/手动)
(1)V=S/t(m/s)
(2)AP1与AP2的波峰的时差 r1点与r3点间的距离
20
S1 S2
S(cm)
r1 r2
r3 r4
21
4.检测兴奋性周期变化
• 绝对不应期 ∞
0
• 相对不应期 阈上
• 超常期
阈下
• 低常期
阈上
22
最大刺激强度
保持刺激强度和波宽不变
υ= S R1- R2- / Δt 计算出AP的传导速度。
+-
R1- R1 +
R2- R2 +
Central end
S R1- R2-
Peripheral end
υ=
S R1- R2-
Δt
Δt
10
2.5 测定单相动作电位 (monophasic action potential,MAP) 用镊子 夹伤对1对引导电极间的神经 干,然后用1.0V电压,波宽 0.1ms的单个方波激刺激神经 干中枢端,测定末梢端MAP振 幅和时程。
蛙离体神经干生物电信 号与兴奋性检测
1
RM-6240生物信号采集系统
2
1.材料和方法 (Materials and methods ) 1.2药品(drug) 任氏液
每升任氏液含 NaCl 6.5 g、KCl 0.14 g、CaCl2 0.12 g,、NaHCO3 0.20 g、NaH2PO4 0.01 g。
S+ S- E R1 - R1+ R2- R2+
刺激 电极
引导 电极
引导 电极
神经干标本盒
S+、S-刺激电极,E接地电极 ,r1- 、r1+和r2- 、r2+引导电 极,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
RM6240C 微机生物 信号处理 系统
第2通道
第1通道
刺激器 输出口
神经干 标本盒
刺激电极
S+ S- E R1- R1+ R2- R2+
第1对引 导电极
第2对引 导电极
6
1.5仪器连接和参数
采样频率 通道模式 扫描速度
灵敏度
时间常数 滤波频率
“实验”菜单中选择自定义实验项目“神经干动作电位”进入实验状态。仪器参数:1、2通道 时间常数0.02~0.002s、滤波频率1KHz、灵敏度5mV,采样频率:40KHz,扫描速度:0.5ms/div。 单刺激激方式,刺激幅度0.1~3V,刺激波宽0.1ms,延迟5ms,同步触发。
蛙离体神经干生物电信 号与兴奋性检测
1
RM-6240生物信号采集系统
2
1.材料和方法 (Materials and methods ) 1.2药品(drug) 任氏液
每升任氏液含 NaCl 6.5 g、KCl 0.14 g、CaCl2 0.12 g,、NaHCO3 0.20 g、NaH2PO4 0.01 g。
1.6 记录动作电位( Record action potential) 神经干标本置于标本盒的电极
上,用1.0 V 电压,波宽0.1ms 的单个方波刺激神经干,引导CAP。
Central end
极
引导电极
Ap Dp
Dn An
问题: Ap>An与Dp<Dn 的统计学意义?
①阈强度:对神经干而言,阈强度是指神经干刚 好能产生动作电位的刺激强度。
②最大刺激强度:能产生最大动作电位的最小刺 激强度。
17
单个细胞 A 细胞内外
神经干/复合神经纤维
A
细胞外
单向
“全”或“无”
双向
非“全”或“无”
18
0V 0.4V 0.7V
0.25V 0.5V 0.8V
0.3V
0.6V 0.9V
3
1. 3器材( Experimental apparatus) RM6240 生物信号处理系统
(RM6240 multichannel physiological recording and processing system )(成都仪器厂)、神经标本盒( nerve chamber )。
RM6240C微机生物信号处理系统
1.5 仪器连接和参数 (Apparatus junction and parameter) 神经干 标本盒两对引导电极分别接微机生物信号处理系统1、2通道。 刺激 器输出接刺激电极。1、2通道时间常数0.02s、滤波频率3 KHz、灵敏 度5 mV,采样频率:100 KHz,扫描速度:0.2ms/div。单刺激方式, 电压1.0 V,波宽0.1 ms,延迟1 ms,同步触发。
刺激电极
引导电极 引导电极
(1ch)
Am
Dm
11
刺激伪迹(Stimulus artifact) 刺激
伪迹
刺激器 地
放大器 地
+
-
R-
i-
R+
i+
刺激电流
刺激伪迹是刺激电流通过导电介质扩散至两引导电极而形成的电位 差信号。
12
13
14
(1)为什么能引导出双相动作电位,其原理是什么?
胞外
- A = B
假设1:神经纤维多寡使 Ap>An。实验验证
假设2: NF传导速度的 不同使Ap>An。实验验证
假设3:BAP是由不对称 正相波和负相波叠加而成, 实验验证
8
2. 观察(observations)
2.1 测定中枢端引导的双相动作电位(biphasic action potential, BAP) 用 1.0 V 电压,波宽0.1ms 方波刺激神经干末梢端,测定中枢端BAP正、负向振 幅(amplitude,A)和时程(duration,D)
υ= S R1- R2- / Δt 计算出AP的传导速度。
+-
R1- R1 +
R2- R2 +
Central end
S R1- R2-
Peripheral end
υ=
S R1- R2-
Δt
Δt
10
2.5 测定单相动作电位 (monophasic action potential,MAP) 用镊子 夹伤对1对引导电极间的神经 干,然后用1.0V电压,波宽 0.1ms的单个方波激刺激神经 干中枢端,测定末梢端MAP振 幅和时程。
Peripheral end
刺激电极
引导电极 引导电极
Central end
A1chp A1chn
D1chp
D1chn
A1chp >4mV
Positive negative
A2chp
A2chn
D2chp
D2chn
9
2.4 兴奋传导速度的测定 用1.0V电压,波宽0.1ms的单个方波激刺激神经
干中枢端,测定第1和第2对引导电极引导CAP起点的时间差Δt ,根据
A <B
外 +++++++++ 外 + +++++++
内 ------------ 内 -+---------
A= B
外 ++++-++++ 内 -----+-----
A>B
外 ++++++-++ 内 --------+--
15
(2)为什么AP1较AP2出现早且波形幅度大呢?
粗
细
16
2. 阈强度、最大刺激强度
S+ S- E R1 - R1+ R2- R2+
刺激 电极
引导 电极
引导 电极
神经干标本盒
S+、S-刺激电极,E接地电极 ,r1- 、r1+和r2- 、r2+引导电 极,
4
仪器连接
RM6240C微机生物信号处理系统
神经干标本盒。
S+ S- E R1 - R1+ R2- R2+
神经干标本盒两对引导电极分别接微机生物信号处理系统1、2通道
23
随着波间隔的缩小, 越来越多神经纤维在 接受第二个刺激时已 处于第一个刺激诱发 的动作电位的不应期, 所产生的复合动作电 位波幅就减小了。
24
S1 S2
r1 r2
r3 r4
5、 单相动作电位
(1)彻底夹伤r1与r2之间神经干
(2)产生单相AP原因 兴奋不能传导至B点
25
19
3.测定传导速度(自动/手动)
(1)V=S/t(m/s)
(2)AP1与AP2的波峰的时差 r1点与r3点间的距离
20
S1 S2
S(cm)
r1 r2
r3 r4
21
4.检测兴奋性周期变化
• 绝对不应期 ∞
0
• 相对不应期 阈上
• 超常期
阈下
• 低常期
阈上
22
最大刺激强度
保持刺激强度和波宽不变