凝结水溶氧大原因分析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

凝结水溶氧大原因分析及解决方案探讨

火电厂机组凝结水溶解氧是电厂化学监督的主要指标之一,凝结水溶氧高低将直接影响机组的安全、经济运行,根据电力技术监督的规定要求,300MW亚临界发电机组,凝结水溶氧含量应≤30μg/L。但国内投运的300MW机组,特别是国产机组,普遍存在凝结水溶解氧超标且长期不合格的问题,因此,掌握凝结水溶氧高的各方面因素,并能及时地查找消除对发电机组的健康经济运行显得尤为重要。

1凝结水溶氧超标对发电机组的危害

凝结水含氧量过大对机组造成的危害主要有以下几方面:

1.1 缩短设备的寿命凝结水溶解氧大幅度超标或者长期不合格,会加速凝结水管道设备腐蚀及炉前热力系统铁垢的产生。凝结水溶解氧严重超标时,还会导致除氧器后给水溶解氧超标,影响锅炉受热面传热效率,加速锅炉管道设备腐蚀结垢乃至发生锅炉爆管等事故,严重威胁机组的安全、经济运行。

1.2 降低回热设备的换热效率在汽轮机的回热系统中,采用的是表面式换热器,设备的腐蚀产物附着在换热面上,形成疏松的附着层,同时,凝结水中含氧过多,会使换热面上形成一层薄膜,均使换热热阻增大,降低循环的热效率。

1.3 影响机组的真空为了保证机组的稳定经济运行,凝汽器必须处于高度的

真空状态。过多的空气漏入凝汽器,会造成真空降低,一方面会影响机组的经济性,严重时将降低机组的出力;另一方面,也使得抽气系统的抽气负荷增加,增加了厂

用电量。

2影响凝结水溶氧的因素

由于凝汽器、空气系统及凝结水泵正常运行中处于负压状态,系统中的每个不严密处都有可能漏入空气而影响凝结水的溶氧含量。归结起来有如下几个方面: 2.1 化学制水设备及凝汽器补水方式特点对凝结水溶解氧的影响

凝汽器补水来源于化学制备的除盐水,除盐水溶氧指标合格与否将对凝结水溶氧产生最直接的影响,很多电厂在一定程度上忽视对除盐水溶氧指标的控制,大量的实验结果表明,除盐水溶氧≤100ug/l时,凝结水溶氧即能得到保障。现阶段大部分电厂化学制水除碳器不外乎真空除气器和鼓风式两种,在除二氧化碳的

同时,水中其他溶解气体(如氧气)也同时被除去,而两者由于工作原理的不同,除氧效果也不一样,一般真空式除氧效果要好于鼓风式的。另外除盐水箱的严密性、凝汽器补水管道布置及补水管道结构、补水量大等原因也可导致凝结水溶氧超标。

2.2 凝结水泵密封及阀门填料盘根

凝结水泵是处于负压状态下运行的,其采用盘根加密封水的方式密封,密封

水来自泵出口的压力水。当泵在备用状态时,可能造成水密封不严格,空气漏入泵内使得凝结水的含氧量增加,凝结水溶氧超标。

凝结水泵入口阀门填料室使用一般的填料盘根密封,当阀门盘根老化而未及

时更换时,空气漏入系统,造成凝结水溶氧超标。

2.3 给水泵密封水回水对凝结水溶解氧的影响

大多数国产300MW火力发电机组给水泵密封形式,均采用凝结水密封,给水泵密封水高压回水至除氧器,低压回水经多级水封直接进入凝汽器热水井。运行实践表明,在变工况运行时,多级水封运行不稳定,水封破坏,造成给水泵密封水低压回水系统负压泄漏,影响凝汽器真空严密性,同时造成密封凝结水溶解氧升高。

2.4凝结水过冷度

凝结水过冷度的存在会威胁机组运行的安全性和可靠性。凝结水温度过低,即凝结水水面上的蒸汽分压力的降低,气体分压力的增高,使得溶解于水中的气体含量增加,因为溶于凝结水的气体量和热井水面上气体的分压力成正比。因此若凝结水出现过冷度,则其含氧量必然增加。大量试验表明,凝结水过冷度高达5度以上时,对凝结水溶氧的影响便比较明显。

2.5其它附加流体排入凝汽器

排入凝汽器的附加流体还高加、低加的疏水、轴封加热器疏水、暖风器疏水。这些附加流体排入凝汽器中,由于排入位置选择不当、参数不当,会造成凝结水溶氧超标。

3解决凝结水溶氧超标的方案

3.1机组补水系统改造

a.常规设计中,凝汽器补水直接由管道引入凝汽器热井,没有充分利用凝汽

器的真空除氧功能。经多处实地考察调研后,在机组检修期,将凝汽器补水改造为补水至凝汽器喉部,并在管道上加装补水雾化喷头,保证补水均匀、雾化良好,加大凝结水补水和蒸汽的接触面,利用凝汽器真空除氧作用加速热传导以利溶氧的析出,以达到凝结水补水除氧效果。

b.加强化学制备除盐水的溶氧控制,加强除碳器除气效果。

c.除盐水箱采用胶囊密封,在一定程度上隔离了空气。

3.2重视机组检修时的灌水找漏

机组正常运行时,凝结水系统处于负压状态,各处泄漏点不易检查发现,因此应在机组每次大小修时,采取向凝汽器汽侧灌注除盐水的方法进行负压系统的找漏。除盐水水面灌至末级叶片100mm处,真空系统充满水后,利用水的静压,可较容易地找到泄漏点,并对找到的泄漏点进行彻底的消除。

3.3增强凝汽器的除氧效果

凝汽器相当于一个真空式除氧器,除氧效果的好坏对凝结水溶氧有直接的影响。为了进一步改善凝结水的品质,在热水井内增装淋水除氧装置。具体措施是在热水井的上部距凝汽器底部500mm处垂直交叉加装了2层角钢,角钢间距30mm,层间距50mm,每层用角钢20根。凝结水击溅在角钢上,形成细小水流,充分分散,增加了水流的表面积,提高了凝汽器的除氧效果,从而减少了凝结水的溶氧。

3.4降低凝结水的过冷度

现代大型电站凝汽器通常均为回热式的,具有合理设计的管束结构,汽阻极小,在额定的设计工况下运行时,凝结水过冷度实际可为零。在这种情况下,凝结水过冷度主要受凝汽设备运行1一况因素的影响,其中最重要的因素是凝汽器冷却水的人口温度和流量。试验与运行经验表明,在一定的蒸汽负荷下,当冷却水入口温度降低或流量增加时,凝汽器压力降低,真空增加,进入热井的凝结水的过冷度将增大。

为此,在冬季冷却水温较低时,为了消除或尽量减小凝结水过冷度并节约厂用电,应减小冷却水流量。由于现代大型汽轮机循环水系统均采用单元制配置,降低循环冷却流量可通过改变水泵丁作叶片旋转角度来调节出力,或用改变电动机电极对的数目改变转速来改变出力,如上述措施均不能执行,必要时可对凝汽

相关文档
最新文档