碳纳米管在电化学中的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
碳纳米管在电化学中的应用
【摘要】对碳纳米管修饰电极的制备方法、应用以及碳纳米管修饰电极的发展趋势作比较全面的综述。
【关键词】碳纳米管;化学修饰电极
Application of the Carbon nanotube in
electrochemistry
Abstract The methods of preparation, applications and developing trends of carbon nanotube modified electrodes in the field of electrochemistry were reviewed.
Key words Electrochemistry Carbon nanotube modified electrodes
碳纳米管,又名巴基管(buckytube),是1991年由日本科学家饭岛澄男(Sumio Iijima)在高分辨透射电镜(HRTEM)下发现的一种针状的管形碳单质。它以特有的力学、电学和化学性质,以及独特的准一维管状分子结构和在未来高科技领域中所具有的潜在应用价值,迅速成为化学、物理及材料科学等领域的研究热点。目前,碳纳米管在理论计算、制备和纯化生长机理、光谱表征、物理化学性质以及在力学电学、化学和材料学等领域的应用研究方兴未艾,在一些方面已取得重大突破。碳纳米管(CNT)的发现,开辟碳家族的又一同素异形体和纳米材料研究的新领域。
由于CNT具有良好的导电性、催化活性和较大的比表面积,可使过电位大大降低及对部分氧化还原蛋白质能产生直接电子转移现象,因此被广泛用于修饰电极的研究。碳纳米管在作为电极用于化学反应时能促进电子转移。碳纳米管的电化学和电催化行为研究已有不少报道。
1碳纳米管的分类
CNT属于富勒碳系,管状无缝中空,具有完整的分子结构,由碳六元环构成的类石墨平面卷曲而成,其中每个碳原子通过sp2杂化与周围3个碳原子发生完全键合,各单层管的顶端有五边形或七边形参与封闭。CNT的径向尺寸为纳米量级,轴向尺寸为微米量级,具有较大的长径比。由单层石墨片卷积而成的称为单壁碳纳米管(SWNT),制备时管径可控,一般在1~6 nm之间,当管径>6 nm后CNT 结构不稳定,易塌陷。SWNT轴向长度可达几百纳米甚至几个微米。由两层以上柱状碳管同轴卷积而成的称为多壁碳纳米管(MWNT),层间距约为0.34 nm。
MWNT 管径约为几个纳米到几十个纳米,长度一般在微米级,最长者可达毫米级(图
1)。
图1 碳纳米管结构图
2 碳纳米管修饰电极的制备方法
用通常方法制备出的CNT 样品一般都含有金属催化剂颗粒和无定形碳等杂质,所以应用前需要经过纯化步骤。纯化后的CNT 通常是一种相互缠绕的,找不到终端的线团状结构,管壁间因存在强的范德华力而极易发生团聚且不溶于任何溶剂,这些既不利于其在电极表面的修饰也不利于修饰后其优点的发挥。人们一般采用化学剪切和对CNT 进行修饰的方法解决这些问题。
制备碳纳米管修饰电极的方法很多,这里介绍常用的几种方法。
2.1 涂膜法
把分散好的CNT 滴涂到基底玻碳、石墨、碳糊和金等电极上,然后自然晾干或红外灯烘烤挥发去溶剂/分散剂。目前此法最为常用。邹如意[1]
等以丙酮为分散剂,滴涂完后在氮气氛中自然晾干。考察修饰剂(CNT 的分散液)的用量对电极性能的影响,发现修饰剂的量太大时,造成膜层太厚,因而阻碍电子的传递,使电极的性能变差。胡圣水[2]等以DHP 为分散剂,滴涂完后在红外灯下烤干,同样发现修饰剂的量太大时电极的性能变差。这就意味着无论是晾干还是烘烤都不能把分散剂全部挥发掉,其残留量将对修饰效果产生不可忽视的影响。
单壁碳纳米管
直径为
1-6 nm 多壁碳纳米管 直径 nm → μm
2.2 电聚合法
Hughes[3]等将羧基化的CNT分散在吡咯单体溶液中,通过电聚合制备了MWNT-Ppy复合膜修饰电极。其成功基于CNT上的羧基在溶液中失去质子而带负电荷,在吡咯阳极氧化过程中进行掺杂,从而共聚在电极表面。
2.3 嵌入法
王宗花[4]等把预处理好的石墨电极在CNT上研磨,借助机械力、化学和物理的吸附作用把CNT附着在电极表面。通过与涂膜法制备的修饰电极做对比,发现嵌入法制备的电极呈现出更好的特性,不但对多巴胺和抗坏血酸有更强的电催化性,而且还能使两者的峰电位分开。
2.4 吸附法
陈荣生[5]等认为,由于CNT与碳纤维都有类似石墨的平面结构,所以CNT可以吸附在碳纤维表面形成较强的分子间力。他们制得的修饰电极可以用水直接冲洗而不影响活性。
2.5 层层自组装法
Lanqun Mao[6]等利用层层自组装的方法制作了(PDDA/MWNT)5/GC修饰电极,实现了在AA存在下对DA的选择性测定,该CNT多层修饰膜在电极表面均匀分布,性质稳定,组装后CNT仍保留了较高的电催化行为。
3碳纳米管在电化学方面的应用
3.1 碳纳米管修饰电极在神经递质分析中的应用
多巴胺(DA)是一种重要的儿茶酚胺类神经递质,也是碳纳米管修饰电极研究中涉及最多的对象之一。采用CNT修饰电极能明显改善DA在常规电极上过电位高、电极反应缓慢、灵敏度低等问题。此外,该类电极还对其共存物抗坏血酸(AA)、尿酸(UA)等有很好的电分离能力。
Britto[7]等首先将碳纳米管制成电极并用于对神经递质多巴胺的电催化氧化,开辟碳纳米管应用的新领域。多巴胺在这种碳纳米管电极上能发生可逆的两电子电化学反应,其反应的表观速率常数为0.17 cm-1,说明碳纳米管对多巴胺电化学反应具有很好的电催化作用。
王宗花[4]等在多巴胺和抗坏血酸共存时进行两种物质的同时测定,并对电催化机理进行探讨。实验结果都表明用电化学方法可以将两者分离开。而且峰电流强度与浓度呈线性关系,检出限也较低。在裸玻碳或金电极上,AA对DA的测定有干扰