几种安全性分析方法的比较

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对安全性分析的几种方法的比较

FMEA故障模式影响分析、FTA故障树分析;

PFMEA过程失效模式及后果分析、HAZOP危险与可操作性分析、ZSA区域安全性分析、PHA初步危险分析。

区别:

一、PFMEA(Process Failure Mode and Effects Analysis)过程失效模式及后果分析

PFMEA是由负责制造/装配的工程师/小组主要采用的一种分析技术,用以最大限度地保证各种潜在的失效模式及其相关的起因/机理已得到充分的考虑和论述。

PFMEA的分析原理

PFMEA的分析原理如下所示,它包括以下几个关键步骤:

(1)确定与工艺生产或产品制造过程相关的潜在失效模式与起因;

(2)评价失效对产品质量和顾客的潜在影响;

(3)找出减少失效发生或失效条件的过程控制变量,并制定纠正和预防措施;

(4)编制潜在失效模式分级表,确保严重的失效模式得到优先控制;

(5)跟踪控制措施的实施情况,更新失效模式分级表。

模式及后果分析

(1)“过程功能/要求”:是指被分析的过程或工艺。该过程或工艺可以是技术过程,如焊接、产品设计、软件代码编写等,也可以是管理过程,如计划编制、设计评审等。尽可能简单地说明该工艺过程或工序的目的,如果工艺过程包括许多具有不同失效模式的工序,那么可以把这些工序或要求作为独立过程列出;

(2)“潜在的失效模式”:是指过程可能发生的不满足过程要求或设计意图的形式或问题点,是对某具体工序不符合要求的描述。它可能是引起下一道工序的潜在失效模式,也可能是上一道工序失效模式的后果。典型的失效模式包括断裂、变形、安装调试不当等;

(3)“失效后果”:是指失效模式对产品质量和顾客可能引发的不良影响,根据顾客可能注意到或经历的情况来描述失效后果,对最终使用者来说,失效的后果应一律用产品或系统的性能来阐述,如噪声、异味、不起作用等;

(4)“严重性”:是潜在失效模式对顾客影响后果的严重程度,为了准确定义失效模式的不良影响,通常需要对每种失效模式的潜在影响进行评价并赋予分值,用1-10分表示,分值愈高则影响愈严重。“可能性”:是指具体的失效起因发生的概率,可能性的分级数着重在其含义而不是数值,通常也用1—10分来评估可能性的大小,分值愈高则出现机会愈大。“不易探测度”:是指在零部件离开制造工序或装备工位之前,发现失效起因过程缺陷的难易程度,评价指标也分为1—10级,得分愈高则愈难以被发现和检查出;

(5)“失效的原因/机理”:是指失效是怎么发生的,并依据可以纠正或控制的原则来描述,针对每一个潜在的失效模式在尽可能广的范围内,列出每个可以想到的失效起因,如果起因对失效模式来说是唯一的,那么考虑过程就完成了。否则,还要在众多的起因中分析出根本原因,以便针对那些相关的因素采取纠正措施,典型的失效起因包括:焊接不正确、润滑不当、零件装错等;

(6)“现行控制方法”:是对当前使用的、尽可能阻止失效模式的发生或是探测出将发生的失效模式的控制方法的描述。这些控制方法可以是物理过程控制方法,如使用防错卡具,或者管理过程控制方法,如采用统计过程控制(SPC)技术;

(7)“风险级(RPN)”:是严重性、可能性和不易探测性三者的乘积。该数值愈大

则表明这一潜在问题愈严重,愈应及时采取纠正措施,以便努力减少该值。在一般情况下,不管风险级的数值如何,当严重性高时,应予以特别注意;

(8)“建议采取的措施”:是为了减少风险发生的严重性、可能性或不易探测性数值而制定的应对方案,包括行动计划或措施、责任人、可能需要的资源和完成日期等。当失效模式排出先后次序后应首先对排在最前面的风险事件或严重性高的事件采取纠正措施,任何建议措施的目的都是为了阻止其发生,或减少发生后的影响和损失;

(9)“措施结果”:是对上述“建议采取的措施”计划方案之实施状况的跟踪和确认。在明确了纠正措施后,重新估计并记录采取纠正措施后的严重性、可能性和不易探测性数值,计算并记录纠正后的新的风险级值,该数值应当比措施结果之前的风险级值低得多,从而表明采取措施后能够充分降低失效带来的风险。

二、HAZOP危险与可操作性分析

HAZOP是以系统工程为基础的一种可用于定性分析或定量评价的危险性评价方法,用于探明生产装置和工艺过程中的危险及其原因,寻求必要对策。通过分析生产运行过程中工艺状态参数的变动,操作控制中可能出现的偏差,以及这些变动与偏差对系统的影响及可能导致的后果,找出出现变动可偏差的原因,明确装置或系统内及生产过程中存在的主要危险、危害因素,并针对变动与偏差的后果提出应采取的措施。

三、ZSA区域安全性分析

ZSA是一种联系的思维方式,其理论是建立在指一切事物和现象之间以及构成事物诸要素之间的互相影响、互相作用和互相依赖。

ZSA的对象是分系统和设备,及之间的影响,所以其对FMEA和FTA所提供的设备的故障信息,是由选择的而不需要设备的所有部件的故障信息。

例如飞的机区域安全性分析的目的是为了识别由于飞机系统和设备安装中的缺陷或不正确的维修所造成的不可靠的潜在区域。

四、PHA初步危险分析

预先危险分析也称初始危险分析,是在每项生产活动之前,特别是在设计的开始阶段,对系统存在危险类别、出现条件、事故后果等进行概略地分析,尽可能评价出潜在的危险性。因此,该方法也是一份实现系统安全危害分析的初步或初始的计划,是在方案开发初期阶段或设计阶段之初完成的。

预先危险分析的主要目的1)识别危险,确定安全性关键部位;2)评价各种危险的程度;3)确定安全性设计准则,提出消除或控制危险的措施。此外,预先危险分析还可提供下述信息:1)为制(修)定安全工作计划提供信息;2)确定安全性工作安排的优先顺序;3)确定进行安全性试验的范围;4)确定进一步分析的范围,特别是为故障树分析确定不希望发生的事件;5)编写初始危险分析报告,作为分析结果的书面记录;6)确定系统或设备安全要求,编制系统或设备的性能及设计说明书。

预先危险性分析(PHA)从寿命周期的早期阶段开始,因此,分析中的信息仅是一般性的,不会太详细:这些初始信息应能指出潜在的危险及其影响,以提醒设计师们要通过设计加以纠正。这种分析至少应包括以下内容:审查相应的安全性历史资料;列出主要能源的类型,并调查各种能源,确定其控制措施;确定系统或设备必须遵循有关的人员安全、环境安全和有毒物质的安全要求及其它有关的规定;提出纠正措施建议,在完成识别危险、评价危险的严重程度及可能性之后,还应提出如何控制危险的建议。

步骤:

相关文档
最新文档