4. 偏微分方程的数值解法

合集下载

偏微分方程的数值方法

偏微分方程的数值方法

偏微分方程的数值方法偏微分方程(Partial Differential Equations,简称PDEs)是数学中研究的重要分支,广泛应用于物理学、工程学等领域中。

由于一些复杂的PDEs难以找到解析解,因此需要借助数值方法进行求解。

本文将介绍偏微分方程的数值解法,包括有限差分法、有限元法和谱方法等。

一、有限差分法(Finite Difference Method)有限差分法是解偏微分方程最常用的数值方法之一。

它将偏微分方程中的导数用差商来近似,将空间离散成若干个小区间和时间离散成若干个小时间步长。

通过求解离散化后的代数方程,可以得到原偏微分方程的数值解。

以二维的泊松方程为例,偏微分方程可以表示为:∂²u/∂x² + ∂²u/∂y² = f(x, y)其中,u(x, y)为未知函数,f(x, y)为已知函数。

我们可以将空间离散成Nx × Ny个小区间,时间离散成Nt个小时间步长。

利用中心差分法可以近似表示导数,我们可以得到离散化的代数方程组。

二、有限元法(Finite Element Method)有限元法是一种重要的数值解PDEs的方法。

它将求解区域离散化成一系列的单元,再通过插值函数将每个单元上的未知函数近似表达。

然后,利用加权残差方法,将PDEs转化成代数方程组。

在有限元法中,采用形函数来近似未知函数。

将偏微分方程转化为弱形式,通过选取适当的形函数和权函数,可以得到离散化后的代数方程组。

有限元法适用于求解各种各样的偏微分方程,包括静态和动态、线性和非线性、自由边界和固定边界等问题。

三、谱方法(Spectral Method)谱方法是一种基于特殊函数(如正交多项式)的数值方法,用于解PDEs。

谱方法在求解偏微分方程时,利用高阶连续函数拟合初始条件和边界条件,通过调整特殊函数的系数来近似求解解析解。

谱方法具有高精度和快速收敛的特点,适用于各种偏微分方程求解。

偏微分方程数值解法

偏微分方程数值解法

偏微分方程数值解法
偏微分方程数值解法是一种利用计算机技术获取偏微分方程数值解的方法,它主要目标是解决微分方程的精确、快速、可靠的数值解。

偏微分方程数值解法交叉应用于分析数学、力学、电磁学等不同领域的各种模型,能够大大提高解决微分方程的效率。

偏微分方程数值解法大致分为两个方面:一是求解偏微分方程的离散数值解法;二是精确解对分解数值解法,如多阶谱方法、牛顿法和共轭梯度法等。

其中,离散数值解法是把偏微分方程抽象成一系列数值求解问题,并进行递推叠加求解,而精确解对分解数值解法则是通过优化问题方式求解微分方程精确解,以达到精确求解的目的。

偏微分方程数值解法的有效解决的方法,给科学与技术研究带来了很大的帮助。

它不但克服了无法精确解决某些复杂偏微分方程的困难,而且有更快的求解效率,也可以很好地满足实际科技应用的需要。

偏微分方程数值解法的应用已经普遍发挥出重要的作用,不仅可以解决物理科学问题,还可以解决经济学、商业投资、财务分析等复杂的数学模型。

因此,偏微分方程数值解法的应用已在各个领域得到了广泛的应用,为科学与技术研究提供了很大的帮助,在微分方程求解方面产生了重要的影响。

偏微分方程 数值解

偏微分方程 数值解

偏微分方程数值解
偏微分方程是描述自然现象和工程问题中的物理量随空间和时
间变化的数学模型。

由于这些方程的解析解很难求解,数值解法成为求解偏微分方程的重要手段之一。

偏微分方程数值解的基本思路是将偏微分方程转化为差分方程,然后通过数值计算得到一组离散解。

常用的数值方法有有限差分法、有限元法、谱方法等。

有限差分法是偏微分方程数值解的最基本方法之一。

它将偏微分方程中的导数用差分近似替代,然后通过数值迭代得到离散解。

有限元法则是将连续的区域离散化成若干个小的单元,然后在每个单元内应用一些基函数,通过求解一个线性方程组得到离散解。

谱方法则是利用函数的三角函数展开式,通过对展开系数的求解得到离散解。

对于不同的偏微分方程,选择不同的数值方法可以得到不同的精度和计算效率。

因此,对于偏微分方程数值解的研究是数值计算领域中的一个重要研究方向。

- 1 -。

偏微分方程数值求解方法

偏微分方程数值求解方法

偏微分方程数值求解方法偏微分方程数值求解方法是使用计算机算法来近似求解偏微分方程的过程。

偏微分方程是描述物理现象和自然现象的主要工具,但大多数偏微分方程不能通过解析方式求解,因此需要使用数值方法进行近似求解。

常用的偏微分方程数值求解方法包括有限差分法、有限元法、谱方法、边界元法和逆时空方法等。

1. 有限差分法有限差分法是一种最简单的数值求解方法,它将偏微分方程中的导数离散化为差分的形式,然后通过有限差分公式求解。

在有限差分法中,将求解区域离散化为网格,然后在每个节点上求解方程,通过节点之间的连通关系建立系数矩阵,最终利用线性代数方法求解线性方程组。

2. 有限元法有限元法是一种广泛运用的数值求解方法,它将求解区域离散化为有限个子域,然后在每个子域内近似求解方程。

有限元法是一种基于变分原理的方法,通过将偏微分方程转化为变分问题,然后在有限维的函数空间中建立逼近函数,最终利用变分方法求解方程。

3. 谱方法谱方法是一种基于傅里叶变换的数值求解方法,它将求解域上的函数表示为傅里叶级数的形式,然后通过求解系数来近似求解方程。

谱方法具有高精度、高效率的优点,但对于非周期边界和奇异性问题可能不适用。

4. 边界元法边界元法是一种基于积分方程的数值求解方法,它将偏微分方程转化为边界积分方程,然后在求解区域表面上求解方程。

边界元法不需要离散化求解区域,仅需在求解区域表面上采集节点,并通过节点之间的关系建立系数矩阵。

5. 逆时空方法逆时空方法是一种利用观测数据反演偏微分方程的数值求解方法,它通过最优化算法将观测数据反演为偏微分方程的参数。

逆时空方法对模型假设和观测数据的噪声较为敏感,但可以应用于各种偏微分方程的求解。

偏微分方程的数值求解方法

偏微分方程的数值求解方法

偏微分方程的数值求解方法偏微分方程是描述自然现象的重要工具,例如描述热传导、电磁波传播、流体运动等。

然而大多数情况下,这些方程很难通过解析方式求解,因此需要数值求解方法。

本文将介绍偏微分方程的数值求解方法及其应用。

一、有限差分法有限差分法是一种常见的偏微分方程数值求解方法。

它将原本连续的区域离散化,将偏微分方程转化为差分方程。

例如对于一维热传导方程:$$\frac{\partial u}{\partial t} = \alpha\frac{\partial^2 u}{\partial x^2} $$其中 $u(x, t)$ 是温度,$\alpha$ 是热扩散系数。

我们可以选择将空间分成 $N$ 个网格,时间分成 $M$ 个步骤。

则有:$$u_i^{m+1} = u_i^m + \frac{\alpha\Delta t}{\Deltax^2}(u_{i+1}^m - 2u_i^m + u_{i-1}^m)$$其中 $u_i^m$ 表示在位置 $i\Delta x$,时间 $m\Delta t$ 时的温度值。

这是一个显式求解方程,可以直接按照时间步骤迭代计算。

不过由于它的误差可能会增长,因此需要小心选择时间步长和空间步长,以保证误差不会过大。

二、有限元法有限元法是一种更加通用的偏微分方程数值求解方法。

它将连续区域离散化成一些小段,称为单元。

然后针对每个单元,将其上的偏微分方程转化为局部插值函数的方程求解。

例如对于一维波动方程:$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partialx^2}$$我们可以选择将空间分成 $N$ 个网格,用有限元方法将每个网格分成若干个单元。

则对于每个单元 $i$,我们可以得到一个局部插值函数 $u^i(x, t)$ 来近似解该单元上的偏微分方程。

这里不再赘述该函数的形式。

另外,我们还需要满足界面上的连续性和斜率匹配条件,以保证整体解是连续的。

偏微分方程数值解法

偏微分方程数值解法

偏微分方程数值解法偏微分方程(Partial Differential Equations,简称PDE)是数学中重要的研究对象,其在物理学、工程学、经济学等领域有广泛的应用。

然而,对于大多数偏微分方程而言,很难通过解析方法得到精确解,因此需要借助数值解法来求解。

本文将介绍几种常见的偏微分方程数值解法。

一、有限差分法(Finite Difference Method)有限差分法是一种常见且直观的偏微分方程数值解法。

其基本思想是将偏微分方程中的导数通过差分近似来表示,然后通过离散化的方式转化为代数方程组进行求解。

对于一维偏微分方程,可以通过将空间坐标离散化成一系列有限的格点,并使用中心差分格式来近似原方程中的导数项。

然后,将时间坐标离散化,利用差分格式逐步计算每个时间步的解。

最后,通过迭代计算所有时间步,可以得到整个时间域上的解。

对于二维或高维的偏微分方程,可以将空间坐标进行多重离散化,利用多维的中心差分格式进行近似,然后通过迭代计算得到整个空间域上的解。

二、有限元法(Finite Element Method)有限元法是另一种重要的偏微分方程数值解法。

其基本思想是将求解区域分割成有限数量的子区域(单元),然后通过求解子区域上的局部问题来逼近整个求解区域上的解。

在有限元法中,首先选择适当的形状函数,在每个单元上构建近似函数空间。

然后,通过构建变分问题,将原偏微分方程转化为一系列代数方程。

最后,通过求解这些代数方程,可以得到整个求解区域上的解。

有限元法适用于各种复杂的边界条件和几何构型,因此在实际工程问题中被广泛应用。

三、谱方法(Spectral Methods)谱方法是一种基于特定基函数(如切比雪夫多项式、勒让德多项式等)展开解的偏微分方程数值解法。

与有限差分法和有限元法不同,谱方法在整个求解区域上都具有高精度和快速收敛的特性。

在谱方法中,通过选择适当的基函数,并利用其正交性质,可以将解在整个求解区域上展开为基函数系数的线性组合。

高等数学中的偏微分方程数值解法

高等数学中的偏微分方程数值解法

偏微分方程是数学中的一大重要分支,广泛应用于物理、工程、金融等领域。

其求解方法可以分为解析解法和数值解法。

解析解法要求方程具有可积性,适用于一些简单的方程,但是对于复杂的方程往往无法得到解析解。

而数值解法通过将方程离散化,利用数值计算方法得到数值解,是一种弥补解析解法不足的重要手段。

在高等数学中,偏微分方程数值解法主要包括差分法、有限元法和有限差分法。

其中,差分法是最早应用于求解偏微分方程的数值方法之一。

差分法通过将偏微分方程中的导数用差商的形式来近似表示,将连续的问题转化为离散的问题,再通过计算机程序来进行求解。

差分法的优点是简单易懂、计算速度快,适用于一些较为简单的偏微分方程。

但是差分法的精度受到离散化步长的影响,不适用于一些对精度要求较高的问题。

有限元法是一种更为广泛应用的偏微分方程数值解法。

有限元法通过将求解区域分割成有限多个小区域,用简单形状的基函数来逼近真实解,再通过求解线性方程组得到数值解。

有限元法的优点在于适用于复杂的几何形状、能够处理不规则的边界条件,并且精度较高。

有限元法还具有较好的可扩展性,可以处理大规模的求解问题。

因此,有限元法在工程领域的应用非常广泛。

有限差分法是一种通过计算导数来逼近微分方程的数值解法。

有限差分法基于泰勒展开公式,将微分算子在某点处的展开为有限多个导数的差商的线性组合。

通过将微分算子离散化,可以将偏微分方程转化为代数方程组,再通过求解方程组来得到数值解。

有限差分法的优点在于简单易懂,计算速度较快。

但是由于差商的导数逼近误差,有限差分法的精度受到离散化步长的影响,需要选择合适的步长来保证精度。

总的来说,高等数学中的偏微分方程数值解法是研究偏微分方程数值计算的一大热点和难点。

不同的数值方法适用于不同的问题,需要根据具体情况来选择适合的数值方法。

在求解偏微分方程时,还需要注意数值误差对结果的影响,并通过适当选择离散化步长和网格数量等参数来提高数值解的精度。

随着计算机技术的发展,偏微分方程数值解法将会越来越广泛地应用于实际问题的求解中。

偏微分方程的数值解法

偏微分方程的数值解法

偏微分方程的数值解法偏微分方程(Partial Differential Equation,PDE)是描述物理、化学、工程学等许多科学领域中变化的方程。

由于PDE的求解通常是困难的,因此需要使用数值方法。

本文将介绍偏微分方程的数值解法。

一般来说,求解PDE需要求得其解析解。

然而,对于复杂的PDE,往往不存在解析解,因此需要使用数值解法求解。

数值解法可以分为两类:有限差分法和有限元法。

有限差分法是将计算区域分成网格,利用差分公式将PDE转化为离散方程组,然后使用解线性方程组的方法求解。

有限元法则是将计算区域分成有限数量的单元,每个单元内使用多项式函数逼近PDE的解,在单元之间匹配边界条件,得到整个区域上的逼近解。

首先讨论有限差分法。

常见的差分公式包括前向差分、后向差分、中心差分等。

以一维热传导方程为例,其偏微分方程形式为:$$ \frac{\partial u}{\partial t}=\frac{\partial^2 u}{\partial x^2} $$其中,$u(x,t)$表示物理量在时刻$t$和位置$x$处的值。

将其离散化,可得到:$$ \frac{u(x_i,t_{j+1})-u(x_i,t_j)}{\Delta t}=\frac{u(x_{i+1},t_j)-2u(x_i,t_j)+u(x_{i-1},t_j)}{\Delta x^2} $$其中,$x_i=i\Delta x$,$t_j=j\Delta t$,$\Delta x$和$\Delta t$分别表示$x$和$t$上的网格大小。

该差分方程可以通过简单的代数操作化为:$$ u_{i,j+1}=u_{i,j}+\frac{\Delta t}{\Delta x^2}(u_{i+1,j}-2u_{i,j}+u_{i-1,j}) $$其中,$u_{i,j}$表示在网格点$(x_i,t_j)$处的数值解。

由于差分方程中一阶导数的差分公式只具有一阶精度,因此需要使用两个网格点来逼近一阶导数。

偏微分方程数值求解方法

偏微分方程数值求解方法

偏微分方程数值求解方法引言偏微分方程是数学中研究复杂现象的重要工具之一,它在许多领域都有广泛的应用,例如物理学、工程学和生物学等。

通过求解偏微分方程,我们可以获得系统的解析解或数值解,从而揭示底层的物理规律或实现工程设计。

在本文中,我们将介绍偏微分方程数值求解的常见方法,包括有限差分法、有限元法和谱方法等。

我们将详细介绍这些方法的基本原理、数值算法和实际应用。

有限差分法基本原理有限差分法是偏微分方程数值求解中最常用的方法之一。

它将连续的偏微分方程离散化为差分方程,通过计算差分方程的解来近似原方程的解。

有限差分法的基本思想是将求解域划分为离散的网格,然后在网格点上近似表示原方程。

数值算法有限差分法的数值算法主要包括离散化、边界条件处理和迭代求解三个步骤。

首先,我们将连续的偏微分方程在空间和时间上进行离散化,将其转化为差分方程。

然后,我们需要确定边界条件,即在边界上如何近似表示原方程。

最后,通过迭代计算差分方程的解,直到满足收敛条件。

实际应用有限差分法在许多领域都有广泛的应用。

例如,在流体力学中,它可以用来模拟气体或液体的流动。

在热传导方程中,它可以用来求解物体的温度分布。

此外,有限差分法还可以用来模拟结构力学中的弹性变形和振动问题等。

有限元法基本原理有限元法是一种基于分片线性函数空间的数值方法,用于求解偏微分方程。

它将求解域划分为离散的小单元,然后在每个单元上构造局部基函数,通过组合这些基函数来近似表示原方程的解。

数值算法有限元法的数值算法主要包括离散化、单元刚度矩阵的计算和全局方程的组装三个步骤。

首先,我们将连续的偏微分方程在空间上进行离散化,将其转化为离散的代数方程。

然后,针对每个单元,我们需要计算其对应的刚度矩阵和载荷向量。

最后,通过组装所有单元的刚度矩阵和载荷向量,得到全局方程,并通过求解全局方程来计算原方程的近似解。

实际应用有限元法在结构力学、固体力学和流体力学等领域有广泛的应用。

例如,在结构力学中,它可以用来计算材料的应力和变形分布。

第十四章SECTION4偏微分方程的数值解法

第十四章SECTION4偏微分方程的数值解法

§4 偏微分方程的数值解法一、 差分法差分法是常用的一种数值解法.它是在微分方程中用差商代替偏导数,得到相应的差分方程,通过解差分方程得到微分方程解的近似值. 1. 网格与差商在平面 (x ,y )上的一以S 为边界的有界区域D 上考虑定解问题.为了用差分法求解,分别作平行于x 轴和y 轴的直线族.⎩⎨⎧====jhy y ihx x i i (i ,j =0,±1,±2,…,±n ) 作成一个正方形网格,这里h 为事先指定的正数,称为步长;网格的交点称为节点,简记为(i ,j ).取一些与边界S 接近的网格节点,用它们连成折线S h ,S h 所围成的区域记作D h .称D h 内的节点为内节点,位于S h 上的节点称为边界节点(图14.7).下面都在网格D h + S h 上考虑问题:寻求各个节点上解的近似值.在边界节点上取与它最接近的边界点上的边值作为解的近似值,而在内节点上,用以下的差商代替偏导数:()()[]()()[]()()()[]()()()[]()()()[]y x u h y x u y h x u h y x u hy x u h y x u y x u h y x u hy u y h x u y x u y h x u h x u y x u h y x u hyu y x u y h x u h x u ,),(,,1,,2,1,,2,1,,1,,122222222++-+-+≈∂∂∂-+-+≈∂∂-+-+≈∂∂-+≈∂∂-+≈∂∂注意, 1︒ 式中的差商()()[]y x u y h x u h ,,1-+称为向后差商,而()()[]y h x u y x u h,,1--称为向前差商,()()[]y h x u y h x u h,,21--+称为中心差商.也可用向前差商或中心差商代替一阶偏导数.2︒ x 轴与y 轴也可分别采用不同的步长h ,l ,即用直线族⎩⎨⎧====jhy y ihx x j i (i,j =0, ±1, ±2 , ) 作一个矩形网格.图14.72. 椭圆型方程的差分方法[五点格式] 考虑拉普拉斯方程的第一边值问题()()⎪⎪⎩⎪⎪⎨⎧=∈=∂∂+∂∂y x u D y x y ux u S ,,02222μ式中μ(x ,y )为定义在D 的边界S 上的已知函数.采用正方形网格,记u (x i ,y j )=u ij ,在节点(i ,j )上分别用差商 u u u h u u u h i j ij i j i j ij i j -+-+-+-+11211222,,,,,代替2222,yux u ∂∂∂∂,对应的差分方程为u u u h u u u hi j ij i j i j ij i j -+-+-++-+=112112220,,,, (1) 或u u u u u ij i j i j i j i j =+++-+-+141111,,,,即任一节点(i ,j )上u ij 的值等于周围相邻节点上解的值的算术平均,这种形式的差分方程称为五点格式,在边界节点上取()()()h j i ij S j i y x u ∈=,,**μ(2) 式中(x i *,y j *)是与节点(i ,j )最接近的S 上的点.于是得到了以所有内节点上的u ij 值为未知量的若干个线性代数方程,由于每一个节点都可列出一个方程,所以未知量的个数与方程的个数都等于节点的总数,于是,可用通常的方法(如高斯消去法)解此线性代数方程组,但当步长不很大时,用高斯消去法将会遇到很大困难,可用下面介绍的其他方法求解. 若h →0时,差分方程的解收敛于微分方程的解,则称差分方程为收敛的.在计算过程中,由于进行四则运算引起舍入误差,每一步计算的舍入误差都会影响以后的计算结果,如果这种影响所产生的计算偏差可以控制,而不至于随着计算次数的增加而无限增大,则称差分方程是稳定的.[迭代法解差分方程] 在五点格式的差分方程中,任意取一组初值{u ij },只要求它们在边界节点(i ,j )上取以已知值μ(x i *,y j *),然后用逐次逼近法(也称迭代法)解五点格式:()()()()()[]() ,2,1,0411,1,,1,11=+++=+-+-+n u u u u u n j i n j i n j i n j i n ij 逐次求出{u ij (n )}.当(i+1,j ),(i -1,j ),(i ,j -1),(i ,j+1)中有一点是边界节点时,每次迭代时,都要在这一点上取最接近的边界点的值.当n →∞时,u ij (n )收敛于差分方程的解,因此n 充分大时,{u ij (n )}可作差分方程的近似解,迭代次数越多,近似解越接近差分方程的解.[用调节余数法求节点上解的近似值] 以差商代替Δu 时,用节点(i+1,j ),(i -1,j ),(i ,j+1),(i ,j -1)上u 的近似值来表示u 在节点(i ,j )的值将产生的误差,称此误差为余数R ij ,即()()()()()ij j i j i j i j i j i R y x u h y x u h y x u y h x u y h x u =--+++-++,4,,,,设在(i ,j )上给u ij 以改变量δu ij ,从上式可见R ij 将减少4δu ij ,而其余含有u (x i ,y j )的差分方程中的余数将增加δu ij ,多次调整δu ij 的值就可将余数调整到许可的有效数字的范围内,这样可获得各节点上u (x ,y )的近似值.这种方法比较简单,特别在对称区域中计算更简捷.例 求Δu =0在内节点A ,B ,C ,D 上解的近似值.设在边界节点1,2,3,4上分别取值为1,2,3,4(图14.8) 解 记u (A )=u A ,点A ,B ,C ,D 的余数分别为-4u A + u B + u c +5=R A u A -4 u B + u D +7=R Bu A-4 u c + u D +3=R Cu B + u c -4u D +5=R D以边界节点的边值的算术平均值作为初次近似值,即u A (0)=u B (0)=u C (0)=u D (0)=2.5则相应的余数为:R A =0, R B =2, R C = -2, R D =0最大余数为±2.先用δu C =-0.5把R C 缩减为零,u C 相应地变为2,这时R A , R D 也同时缩减(-0.5),新余数是R A =-0.5,R B =2,0=C R , R D =-0.5.类似地再变更δu B =0.5,从而 u B 变为3,则得新余数为0====D C B A R R R R .这样便可消去各节点的余数,于是u 在各节点的近似值为:u A =2.5, u B =3, u C =2, u D =2.5现将各次近似值及余数列表如下:次数调 整 值第n 次近似值及余数u A R A u B R B u C R C u D R D 0 1 2δu C = -0.5 δu B = 0.5 2.5 2.5 2.5 0 -0.5 0 2.5 2.5 3 2 2 0 2.5 2 2 -2 0 0 2.5 2.5 2.5 0 -0.5 0 结果近似值2.5322.5[解重调和方程的差分方法] 在矩形D (x 0≤x ≤x 0+a ,y 0≤y ≤y 0+a )中考虑重调和方程024*******=∂∂+∂∂∂+∂∂=yuy x u x u u ∆取步长h an=,引直线族图14.8⎩⎨⎧+=+=jh y y ihx x 00 (i , j = 0, 1, 2,, n ) 作成一个正方形网格.用差商代替偏导数()()()()()[]{()()()()[]()()()()[]}h y x u h y x u y h x u y h x u h y h x u h y h x u h y h x u h y h x u h y x u h y x u y h x u y h x u y x u 2,2,,2,2,,,,2,,,,8201,-+++-++---++-+-++++--+++-++=上式表明了以(x ,y )为中心时,u (x ,y )的函数值与周围各点函数值的关系,但对于邻近边界节点的点(x ,y ),如图14.9中的A ,就不能直接使用上式,此时将划分网格的直线族延伸,在延伸线上定出与边界距离为h 的点,称这些点为外邻边界节点,如图14.9以A 为中心时,点E ,C 为边界节点,点J ,K 为E ,C 的外邻边界节点,用下法补充定义外邻边界节点J 处函数的近似值u J ,便可应用上面的公式.1︒ 边界条件为()()()S P P x uP u SS ∈==21,μ∂∂μ 时,定义u J =u A -2μ2(E )h .2︒ 边界条件为()()()S P P xuP u SS ∈=∂∂=2221,μμ时,定义u J =2μ1(E )-u A -h 2μ2(E ). [其他与Δu 有关的网格] 1︒ 三角网格(图14.10(a ))取P 0(x ,y )为中心,它的周围6个邻近节点分别为:()()⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫⎝⎛+-⎪⎪⎭⎫⎝⎛+++h y h x P h y h x P y h x P h y h x P h y h x P y h x P 23,2,23,2,,23,223,2,,654321则 R u h u u u h i i +∆+∆=⎪⎭⎫⎝⎛-∑=226102161632式中u i =u (P i ), u 0=u (P 0),R 表示余项. 2︒ 六角网格(图14.10(b ))取P 0(x ,y )为中心,它的三个邻近节点分别为图14.9()⎪⎪⎭⎫ ⎝⎛-+-⎪⎪⎭⎫ ⎝⎛++h y h x P y h x P h y h x P 23,2,,23,2321则 R u u u h i i +∆=⎪⎭⎫⎝⎛-∑=0312334.图14.103︒ 极坐标系中的网格(图14.10(c ))取P 0(r ,θ)为中心,它的四个邻近节点分别为()()()()l r P h r P l r P h r P ++--θθθθ,,,,,,4321而拉普拉斯方程01122222=∂∂+∂∂+∂∂=θ∆u r r u r ru u的相应的差分方程为()()()011221110222134222312=⎪⎭⎫ ⎝⎛+--++++u l r h u u rh u u l r u u h 3. 抛物型方程的差分方法 考虑热传导方程的边值问题()()()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧≥==<<=><<=∂∂-∂∂0,,,,00,0,0,0,021222t t t b u t t u bx x x u t b x x u a t u μμϕ 将[0,b ]分为n 等份,每段长为∆x bn=.引两族平行线(图14.11)图14.11x =x i =i ∆x (i =0,1,2,, n )y =y j =j ∆t (j =0,1,2,, ∆t 取值见后)作成一个长方形的网格,记u (x i ,t j )为u ij ,节点(x i ,t j )为(i ,j ),在节点(i ,j )上分别用(),2,1,1,,2,1Δ2,Δ2,1,11,=-=+---++j n i x u u u t u u ji ij j i ij j i 代替22,xut u ∂∂∂∂,于是边值问题化为差分方程()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧===-===-==+----++ ,2,1,0,Δ,Δ1,,2,1,Δ,2,1,0,1,,2,10Δ2Δ21002,1,121,j t j u t j u n i x i u j n i x u u u a tu u nj j i j i ij j i ijj i μμϕ 记()22x ta ∆∆=λ,差分方程可写成 () ,2,1,1,,2,121,1,11,=-=+-+=-++j n i u u u u ji ij j i j i λλλ (1)由此可按t 增加的方向逐排求解.在第0排上u i 0的值由初值ϕ(i ∆x )确定,j +1排u i ,j +1的值可由第j 排的三点(i +1,j ),(i ,j ),(i -1,j )上的值u i +1,j , u ij ,u i -1,j 确定,而u 0,j +1,u n ,j +1已由边界条件μ1((j +1)∆t )及μ2((j +1)∆t )给定,于是可逐排计算一切节点上的u ij 值.当ϕ(x ), μ1(x )和μ2(x )充分光滑,且λ≤12时,差分方程收敛而且稳定.所以利用差分方程(1)计算时,必须使λ≤12,即()22Δ21Δx at ≤.热传导方程还可用差分方程()0Δ2Δ21,11,1,121,=+---+-++++x u u u a t u u j i j i j i ij j i 代替,此时如已知前j 排u ij 的值,为求第j +1排的u i ,j +1 必须解包含n -1个未知量u u j n j 1111,,,,+-+ 的线性代数方程组,这种差分方程称为隐式格式的差分方程,前面所提的差分方程称为显式格式差分方程.隐式格式差分方程对任意的λ都是稳定的.4. 双曲型方程的差分方法 考虑弦振动方程的第一边值问题()()()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧≥==<<=∂∂=><<=∂∂-∂∂0,,,,00),()0,(,0,0,0,02122222t t t b u t t u b x x t x u x x u t b x x u a tu μμψϕ 用矩形网格,列出对应的差分方程:()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧===-=∆=∆-==-==+--+--+-+ ,2,1,0,Δ,Δ1,,2,1),(,Δ,2,1,1,,2,1,0Δ2)(Δ22100102,1,1221,1,j t j u t j u n i x i t u u x i u j n i x u u u a t u u u nj j i i i j i ij j i j i ij j i μμψϕ 记ω=a tx∆∆与上段一样,利用u u n 022,和在第0排及第1排的已知数值(初始条件)u i 0 , u i 1可计算u i 2,然后用已知的u i 1 , u i 2及u u n 033,可计算u i 3,类似地可确定一切节点上的u ij 值.当ϕ(x ),ψ(x ),μ1(x )和μ2(x )充分光滑,且ω≤1时,差分方程收敛且稳定,所以要取∆∆t ax ≤1.二、 变分方法1. 自共轭边值问题将§3定义的共轭微分算子的概念推广到一般方程.设D 是n E 中的有界区域,S 为其边界,在D 上考虑2k 阶线性微分方程()x f x x uaLu km mi i i ni m m i i n n n=∂∂≡∑∑==++201111 ∂ 的齐次边值问题()r j u l Sj ,,2,10==式中f (x )是D 内的已知函数,l j u 是线性微分算子. 将 ⎰DvLud Ω分部积分k 次得()⎰∑⎰⎪⎪⎭⎫ ⎝⎛+=Ω=S j j j D S v R u R v u vLu d ~,Λd k 1 式中Λ(u ,v )是一个D 上的积分,其被积函数包含u ,v 的k 阶导数;R j 和 R j 是定义在边界S 上的两个线性微分算子.再将Λ(u ,v )分部积分k 次得()()⎰∑⎰⎪⎪⎭⎫⎝⎛-Ω=Λ=S k j j j D S u R v R v uL v u d ~d ,1***式中L*是一个2k 阶的微分算子,称为L 的共轭微分算子.若L=L*,则称L 为自共轭微分算子.从上面可推出格林公式()()⎰∑⎰=-=Ω-Skj jjjjDS u R v R v R u R v uL vLu 1***d ~~d 如从l j u |S =l j v |S =0可推出在边界S 上()∑==-kj jjjju R v R v R u R 1**0~~ 则称l j u |S =0为自共轭边界条件.如果微分算子及边界条件都是自共轭的,则称相应的边值问题为自共轭边值问题,此时有()0d ][=Ω-⎰DuLv vLu每个边值问题对应于某希尔伯特空间H (例如L 2(D ),见第九章§7)中的一个算子A ,其定义域M A 是H 中一线性稠密集合,它由足够次连续可微且满足边界条件的函数组成,在M A 上,Au 的数值与Lu 的数值相同,从而求解边值问题化为解算子方程Au f = 的问题.设A 为定义在实的希尔伯特空间H 中的某线性稠密集合M A 上的线性算子.若对于M A 的任意非零元素,,v u 成立(Au ,v )=(u ,Av )则称A 为对称算子.若对任意非零元素u 成立()0,>u Au 则称A 为正算子.如成立更强的不等式(Au ,u )≥r ||u ||2 (r>0)则称A 为正定算子.此处(u ,v )表示希尔伯特空间的内积,||u ||2=(u ,u ). 2. 变分原理与广义解定理 设A 是正定算子,u 是方程Au =f 在M A 上的解的充分必要条件是: u 使泛函F (u )=(Au ,u )-2(f ,u )取极小值.上述将边值问题化为等价的求泛函极值问题的方法称为能量法.在算子的定义域不够大时,泛函F (u )的极值问题可能无解.不过对于正定算子,可以开拓集合M A ,使在开拓了的集合上,泛函的极值问题有解.为开拓M A ,在M A 上引进新的内积[u ,v ]=(Au ,v ),定义模||u ||2=[u ,u ]=(Au ,u ),在模||u ||的意义下,补充极限元素,得到一个新的完备希尔伯特空间H 0,在H 0上,泛函F (u )仍然有意义,而泛函的极值问题有解.但必须注意,此时使泛函F (u )取极小的元素u 0不一定属于M A ,因此它不一定在原来的意义下满足方程Au=f 及边界条件.称u 0为广义解. 3. 极小化序列与里兹方法在处理变分问题中,极小化序列起着重要的作用.考虑泛函F (u )=(Au ,u )-2(f ,u )以d 表示泛函的极小值.设在希尔伯特空间中存在一列元素{u n } (n =1,2 ,),使()d u F n n =∞→lim则称{u n }为极小化序列.定理 若算子A 是正定的,则F (u )的每一个极小化序列既按H 空间的模也按H 0的模收敛于使泛函F (u )取极小的元素.这个定理不但指出利用极小化序列可求问题的解,而且提供一种近似解的求法,即把极小化序列中的每一个元素当作问题的近似解.设算子A 是正定的,构造极小化序列的里兹方法的主要步骤是:(1) 在线性集合M A 中选取H 0中完备的元素序列{ϕi } , (i =1,2 ,) 并要求对任意的n ,ϕ1,ϕ2,…,ϕn 线性无关.称这样的元素为坐标元素.(2) 令u a n k k k n==∑ϕ1 ,其中a k 为待定系数.代入泛函F (u ),得自变量a 1,a 2,…,a n 的函数()()()∑∑==-=nj jjn k j kjkj n f a A a a u F 11,,2,ϕϕϕ(3) 为使函数F (u n )取极小,必须()()n j a u F jn ,,2,10 ==∂∂,从而求出a k (k =1,2,…,n ).序列{u n }即为极小化序列,u n 可作为问题的近似解. 4. 里兹方法在特征值问题上的应用 算子方程Au -λu =0的非零解λ称为算子A 的特征值,对应的非零解u 称为λ所对应的特征函数. 对线性算子A ,若存在常数K ,使对任何M A 的元素ϕ成立(A ϕ,ϕ)≥K ||ϕ||2则称A 为下有界算子,正定算子是下有界的(此时K =0).记(A ϕ,ϕ)/||ϕ||2的下确界为d . 定理1 设A 为下有界对称算子,若存在不为零的元素ϕ0∈M A ,使()d A =200,ϕϕϕ则d 就是A 的最小特征值,ϕ0为对应的特征函数.于是求下有界对称算子的最小特征值问题化为变分问题,即在希尔伯特空间中求使泛函(A ϕ,ϕ)/||ϕ||2取极小的元素,或在||ϕ||=1的条件下求使泛函(A ϕ,ϕ)取极小的元素.定理2 设A 是下有界对称算子,λ1≤λ2≤…≤λn 是它的前n 个特征值,ϕ1,ϕ2,…,ϕn 是对应的标准正交特征函数,如果存在不为零的元素1+n ϕ,在附加条件(ϕ,ϕ)=1, (ϕ,ϕ1)=0, (ϕ,ϕ2)=0, …, (ϕ,ϕn )=0下使泛函(A ϕ,ϕ)取极小,则ϕn +1是算子A 的特征函数,对应的特征值()11,++=n n A ϕϕλ就是除λ1 ,,λn 外的最小的一个特征值.于是求第n +1个特征值就化为变分问题,即在附加条件(ϕ,ϕ)=1, (ϕ,ϕ1)=0, (ϕ,ϕ2)=0 ,, (ϕ,ϕn )=0 下求使泛函(A ϕ,ϕ)取极小的元素.为了利用里兹方法求特征值,在M A 中选取一列在H 0中完备的坐标元素序列{ϕi },(i =1,2 ,), 令u a n k k k n==∑ϕ1,确定a k ,使在条件 (u n ,u n )=1下,(Au n ,u n )取极小,这个问题化为求n个变元a 1,a 2,…,a n 的函数()()∑==nm k m k k m n n a a A u Au 1,,,ϕϕ在条件()()∑===nm k m k m k n n a a u u 1,1,,ϕϕ下的极值问题,一般可用拉格朗日乘数法解(见第九章§3,t ),此时()()()()()()()()()()()()0,,,,,,,,,,,,11222121111111=------n n n n n n n n n n A A A A A A ϕϕλϕϕϕϕλϕϕϕϕλϕϕϕϕλϕϕϕϕλϕϕϕϕλϕϕ的最小的根即为特征值的近似值,如果将上式的根按大小排列,就依次得后面的特征值的近似值,但精确度较差. 对一般算子方程Au -λBu=0如果A 为下有界对称算子,B 为正定算子,则()()()()()()()()()()()()0,,,,,,,,,,,,11222121111111=------n n n n n n n n n n B A B A B A B A B A B A ϕϕλϕϕϕϕλϕϕϕϕλϕϕϕϕλϕϕϕϕλϕϕϕϕλϕϕ的根就是特征值的近似值. 5. 迦辽金方法用里兹方法解数学物理问题有很多限制,最主要的限制是要求算子正定,但很多问题不一定满足这个条件,迦辽金方法弥补了这个缺陷. 迦辽金方法的主要步骤是:(1) 在M A 中选取在空间H 中完备的元素序列{ϕi } (i =1,2 ,),其中任意n 个元素线性无关,称{ϕi } (i =1,2,…)为坐标元素序列. (2) 把方程的近似解表示为u a n k k k n==∑ϕ1式中a k 是待定常数,把u n 代入方程Au=f 中的u ,两端与ϕj (j =1,2,…,n )求内积,得 a k 的n 个代数方程()()()n j f A a j n k j k k,,2,1,,1 ==∑=ϕϕϕ(3) 求出a k ,代回u n 的表达式,便得方程的近似解u n .在自共轭边值问题中,当算子是正定时,由迦辽金方法和里兹方法得到的关于a k 的代数方程组是相同的.。

偏微分数值解法

偏微分数值解法

偏微分数值解法
偏微分数值解法是一种用数值方法处理区域内的偏微分方程的技术。

这种方法广泛应用于物理学、工程学、数学和计算机科学等领域。

偏微分方程是一类描述空间变量和时间变量之间关系的方程。

其中,偏微分方程包含多个独立变量,且每个变量都与其他变量相关联。

因此,解决偏微分方程需要在空间中求解方程,而非在时间轴上。

数值解法通过将偏微分方程的解转换为离散的数值解,使得计算机可以运算,从而解决偏微分方程。

这个过程中,空间域网格化和时间域离散化是至关重要的。

具体来说,偏微分数值解法可以通过以下步骤实现:
1.将所研究问题的空间区域网格化。

2.确定方程的边界条件和初值条件。

3.将偏微分方程转换为差分方程。

4.利用数值方法求解差分方程。

5.通过比较数值解和解析解,评估数值解的准确性。

6.可视化数值解,将结果呈现出来。

偏微分数值解法中的一个重要技术是有限差分法(FD法)。

FD法通过近似微分算子的方法,将一个偏微分方程转化为一个差分方程。

这种方法将矢量函数转换为数字表格中的数值,并对数值进行操作。

通过操作这些数字,FD法计算系统中每个节点的准确解。

另一个常见的偏微分数值解法是有限元方法(FEM)。

它基于物理量在连续媒质中的变分原理,将媒质分解为小的空间单元。

通过将媒质问题分解成更简单的问题,FEM可以通过计算单元之间的相互作用,求得整个媒质的解。

偏微分方程的数值解法与逼近方法

偏微分方程的数值解法与逼近方法

偏微分方程的数值解法与逼近方法一、引言偏微分方程(Partial Differential Equations, PDEs)是数学中重要的研究对象,广泛应用于物理学、工程学、经济学等领域。

由于PDEs的解析解往往难以得到,因此数值解法和逼近方法成为解决PDEs问题的重要手段。

二、数值解法1. 有限差分法(Finite Difference Method)有限差分法通过将连续的偏微分方程转化为离散的差分形式,利用差分近似代替微分运算,从而得到数值解。

其中,向前、向后和中心差分是常用的差分近似方法。

2. 有限元法(Finite Element Method)有限元法是一种将求解区域划分为有限个小单元,在每个小单元上建立局部近似函数,并通过将这些局部函数组合得到整个解的近似。

该方法适用于复杂几何形状和非均匀网格的情况。

3. 有限体积法(Finite Volume Method)有限体积法将求解区域划分为小单元,但与有限元法不同的是,它考虑了守恒量在每个小单元中的变化情况。

通过建立控制体积并利用守恒定律,将偏微分方程转化为积分形式进行计算。

三、逼近方法1. 特征线方法(Method of Characteristics)特征线方法利用特征线的性质对偏微分方程进行求解。

通过对特征线方程进行积分,可以将PDEs转化为常微分方程(ODEs),从而得到数值解。

2. 辛方法(Symplectic Method)辛方法是一种在保持系统辛结构的同时进行数值求解的方法。

它适用于哈密顿系统和保守系统的求解,具有优秀的长期数值稳定性和能量守恒性。

3. 射影方法(Projection Method)射影方法是通过将PDEs投影到更低维度的空间中进行近似求解的方法。

通过将偏微分方程分解为几个步骤,如速度-压力分裂和时间分裂,可以以更高效的方式求解复杂的PDEs。

四、数值算例为了验证偏微分方程的数值解法和逼近方法的有效性,我们选取了经典的热传导方程(Heat Equation)作为例子进行数值算例演示。

偏微分方程的数值解法

偏微分方程的数值解法

偏微分⽅程的数值解法偏微分⽅程的数值解法
主要总结常见椭圆形、双曲型、抛物型偏微分⽅程的数值解法
椭圆偏微分⽅程
拉普拉斯⽅程是最简单的椭圆微分⽅程
∂2u ∂x2+∂2u
∂y2=0
确定偏微分⽅程的边界条件主要采⽤固定边界条件:u|Γ=U1(x,y) 即在边界Γ​上给定u的值U1(x,y)五点差分格式
五点差分格式的形式为:
u i+1,j+u i−1,j+u i,j+1+u i,j−1=4u i,j
以u i,j为中⼼向其上下左右做差分,并⽤这些近似的代替u i,j
运⽤五点差分法可以求出下列边值问题
∂2u ∂x2+∂2u
∂x2=0
u(x1,y)=g1(x),u(x2,y)=g2(x)
u(x,y1)=f1(y),u(x,y2)=f2(y)
x1≤x≤x2,y1≤y≤y2
求解过程如下:
对求解区域进⾏分割:将x min≤x≤x max范围内的的x轴等分成NX段,同理将y轴等分成NY段
将边界条件离散到格点上
⽤五点差分格式建⽴求解⽅程,求出各个格点的函数值
程序设计:
实现函数格式为u = peEllip5(nx, minx, maxx, ny, miny, maxy)
变量名变量作⽤
nx x⽅向上的节点数
minx求解区间x的左端
maxx求解区间x的右端
ny y⽅向的节点数
miny求解区间y的左端
maxy求解区间y的右端
u求解区间上的数值解
建⽴边界条件函数
``
{
Processing math: 100%。

偏微分方程数值解

偏微分方程数值解

02
常用的数值解法包括有限差分法、有限元法、 谱方法等。
03
数值解法的精度和稳定性是衡量其好坏的重要 指标。
非线性偏微分方程的有限差分法
有限差分法是一种将偏微分方程转化为差分方程的方法,通过在离散点上逼近偏导数,得到离散化的 数值解。
有限差分法的优点是简单直观,易于实现,适用于规则区域。
有限差分法的缺点是对不规则区域适应性较差,且精度较低。
波动问题
谱方法在求解波动问题中也有广泛应用,如 Helmholtz方程、Wave equation等。
固体力学问题
谱方法在求解固体力学问题中也有应用,如 Elasticity equations等。
05
非线性偏微分方程的数值解 法
非线性偏微分方程的解析解法难度
01
非线性偏微分方程的解析解法通常非常复杂,需要深
02
有限差分法的基本思想是将连 续的偏微分方程转化为离散的 差分方程,通过求解差分方程 得到偏微分方程的近似解。
03
有限差分法的精度取决于离散 点之间的间距,间距越小,精 度越高。
一阶偏微分方程的有限差分法
一阶偏微分方程的有限差分法有 多种形式,如向前差分法、向后 差分法和中心差分法等。
中心差分法是向前差分法和向后 差分法的平均值,具有二阶精度 。
通过将微分转化为差分,将原方程转化为离散的差分方程,然后求解差分方程得到近似解。
有限元法
将连续问题离散化,将微分方程转化为线性方程组,通过求解线性方程组得到近似解。
谱方法
利用函数的谱展开来求解偏微分方程,具有高精度和低数值弥散性的优点。
02
有限差分法
有限差分法的原理
01
有限差分法是一种将偏微分方 程转化为差分方程的方法,通 过在离散点上逼近偏微分方程 的解,得到数值解。

偏微分方程数值解法的计算方法

偏微分方程数值解法的计算方法

偏微分方程数值解法的计算方法偏微分方程(Partial Differential Equations, PDEs)是描述物理现象的一个有力工具,它可以描述复杂系统中物质、能量和动量的行为。

由于解析解十分困难或者甚至不存在,数值模拟是解决PDE问题的重要方法之一。

现今,许多物理和生物学领域的实际应用中,PDE的数值解法已经发挥了重要作用。

本文将介绍PDE的数值解法计算方法。

1.有限差分法(Finite Difference Method)有限差分法是PDE数值解法中最广泛应用的一种方法,其基本思想是用离散网格来逼近连续的PDE问题。

用有限差分法求解PDE问题可以分为以下几步:首先,将求解区域离散化,建立一个离散网格;然后,在网格上构造符合原始问题条件的差分方程;最后,将差分方程解出来,得到离散的数值解。

有限差分法的优点是简单易行,对于解决一些简单问题非常有效。

但由于精度受限,难以处理复杂问题,例如边界条件比较复杂、域的形状不规则等问题,效果不是很理想。

此外,如果PDE包含时间变量,用有限差分法求解的效果也不是很好,容易产生数值震荡现象。

2.有限体积法(Finite Volume Method)有限体积法是一种在控制体上积分求解PDE的方法。

所谓的控制体是指PDE求解区域的一个子集。

有限体积法与有限差分法的思想是相似的,它们都是将求解域分成若干个小的控制体,然后在每个控制体上构造差分方程来近似PDE。

和有限差分法相比,有限体积法的主要优势在于能够更好的处理不规则域和复杂边界条件,并且数值解更为准确。

3.有限元法(Finite Element Method)有限元法是PDE数值解法中的一种重要方法,其基本思想是通过将求解域分成若干个小三角形、四边形等有限元来逼近实际域。

有限元法与有限差分法和有限体积法的不同之处在于,它使用基函数来逼近原始问题中的未知函数。

在求解过程中,有限元法需要对基函数进行插值,从而方便地求出未知函数在任意点的近似值。

偏微分方程的数值解法

偏微分方程的数值解法

偏微分方程的数值解法偏微分方程(Partial Differential Equation, PDE)是数学和物理学中的重要概念,广泛应用于工程、科学和其他领域。

在很多情况下,准确解析解并不容易获得,因此需要利用数值方法求解偏微分方程。

本文将介绍几种常用的数值解法。

1. 有限差分法(Finite Difference Method)有限差分法是最常见和经典的数值解法之一。

基本思想是将偏微分方程在求解域上进行离散化,然后用差分近似代替微分运算。

通过求解差分方程组得到数值解。

有限差分法适用于边界条件简单且求解域规则的问题。

2. 有限元法(Finite Element Method)有限元法是适用于不规则边界条件和求解域的数值解法。

将求解域划分为多个小区域,并在每个小区域内选择适当的形状函数。

通过将整个域看作这些小区域的组合来逼近原始方程,从而得到一个线性代数方程组。

有限元法具有较高的灵活性和适用性。

3. 有限体积法(Finite Volume Method)有限体积法是一种较新的数值解法,特别适用于物理量守恒问题。

它通过将求解域划分为多个控制体积,并在每个体积内计算守恒量的通量,来建立离散的方程。

通过求解这个方程组得到数值解。

有限体积法在处理守恒律方程和非结构化网格上有很大优势。

4. 局部网格法(Local Grid Method)局部网格法是一种多尺度分析方法,适用于具有高频振荡解的偏微分方程。

它将计算域划分为全局细网格和局部粗网格。

在全局细网格上进行计算,并在局部粗网格上进行局部评估。

通过对不同尺度的解进行耦合,得到更精确的数值解。

5. 谱方法(Spectral Method)谱方法是一种基于傅里叶级数展开的高精度数值解法。

通过选择适当的基函数来近似求解函数,将偏微分方程转化为代数方程。

谱方法在处理平滑解和周期性边界条件的问题上表现出色,但对于非平滑解和不连续解的情况可能会遇到困难。

6. 迭代法(Iterative Method)迭代法是一种通过多次迭代来逐步逼近精确解的求解方法。

数值计算中的偏微分方程数值解法

数值计算中的偏微分方程数值解法

数值计算中的偏微分方程数值解法数值计算在现代科学技术中扮演着重要的角色,它的应用范围不断扩大。

数值计算中的偏微分方程数值解法是其中最为重要的一部分。

在数学中,偏微分方程是一类涉及未知函数及其偏导数的方程,应用广泛,如机械、天气预报、波动、电磁等领域。

针对偏微分方程求解的方法称为数值解法,本文将讨论偏微分方程数值解法的相关知识。

1. 介绍偏微分方程数值解法是指通过计算,以得到近似解的方法。

由于大多数偏微分方程都没有精确解,因此需要使用数值计算方法求解。

迄今为止,已经发展出各种数值解法,如差分法、有限元法、边界元法、谱方法等。

这些方法都有其特点和优劣,选择何种方法要根据问题特点而定。

2. 差分法差分法是求解偏微分方程最基本的数值方法之一,它是将连续函数的导数用有限差商代替,通过计算有限差商的值得到近似解。

差分法的精度取决于差分的精度和步长,差分法通常易于实现和理解,也可以用于一些较简单的问题。

下面以热传导方程为例,来说明差分法的求解过程。

热传导方程的数学形式为$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$$其中,$u(x, t)$表示温度分布,$k$为热传导系数。

将空间尺度和时间尺度分别离散化,即用网格对$x$和$t$上的点进行离散,得到$$u_{i, j+1} = u_{i,j} + \frac{k \Delta t}{\Delta x^2} (u_{i+1,j} - 2u_{i,j} + u_{i-1,j})$$其中,$u_{i,j}$表示$u(x_i,t_j)$的近似值,$\Delta x$和$\Deltat$分别是$x$和$t$的步长。

3. 有限元法有限元法是一种广泛使用的偏微分方程数值解法,它将求解区域分成有限个小区域,建立适当的数学模型和计算方法,通过求解模型方程得到物理问题的近似解。

有限元法一般需要进行大量计算,但准确度较高,适用于非线性、复杂问题的求解。

偏微分方程的数值解法

偏微分方程的数值解法

偏微分方程的数值解法在科学和工程领域中,偏微分方程(Partial Differential Equations,简称PDEs)被广泛应用于描述自然现象和工程问题。

由于许多复杂的PDE难以找到解析解,数值方法成为了求解这些方程的重要途径之一。

本文将介绍几种常见的偏微分方程数值解法,并探讨其应用。

一、有限差分法有限差分法是求解偏微分方程最常用的数值方法之一。

其基本思想是将空间和时间连续区域离散化成有限个点,通过差分逼近偏微分方程中的导数,将偏微分方程转化为差分方程。

然后,利用差分方程的迭代计算方法,求解近似解。

以一维热传导方程为例,其数值解可通过有限差分法得到。

将空间区域离散化为若干个网格点,时间区域离散化为若干个时间步长。

通过差分逼近热传导方程中的导数项,得到差分方程。

然后,利用迭代方法,逐步更新每个网格点的数值,直到达到收敛条件。

最终得到近似解。

二、有限元法有限元法是另一种常用于求解偏微分方程的数值方法。

它将连续的空间区域离散化为有限个单元,将PDE转化为每个单元内的局部方程。

然后,通过将各个单元的局部方程组合起来,构成整个区域的方程组。

最后,通过求解这个方程组来获得PDE的数值解。

有限元法的优势在于可以适应复杂的几何形状和边界条件。

对于二维或三维的PDE问题,有限元法可以更好地处理。

同时,有限元法还可以用于非线性和时变问题的数值求解。

三、谱方法谱方法是利用一组基函数来表示PDE的解,并将其代入PDE中得到一组代数方程的数值方法。

谱方法具有高精度和快速收敛的特点,在某些问题上比其他数值方法更具优势。

谱方法的核心是选择合适的基函数,常用的基函数包括Legendre多项式、Chebyshev多项式等。

通过将基函数展开系数与PDE的解相匹配,可以得到代数方程组。

通过求解这个方程组,可以得到PDE的数值解。

四、有限体积法有限体积法是将空间域划分为有限个小体积单元,将PDE在每个小体积单元上进行积分,通过适当的数值通量计算来近似描述流体在边界上的净流量。

偏微分方程的数值解法

偏微分方程的数值解法

偏微分方程的数值解法偏微分方程(Partial Differential Equations, PDEs)是描述自然界中各种物理现象的重要数学工具。

它们广泛应用于物理学、工程学、生物学等领域,并且在科学研究和工程实践中起着重要的作用。

然而,解析解并不总是容易获得,这就需要借助数值解法来近似求解其中的解。

数值解法是一种利用计算机方法来求解偏微分方程的有效途径。

本文将介绍几种常见的数值解法,包括有限差分法、有限元法和谱方法。

一、有限差分法有限差分法是最直接、最常用的一种数值解法。

它将偏微分方程中的导数用差分形式进行近似,然后将问题转化为一个线性方程组求解。

其中,空间和时间都被离散化,通过选取合适的网格间距,可以得到对原偏微分方程的近似解。

有限差分法的优点在于简单易懂,便于实现。

然而,该方法对于复杂边界条件和高维问题的适用性存在一定的局限性。

二、有限元法有限元法是一种更加通用和灵活的数值解法,尤其适用于复杂几何形状和非结构化网格的问题。

该方法将求解域划分为多个小区域,称为有限元,通过构建适当的试验函数和加权残差方法,将原偏微分方程转化为求解线性方程组的问题。

有限元法的优点在于适用范围广,可以处理各种边界条件和复杂几何形状,但相对较复杂,需要考虑网格生成、积分计算等问题。

三、谱方法谱方法是一种基于特定基函数展开的数值解法。

它利用特定的基函数,如Chebyshev多项式、Legendre多项式等,将偏微分方程的未知函数在特定区域内进行展开,然后通过求解系数来得到近似解。

谱方法具有高精度和快速收敛的特点,适用于光滑解和高阶精度要求的问题。

然而,谱方法对于非线性和时变问题的处理相对困难,需要一些特殊策略来提高计算效率。

总结:本文简要介绍了偏微分方程的数值解法,包括有限差分法、有限元法和谱方法。

这些方法在实际应用中各有优势和限制,选择合适的数值解法需要考虑问题的性质、几何形状以及计算资源等因素。

此外,还有其他一些高级数值方法,如边界元法、间断有限元法等,可以根据具体问题的需要进行选择。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§4 偏微分方程的数值解法一、 差分法差分法是常用的一种数值解法.它是在微分方程中用差商代替偏导数,得到相应的差分方程,通过解差分方程得到微分方程解的近似值. 1. 网格与差商在平面 (x ,y )上的一以S 为边界的有界区域D 上考虑定解问题.为了用差分法求解,分别作平行于x 轴和y 轴的直线族.⎩⎨⎧====jh y y ihx x i i (i ,j =0,±1,±2,…,±n ) 作成一个正方形网格,这里h 为事先指定的正数,称为步长;网格的交点称为节点,简记为(i ,j ).取一些与边界S 接近的网格节点,用它们连成折线S h ,S h 所围成的区域记作D h .称D h 内的节点为内节点,位于S h 上的节点称为边界节点(图14.7).下面都在网格D h + S h 上考虑问题:寻求各个节点上解的近似值.在边界节点上取与它最接近的边界点上的边值作为解的近似值,而在内节点上,用以下的差商代替偏导数:()()[]()()[]()()()[]()()()[]()()()[]y x u h y x u y h x u h y x u hy x u h y x u y x u h y x u h y u y h x u y x u y h x u h x u y x u h y x u hy u y x u y h x u h x u ,),(,,1,,2,1,,2,1,,1,,122222222++-+-+≈∂∂∂-+-+≈∂∂-+-+≈∂∂-+≈∂∂-+≈∂∂注意, 1︒ 式中的差商()()[]y x u y h x u h ,,1-+称为向后差商,而()()[]y h x u y x u h,,1--称为向前差商,()()[]y h x u y h x u h,,21--+称为中心差商.也可用向前差商或中心差商代替一阶偏导数.2︒ x 轴与y 轴也可分别采用不同的步长h ,l ,即用直线族⎩⎨⎧====jh y y ihx x j i (i,j =0, ±1, ±2 , ) 作一个矩形网格.2. 椭圆型方程的差分方法[五点格式] 考虑拉普拉斯方程的第一边值问题图14.7()()⎪⎪⎩⎪⎪⎨⎧=∈=∂∂+∂∂y x u D y x y ux u S ,,02222μ 式中μ(x ,y )为定义在D 的边界S 上的已知函数.采用正方形网格,记u (x i ,y j )=u ij ,在节点(i ,j )上分别用差商u u u h u u u h i j ij i j i j ij i j -+-+-+-+11211222,,,,,代替2222,yux u ∂∂∂∂,对应的差分方程为u u u h u u u hi j ij i j i j ij i j -+-+-++-+=112112220,,,, (1) 或u u u u u ij i j i j i j i j =+++-+-+141111,,,,即任一节点(i ,j )上u ij 的值等于周围相邻节点上解的值的算术平均,这种形式的差分方程称为五点格式,在边界节点上取()()()h j i ij S j i y x u ∈=,,**μ (2)式中(x i *,y j *)是与节点(i ,j )最接近的S 上的点.于是得到了以所有内节点上的u ij 值为未知量的若干个线性代数方程,由于每一个节点都可列出一个方程,所以未知量的个数与方程的个数都等于节点的总数,于是,可用通常的方法(如高斯消去法)解此线性代数方程组,但当步长不很大时,用高斯消去法将会遇到很大困难,可用下面介绍的其他方法求解.若h →0时,差分方程的解收敛于微分方程的解,则称差分方程为收敛的.在计算过程中,由于进行四则运算引起舍入误差,每一步计算的舍入误差都会影响以后的计算结果,如果这种影响所产生的计算偏差可以控制,而不至于随着计算次数的增加而无限增大,则称差分方程是稳定的.[迭代法解差分方程] 在五点格式的差分方程中,任意取一组初值{u ij },只要求它们在边界节点(i ,j )上取以已知值μ(x i *,y j *),然后用逐次逼近法(也称迭代法)解五点格式:()()()()()[]() ,2,1,0411,1,,1,11=+++=+-+-+n u u u u u n j i n j i n j i n j i n ij 逐次求出{u ij (n )}.当(i+1,j ),(i -1,j ),(i ,j -1),(i ,j+1)中有一点是边界节点时,每次迭代时,都要在这一点上取最接近的边界点的值.当n →∞时,u ij (n )收敛于差分方程的解,因此n 充分大时,{u ij (n )}可作差分方程的近似解,迭代次数越多,近似解越接近差分方程的解.[用调节余数法求节点上解的近似值] 以差商代替Δu 时,用节点(i+1,j ),(i -1,j ),(i ,j+1),(i ,j -1)上u 的近似值来表示u 在节点(i ,j )的值将产生的误差,称此误差为余数R ij ,即()()()()()ij j i j i j i j i j i R y x u h y x u h y x u y h x u y h x u =--+++-++,4,,,,设在(i ,j )上给u ij 以改变量δu ij ,从上式可见R ij 将减少4δu ij ,而其余含有u (x i ,y j )的差分方程中的余数将增加δu ij ,多次调整δu ij 的值就可将余数调整到许可的有效数字的范围内,这样可获得各节点上u (x ,y )的近似值.这种方法比较简单,特别在对称区域中计算更简捷.例 求Δu =0在内节点A ,B ,C ,D 上解的近似值.设在边界节点1,2,3,4上分别取值为1,2,3,4(图14.8)解 记u (A )=u A ,点A ,B ,C ,D 的余数分别为图14.8-4u A + u B + u c +5=R A u A -4 u B + u D +7=R Bu A-4 u c + u D +3=R C u B + u c -4u D +5=R D以边界节点的边值的算术平均值作为初次近似值,即u A (0)=u B (0)=u C (0)=u D (0)=2.5则相应的余数为:R A =0, R B =2, R C = -2, R D =0最大余数为±2.先用δu C =-0.5把R C 缩减为零,u C 相应地变为2,这时R A , R D 也同时缩减(-0.5),新余数是R A =-0.5,R B =2,0=C R , R D =-0.5.类似地再变更δu B =0.5,从而 u B 变为3,则得新余数为0====D C B A R R R R .这样便可消去各节点的余数,于是u 在各节点的近似值为:u A =2.5, u B =3, u C =2, u D =2.5现将各次近似值及余数列表如下:[解重调和方程的差分方法] 在矩形D (x 0≤x ≤x 0+a ,y 0≤y ≤y 0+a )中考虑重调和方程024*******=∂∂+∂∂∂+∂∂=yu y x u x u u ∆取步长h an=,引直线族⎩⎨⎧+=+=jh y y ihx x 00 (i , j = 0, 1, 2,, n ) 作成一个正方形网格.用差商代替偏导数()()()()()[]{()()()()[]()()()()[]}h y x u h y x u y h x u y h x u h y h x u h y h x u h y h x u h y h x u h y x u h y x u y h x u y h x u y x u 2,2,,2,2,,,,2,,,,8201,-+++-++---++-+-++++--+++-++= 上式表明了以(x ,y )为中心时,u (x ,y )的函数值与周围各点函数值的关系,但对于邻近边界节点的点(x ,y ),如图14.9中的A ,就不能直接使用上式,此时将划分网格的直线族延伸,在延伸线上定出与边界距离为h 的点,称这些点为外邻边界节点,如图14.9以A 为中心时,点E ,C 为边界节点,点J ,K 为E ,C 的外邻边界节点,用下法补充定义外邻边界节点J 处函数的近似值u J ,便可应用上面的公式.1︒ 边界条件为()()()S P P x uP u SS ∈==21,μ∂∂μ图14.9时,定义u J =u A -2μ2(E )h .2︒ 边界条件为()()()S P P x uP u SS ∈=∂∂=2221,μμ时,定义u J =2μ1(E )-u A -h 2μ2(E ). [其他与Δu 有关的网格]1︒ 三角网格(图14.10(a ))取P 0(x ,y )为中心,它的周围6个邻近节点分别为:()()⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫⎝⎛+-⎪⎪⎭⎫ ⎝⎛+++h y h x P h y h x P y h x P h y h x P h y h x P y h x P 23,2,23,2,,23,223,2,,654321 则 R u h u u u h i i +∆+∆=⎪⎭⎫⎝⎛-∑=226102161632式中u i =u (P i ), u 0=u (P 0),R 表示余项. 2︒ 六角网格(图14.10(b ))取P 0(x ,y )为中心,它的三个邻近节点分别为()⎪⎪⎭⎫ ⎝⎛-+-⎪⎪⎭⎫ ⎝⎛++h y h x P y h x P h y h x P 23,2,,23,2321则 R u u u h i i +∆=⎪⎭⎫⎝⎛-∑=0312334.图14.103︒ 极坐标系中的网格(图14.10(c ))取P 0(r ,θ)为中心,它的四个邻近节点分别为()()()()l r P h r P l r P h r P ++--θθθθ,,,,,,4321而拉普拉斯方程01122222=∂∂+∂∂+∂∂=θ∆u r r u r ru u 的相应的差分方程为()()()011221110222134222312=⎪⎭⎫ ⎝⎛+--++++u l r hu u rh u u l r u u h 3. 抛物型方程的差分方法 考虑热传导方程的边值问题()()()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧≥==<<=><<=∂∂-∂∂0,,,,00,0,0,0,021222t t t b u t t u bx x x u t b x x u a tu μμϕ 将[0,b ]分为n 等份,每段长为∆x bn=.引两族平行线(图14.11)图14.11x =x i =i ∆x (i =0,1,2,, n )y =y j =j ∆t (j =0,1,2,, ∆t 取值见后)作成一个长方形的网格,记u (x i ,t j )为u ij ,节点(x i ,t j )为(i ,j ),在节点(i ,j )上分别用(),2,1,1,,2,1Δ2,Δ2,1,11,=-=+---++j n i x u u u t u u ji ij j i ij j i 代替22,xut u ∂∂∂∂,于是边值问题化为差分方程()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧===-===-==+----++ ,2,1,0,Δ,Δ1,,2,1,Δ,2,1,0,1,,2,10Δ2Δ21002,1,121,j t j u t j u n i x i u j n i x u u u a tu u nj j i j i ij j i ijj i μμϕ 记()22x ta ∆∆=λ,差分方程可写成 () ,2,1,1,,2,121,1,11,=-=+-+=-++j n i u u u u j i ij j i j i λλλ (1) 由此可按t 增加的方向逐排求解.在第0排上u i 0的值由初值ϕ(i ∆x )确定,j +1排u i ,j +1的值可由第j 排的三点(i +1,j ),(i ,j ),(i -1,j )上的值u i +1,j , u ij ,u i -1,j 确定,而u 0,j +1,u n ,j +1已由边界条件μ1((j +1)∆t )及μ2((j +1)∆t )给定,于是可逐排计算一切节点上的u ij 值.当ϕ(x ), μ1(x )和μ2(x )充分光滑,且λ≤12时,差分方程收敛而且稳定.所以利用差分方程(1)计算时,必须使λ≤12,即()22Δ21Δx a t ≤.热传导方程还可用差分方程()0Δ2Δ21,11,1,121,=+---+-++++x u u u a t u u j i j i j i ij j i 代替,此时如已知前j 排u ij 的值,为求第j +1排的u i ,j +1 必须解包含n -1个未知量u u j n j 1111,,,,+-+ 的线性代数方程组,这种差分方程称为隐式格式的差分方程,前面所提的差分方程称为显式格式差分方程.隐式格式差分方程对任意的λ都是稳定的. 4. 双曲型方程的差分方法考虑弦振动方程的第一边值问题()()()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧≥==<<=∂∂=><<=∂∂-∂∂0,,,,00),()0,(,0,0,0,02122222t t t b u t t u b x x t x u x x u t b x x u a tu μμψϕ 用矩形网格,列出对应的差分方程:()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧===-=∆=∆-==-==+--+--+-+ ,2,1,0,Δ,Δ1,,2,1),(,Δ,2,1,1,,2,1,0Δ2)(Δ22100102,1,1221,1,j t j u t j u n i x i t u u x i u j n i x u u u a t u u u nj j i i i j i ij j i j i ij j i μμψϕ 记ω=a tx∆∆与上段一样,利用u u n 022,和在第0排及第1排的已知数值(初始条件)u i 0 , u i 1可计算u i 2,然后用已知的u i 1 , u i 2及u u n 033,可计算u i 3,类似地可确定一切节点上的u ij 值.当ϕ(x ),ψ(x ),μ1(x )和μ2(x )充分光滑,且ω≤1时,差分方程收敛且稳定,所以要取∆∆t ax ≤1.二、 变分方法1. 自共轭边值问题将§3定义的共轭微分算子的概念推广到一般方程.设D 是n E 中的有界区域,S 为其边界,在D 上考虑2k 阶线性微分方程()x f x x u a Lu km m i i i ni m mi i n n n =∂∂≡∑∑==++201111 ∂ 的齐次边值问题()r j u l S j ,,2,10== 式中f (x )是D 内的已知函数,l j u 是线性微分算子. 将 ⎰DvLud Ω分部积分k 次得()⎰∑⎰⎪⎪⎭⎫ ⎝⎛+=Ω=S j j j D S v R u R v u vLu d ~,Λd k 1 式中Λ(u ,v )是一个D 上的积分,其被积函数包含u ,v 的k 阶导数;R j 和 R j是定义在边界S 上的两个线性微分算子.再将Λ(u ,v )分部积分k 次得()()⎰∑⎰⎪⎪⎭⎫⎝⎛-Ω=Λ=S k j j j D S u R v R v uL v u d ~d ,1***式中L*是一个2k 阶的微分算子,称为L 的共轭微分算子.若L=L*,则称L 为自共轭微分算子.从上面可推出格林公式()()⎰∑⎰=-=Ω-Skj j j jj D S u R v R v R u R v uL vLu 1***d ~~d 如从l j u |S =l j v |S =0可推出在边界S 上()∑==-kj jjjju R v R v R u R 1**0~~ 则称l j u |S =0为自共轭边界条件.如果微分算子及边界条件都是自共轭的,则称相应的边值问题为自共轭边值问题,此时有()0d ][=Ω-⎰DuLv vLu每个边值问题对应于某希尔伯特空间H (例如L 2(D ),见第九章§7)中的一个算子A ,其定义域M A 是H 中一线性稠密集合,它由足够次连续可微且满足边界条件的函数组成,在M A 上,Au 的数值与Lu 的数值相同,从而求解边值问题化为解算子方程Au f =的问题.设A 为定义在实的希尔伯特空间H 中的某线性稠密集合M A 上的线性算子.若对于M A 的任意非零元素,,v u 成立(Au ,v )=(u ,Av )则称A 为对称算子.若对任意非零元素u 成立()0,>u Au则称A 为正算子.如成立更强的不等式(Au ,u )≥r ||u ||2 (r>0)则称A 为正定算子.此处(u ,v )表示希尔伯特空间的内积,||u ||2=(u ,u ). 2. 变分原理与广义解定理 设A 是正定算子,u 是方程Au =f 在M A 上的解的充分必要条件是: u 使泛函F (u )=(Au ,u )-2(f ,u )取极小值.上述将边值问题化为等价的求泛函极值问题的方法称为能量法.在算子的定义域不够大时,泛函F (u )的极值问题可能无解.不过对于正定算子,可以开拓集合M A ,使在开拓了的集合上,泛函的极值问题有解.为开拓M A ,在M A 上引进新的内积[u ,v ]=(Au ,v ),定义模||u ||2=[u ,u ]=(Au ,u ),在模||u ||的意义下,补充极限元素,得到一个新的完备希尔伯特空间H 0,在H 0上,泛函F (u )仍然有意义,而泛函的极值问题有解.但必须注意,此时使泛函F (u )取极小的元素u 0不一定属于M A ,因此它不一定在原来的意义下满足方程Au=f 及边界条件.称u 0为广义解. 3. 极小化序列与里兹方法在处理变分问题中,极小化序列起着重要的作用.考虑泛函F (u )=(Au ,u )-2(f ,u )以d 表示泛函的极小值.设在希尔伯特空间中存在一列元素{u n } (n =1,2 ,),使()d u F n n =∞→lim则称{u n }为极小化序列.定理 若算子A 是正定的,则F (u )的每一个极小化序列既按H 空间的模也按H 0的模收敛于使泛函F (u )取极小的元素.这个定理不但指出利用极小化序列可求问题的解,而且提供一种近似解的求法,即把极小化序列中的每一个元素当作问题的近似解.设算子A 是正定的,构造极小化序列的里兹方法的主要步骤是:(1) 在线性集合M A 中选取H 0中完备的元素序列{ϕi } , (i =1,2 ,) 并要求对任意的n ,ϕ1,ϕ2,…,ϕn 线性无关.称这样的元素为坐标元素.(2) 令u a n k k k n==∑ϕ1 ,其中a k 为待定系数.代入泛函F (u ),得自变量a 1,a 2,…,a n 的函数()()()∑∑==-=nj jjn k j kjkj n f a A a a u F 11,,2,ϕϕϕ(3) 为使函数F (u n )取极小,必须()()n j a u F jn ,,2,10 ==∂∂,从而求出a k (k =1,2,…,n ).序列{u n }即为极小化序列,u n 可作为问题的近似解. 4. 里兹方法在特征值问题上的应用 算子方程Au -λu =0的非零解λ称为算子A 的特征值,对应的非零解u 称为λ所对应的特征函数. 对线性算子A ,若存在常数K ,使对任何M A 的元素ϕ成立(A ϕ,ϕ)≥K ||ϕ||2则称A 为下有界算子,正定算子是下有界的(此时K =0).记(A ϕ,ϕ)/||ϕ||2的下确界为d . 定理1 设A 为下有界对称算子,若存在不为零的元素ϕ0∈M A ,使()d A =200,ϕϕϕ则d 就是A 的最小特征值,ϕ0为对应的特征函数.于是求下有界对称算子的最小特征值问题化为变分问题,即在希尔伯特空间中求使泛函(A ϕ,ϕ)/||ϕ||2取极小的元素,或在||ϕ||=1的条件下求使泛函(A ϕ,ϕ)取极小的元素.定理2 设A 是下有界对称算子,λ1≤λ2≤…≤λn 是它的前n 个特征值,ϕ1,ϕ2,…,ϕn 是对应的标准正交特征函数,如果存在不为零的元素1+n ϕ,在附加条件(ϕ,ϕ)=1, (ϕ,ϕ1)=0, (ϕ,ϕ2)=0, …, (ϕ,ϕn )=0下使泛函(A ϕ,ϕ)取极小,则ϕn +1是算子A 的特征函数,对应的特征值()11,++=n n A ϕϕλ就是除λ1 ,,λn 外的最小的一个特征值.于是求第n +1个特征值就化为变分问题,即在附加条件(ϕ,ϕ)=1, (ϕ,ϕ1)=0, (ϕ,ϕ2)=0 ,, (ϕ,ϕn )=0下求使泛函(A ϕ,ϕ)取极小的元素.为了利用里兹方法求特征值,在M A 中选取一列在H 0中完备的坐标元素序列{ϕi },(i =1,2 ,), 令u a n k k k n==∑ϕ1,确定a k ,使在条件 (u n ,u n )=1下,(Au n ,u n )取极小,这个问题化为求n个变元a 1,a 2,…,a n 的函数()()∑==nm k m k k m n n a a A u Au 1,,,ϕϕ在条件()()∑===nm k m k m k n n a a u u 1,1,,ϕϕ下的极值问题,一般可用拉格朗日乘数法解(见第九章§3,t ),此时()()()()()()()()()()()()0,,,,,,,,,,,,11222121111111=------n n n n n n n n n n A A A A A A ϕϕλϕϕϕϕλϕϕϕϕλϕϕϕϕλϕϕϕϕλϕϕϕϕλϕϕ的最小的根即为特征值的近似值,如果将上式的根按大小排列,就依次得后面的特征值的近似值,但精确度较差. 对一般算子方程Au -λBu=0如果A 为下有界对称算子,B 为正定算子,则()()()()()()()()()()()()0,,,,,,,,,,,,11222121111111=------n n n n n n n n n n B A B A B A B A B A B A ϕϕλϕϕϕϕλϕϕϕϕλϕϕϕϕλϕϕϕϕλϕϕϕϕλϕϕ的根就是特征值的近似值. 5. 迦辽金方法用里兹方法解数学物理问题有很多限制,最主要的限制是要求算子正定,但很多问题不一定满足这个条件,迦辽金方法弥补了这个缺陷. 迦辽金方法的主要步骤是:(1) 在M A 中选取在空间H 中完备的元素序列{ϕi } (i =1,2 ,),其中任意n 个元素线性无关,称{ϕi } (i =1,2,…)为坐标元素序列. (2) 把方程的近似解表示为u a n k k k n==∑ϕ1式中a k 是待定常数,把u n 代入方程Au=f 中的u ,两端与ϕj (j =1,2,…,n )求内积,得 a k 的n 个代数方程()()()n j f A a j nk j kk ,,2,1,,1==∑=ϕϕϕ(3) 求出a k ,代回u n 的表达式,便得方程的近似解u n .在自共轭边值问题中,当算子是正定时,由迦辽金方法和里兹方法得到的关于a k 的代数方程组是相同的.。

相关文档
最新文档