igbt中频电源节能优势完整

合集下载

简述IGBT的主要特点和工作原理

简述IGBT的主要特点和工作原理

简述IGBT的主要特点和工作原理一、简介IGBT,Insulated Gate Bipolar Transistor,是一种复合全控电压驱动功率半导体器件。

由BJT(双极晶体管)和IGFET(绝缘栅场效应晶体管)组成。

IGBT兼有MOSFET 的高输入阻抗和GTR 的低导通压降的优点。

GTR 的饱和电压降低,载流密度大,但驱动电流更大。

MOSFET的驱动功率很小,开关速度快,但导通压降大,载流密度小。

IGBT结合了以上两种器件的优点,驱动功率小,饱和电压降低。

非常适合用于直流电压600V及以上的变流系统,如交流电机、逆变器、开关电源、照明电路、牵引驱动等领域。

IGBT模块是由IGBT(绝缘栅双极晶体管)和FWD(续流二极管)通过特定的电路桥封装而成的模块化半导体产品。

封装后的IGBT模块直接应用于逆变器、UPS不间断电源等设备。

IGBT模块具有节能、安装维护方便、散热稳定等特点。

一般IGBT也指IGBT模块。

随着节能环保等理念的推进,此类产品将在市场上越来越普遍。

IGBT是能量转换和传输的核心器件,俗称电力电子器件的“CPU”,广泛应用于轨道交通、智能电网、航空航天、电动汽车、新能源设备等领域。

二、IGBT的结构下图显示了一种N 沟道增强型绝缘栅双极晶体管结构。

N+区称为源极区,其上的电极称为源极(即发射极E)。

N基区称为漏区。

器件的控制区为栅极区,其上的电极称为栅极(即栅极G)。

沟道形成在栅区的边界处。

C 极和E 极之间的P 型区域称为子通道区域。

漏极区另一侧的P+ 区称为漏极注入器。

它是IGBT独有的功能区,与漏极区和子沟道区一起构成PNP双极晶体管。

它充当发射极,将空穴注入漏极,进行传导调制,并降低器件的通态电压。

《N沟道增强型绝缘栅双极晶体管》IGBT的开关作用是通过加正栅电压形成沟道,为PNP(原NPN)晶体管提供基极电流,使IGBT导通。

反之,加反向栅压消除沟道,切断基极电流,就会关断IGBT。

KGPS可控硅中频电源与IGBT晶体管中频电源的比较解析

KGPS可控硅中频电源与IGBT晶体管中频电源的比较解析

KGPS可控硅中频电源与IGBT晶体管中频电源的比较一、新型IGBT中频电源的特点IGBT(绝缘栅双极晶体管)是MOSFET(双极型晶体管)与GTR(大功率晶体管)的复合器件。

因此,它既具有MOSFET的工作速度快、输入阻抗高、驱动电路简单、热温度性好的优点,又包含了GTR的载流量大,阻断电压高等多项优点,是取代GTR和SCR( 可控硅)的理想开关器件。

从1996年至今,尤其是最近几年来IGBT发展很快,目前已被广泛地应用于各种逆变器中。

(1)IGBT控制是采用导通宽度及频率来实现对输出功率进行无级调节的中频电源,且采用串联谐振,无需加启动电路及前级调压装置,因此启动相当方便,启动成功率百分之百,调节输出功率极为方便。

(2)整流部分采用二极管三相全桥整流,使得控制电路极为简单,维修技术量降低。

(3)目前大部分厂家采用德国西门子公司产品作逆变器,中频电源寿命在3万次以上,采用了限压过流过压保护电路,使得故障率极低,并且过流过压保护动作时报警器马上报警显示且保护停机。

综上所述,IGBT中频电源作为铸造熔炼中频感应加热电源,是电力电子技术发展的必然趋势,它将成为二十一世纪铸造行业现代化的重要标志。

二、一拖二感应电炉系统一拖二感应电炉系统即功率共享电源系统的感应电炉,。

即一台中频电源能同时向二台电炉供电,并能在额定功率范围内自由分配向各台电炉的输入功率。

它从上世纪90年代初在国外问世,恰好遇到我国经济改革开放的大发展年代,因此这种电炉系统几乎同步进入我国的铸造业,并且得到铸造界的青睐和认同。

但碍于当时国内电炉制造商尚未开发出该项技术,而进口设备的昂贵价格又使许多铸造厂望而怯步,限制了它在我国铸造业的广泛应用。

据相关资料介绍,从我国1993年引进第一台一拖二电炉系统起到目前为止,全国现有一拖二电炉系统大约共计有近100套左右,其中功率最大的一套为6000kW功率共享电源配置二台8吨电炉。

一拖二电炉的优点采用中频感应电炉可以配置比工频感应电炉更大的功率密度(例如可以配置比工频电炉的极限配置功率密度300kW/t大3倍左右的功率密度,即达到900kW/t以上),并可实现批料熔化法。

IGBT是什么东西,有神马作用?

IGBT是什么东西,有神马作用?

IGBT是什么东西,有神马作用?
IGBT 又叫绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET 的高输入阻抗和GTR 的低导通压降两方面的优点。

IGBT 模块是由IGBT(绝缘栅双极型晶体管芯片)与FWD(续流二极管芯片)通过特定的电路桥接封装而成的模块化半导体产品;封装后的IGBT 模块直
接应用于变频器、UPS 不间断电源等设备上;IGBT 模块具有节能、安装维修方便、散热稳定等特点;当前市场上销售的多为此类模块化产品,一般所说的IGBT 也指IGBT 模块;随着节能环保等理念的推进,此类产品在市场上将越来
越多见。

IGBT 是能源变换与传输的核心器件,俗称电力电子装置的“CPU”,作为国家战略性新兴产业,在轨道交通、智能电网、航空航天、电动汽车与新能源装备等领域应用极广。

应用领域
手机
在日益增长的变频器市场,许多厂商提供性能和尺寸各异的变换器类型。

这正是以低损耗和高开关频率而著称的新IGBT 技术施展的舞台。

在62 毫米(当前模块的标准尺寸)模块中使用新IGBT 技术使用户可以因不必改变其机械
设计概念而获益。

基于平台技术的标准62 毫米SEMITRANS?模块,由于针对IGBT 和二极管采用了不同的半导体技术,因此适合于多种应用场合。

采用标
准尺寸模块外壳这一事实意味着用户有更多可供选择的供应商。

新能源汽车。

KGPS可控硅中频电源与IGBT晶体管中频电源的比较解析

KGPS可控硅中频电源与IGBT晶体管中频电源的比较解析

KGPS可控硅中频电源与IGBT晶体管中频电源的比较一、新型IGBT中频电源的特点IGBT(绝缘栅双极晶体管)是MOSFET(双极型晶体管)与GTR(大功率晶体管)的复合器件。

因此,它既具有MOSFET的工作速度快、输入阻抗高、驱动电路简单、热温度性好的优点,又包含了GTR的载流量大,阻断电压高等多项优点,是取代GTR和SCR( 可控硅)的理想开关器件。

从1996年至今,尤其是最近几年来IGBT发展很快,目前已被广泛地应用于各种逆变器中。

(1)IGBT控制是采用导通宽度及频率来实现对输出功率进行无级调节的中频电源,且采用串联谐振,无需加启动电路及前级调压装置,因此启动相当方便,启动成功率百分之百,调节输出功率极为方便。

(2)整流部分采用二极管三相全桥整流,使得控制电路极为简单,维修技术量降低。

(3)目前大部分厂家采用德国西门子公司产品作逆变器,中频电源寿命在3万次以上,采用了限压过流过压保护电路,使得故障率极低,并且过流过压保护动作时报警器马上报警显示且保护停机。

综上所述,IGBT中频电源作为铸造熔炼中频感应加热电源,是电力电子技术发展的必然趋势,它将成为二十一世纪铸造行业现代化的重要标志。

二、一拖二感应电炉系统一拖二感应电炉系统即功率共享电源系统的感应电炉,。

即一台中频电源能同时向二台电炉供电,并能在额定功率范围内自由分配向各台电炉的输入功率。

它从上世纪90年代初在国外问世,恰好遇到我国经济改革开放的大发展年代,因此这种电炉系统几乎同步进入我国的铸造业,并且得到铸造界的青睐和认同。

但碍于当时国内电炉制造商尚未开发出该项技术,而进口设备的昂贵价格又使许多铸造厂望而怯步,限制了它在我国铸造业的广泛应用。

据相关资料介绍,从我国1993年引进第一台一拖二电炉系统起到目前为止,全国现有一拖二电炉系统大约共计有近100套左右,其中功率最大的一套为6000kW功率共享电源配置二台8吨电炉。

一拖二电炉的优点采用中频感应电炉可以配置比工频感应电炉更大的功率密度(例如可以配置比工频电炉的极限配置功率密度300kW/t大3倍左右的功率密度,即达到900kW/t以上),并可实现批料熔化法。

中频炉介绍

中频炉介绍

设备介绍:我公司制造的中频电炉与传统设备相比具有节能率国内领先、对电网冲击小、熔化效率高、溶液温度均匀,氧化损耗小,金属成份均匀、温度容易控制、保温效果好等特点。

中频电炉用于钢、合金钢、铸铁、不锈钢、铜、铝、锌、镁等黑色金属与有色金属材料的熔炼。

设备应用于冶金行业,铸造行业,锻造行业,热处理行业,石油机械行业,矿山煤矿机械行业,管材行业,热处理行业等。

设备组成:中频电源、电容柜、炉体(铝壳或钢壳)、机械倾炉装置(或者液压倾炉装置)、水分配器、坩埚模(或者石墨坩埚、铁坩埚)、水冷电缆、连接铜排配套选配设备:高压开关柜、进线变压器、水冷却系统、换炉开关、漏炉报警装置、炉衬顶出装置设备数据:中频电源的控制、保护及起动中频控制对并联逆变中频电源而言,设计的控制电路有电流负反馈控制电路、限流调节电路和限压调节电路。

电流负反馈信号随交流电网输入电流的增加而线性增加,该信号输入到压控振荡器的压控端,逐渐降低压控振荡器的振荡频率,起到电流负反馈的作用,调节电位器P303可调节负反馈的强弱。

限流调节电路和限压调节电路实际上是两个P I调节器,它们分别由U203:C和U303:C构成,监视电源的电网输入电流和中频输出电压,如发现超出设定值(分别由电位器P302和P202设定),就输出一定的电压去降低压控振荡器的频率,也即增大整流相控触发角,降低整流输出电压,从而限制了电流和电压的继续增加,起到自动控制作用。

本装置的控制电路具有限压限流特性陡峭、稳定、没有低频振荡或荡幅极小的优点。

需要说明的是,所有的控制信号及手动调功信号通过加法器U203:A合成为一个电压信号来控制压控振荡器的振荡频率的。

三、保护中频电源的保护功能是针对电源的各种异常和故障而设计的。

主要有过电流保护电路和过电压保护电路。

igbt中频炉设备介绍:我公司制造的igbt中频炉与传统设备相比具有节能率国内领先、对电网冲击小、熔化效率高、溶液温度均匀,氧化损耗小,金属成份均匀、温度容易控制、保温效果好等特点。

中频感应加热电源 原理

中频感应加热电源 原理

中频感应加热电源原理中频感应加热电源是一种常用的加热设备,它利用中频电流的感应作用将电能转化为热能。

该电源的工作原理主要包括电源单元、谐振电路、功率变换单元和控制单元等几个关键部分。

电源单元是提供电能的装置,通常由三相交流电源和整流电路组成。

交流电源通过整流电路将交流电转化为直流电,然后进一步进行滤波,以保证电源稳定。

谐振电路是中频感应加热电源的核心部分,它由电容器和电感器组成。

谐振电路的作用是将直流电转化为中频交流电,并将其输出到功率变换单元。

功率变换单元主要由功率开关管和输出变压器组成,其作用是将中频交流电通过功率开关管的控制进行变换,使其达到所需的电压和电流。

功率开关管可以根据负载的变化来调整输出功率,从而实现对加热过程的控制。

输出变压器则是将电源提供的中频交流电转化为适用于加热设备的高电压和高电流。

控制单元是中频感应加热电源的智能化部分,它通过传感器实时监测加热过程中的温度、电流和电压等参数,并根据设定的加热要求进行调节。

控制单元可以实现加热功率的精确控制和加热时间的设定,从而提高加热效率和产品质量。

中频感应加热电源具有许多优点。

首先,它具有高效率和节能的特点。

由于中频电流只在工件表面产生感应加热效应,因此加热效率较高,可以减少能量的浪费。

其次,中频感应加热电源具有快速加热和均匀加热的特点。

由于电磁感应的作用,加热速度快且加热均匀,可以提高生产效率和产品质量。

此外,中频感应加热电源还具有操作简便、自动化程度高等特点,可以提高工作环境的安全性和操作的便利性。

中频感应加热电源广泛应用于金属加热、焊接和热处理等领域。

在金属加热方面,中频感应加热电源可以用于钢铁、铜、铝等金属材料的加热和熔炼。

在焊接方面,中频感应加热电源可以实现金属材料的局部加热,从而实现高效的焊接。

在热处理方面,中频感应加热电源可以用于金属材料的淬火、回火和退火等工艺,以改善材料的性能和延长使用寿命。

中频感应加热电源是一种高效、节能的加热设备,其工作原理简单明了。

IGBT中频感应熔炼炉技术说明

IGBT中频感应熔炼炉技术说明

IGBT中频感应熔炼炉技术说明IGBT中频电源设备使⽤说明书⽬录⼀、⽤途及技术规格 (1)⼆、电源部分使⽤说明 (2)〈⼀〉、结构组成及⼯作原理 (2)〈⼆〉、性能特点 (3)〈三〉、操作⽅法 (4)⼆、炉体部分使⽤说明 (5)〈⼀〉、炉体 (5)〈⼆〉、感应圈 (5)〈三〉、炉衬 (6)〈四〉、固定炉架 (6)〈五〉、⽔循环系统 (6)〈六〉、机械倾炉系统 (6)〈七〉炉体安装与调整 (6)三、注意事项 (7)四、使⽤维护 (8)五、炉衬捣打,烘炉⼯艺 (9)⼀、⽤途及技术规格1. ⽤途本产品适⽤于钢、铁⿊⾊⾦属的熔炼及升温,也可⽤于熔炼铜、铝等有⾊⾦属。

2. 技术规格及基本要求2.12.2.1 本产品技术条件符合JB/T4280中的有关规定.2.2.2 本产品应在下列条件下正常⼯作:a.海拔⾼度不超过1000⽶。

b.环境温度在+5℃~40℃之间。

c.适⽤地区最湿⽉平均最⼤相对湿度不⼤于90%,同时该⽉的⽉平均最低湿度不⾼于25%.d.周围没有导电性尘埃、爆炸性⽓体及能严重损坏⾦属和绝缘的腐蚀性⽓体。

注:如在其它条件下⼯作,⽤户应与制造⼚家协商解决,e.⽔质要求(1)纯⽔或蒸馏⽔。

(2)⽔的⽐电阻额定电压≥2000V~3000V ⽐电阻≥5000Ω(3)进⽔压⼒0.1~0.3mpa( 4 ) 进⽔温度5°~ 40℃(炉体)5°~36℃(电源)备注:本设备进⽔严禁⽤井⽔或⾃来⽔直接给设备供⽔.以免在夏季⾼温环境中因循环⽔与周围环境温差过⼤,使设备部结⽔露⽽造成设备故障.f.供电要求(1)电⽹电压三相不平衡度不⼤于5%(2)电⽹电压波动不⼤于±10%,(3)电⽹电压为正弦波,波形畸变不⼤于10%。

⼆、电源部分使⽤说明〈⼀〉、结构组成及⼯作原理节能型IGBT晶体管中频电源共由四部分组成,它们分别为整流、滤波、逆变输出、熔炼炉体,组成结构图如下:节能型IGBT晶体管中频电源各部分⼯作原理如下:1、整流部分:节能型IGBT晶体管中频电源整流采⽤三相半可控⽅式,可控硅仅作开关使⽤,即每当启动设备时整流后的电压总保持500V,⽽不随功率⼤⼩⽽变化,这样可⼤⼤减⼩了谐波的产⽣,减轻了对电⽹的谐波⼲扰。

中频感应电炉能耗及节能原理探究

中频感应电炉能耗及节能原理探究
中频感应电炉能耗及节能原理探究
摘要:与冲天炉、燃料炉、电弧炉和工频电炉相比,中频感应熔炼炉在节能、环保等方面有明显的优势,此外,它还有比较容易变换熔炼品种,对于熔炼质量比较容易控制,具有较高的热效率,操作灵活简单,熔炼速度快,功率密度大等优点。
关键词:中频感应电炉;节能;措施
作为热工领域的重要设备,中频感应炉进行感应加热的方式主要是用中频交流电对金属工件产生的涡流效应。目前,在熔炼、淬火、透热等领域广泛的应用中频感应炉,主要是因为与传统加热方式相比,它效率高、速度快、加热均匀和能耗低。目前并联中频感应是我国普遍用的中频感应电炉,它具有较高的工作稳定性,较强的抗干扰能力,但是有较大的电能损耗,本文主要分析了并联中频感应炉主要能耗途径,并且从节能原理上提出一些方法使能耗减少。
采用厚壁高纯无氧铜管制作炉子的感应线圈。真空除气冶炼铜材的含氧量<20×10——6,显著提高铜材的导电率。由于厚壁管的导电截面大(一般为5——8mm),并且铜材有较高导电率,损耗得以减少。
2.2磁轭的截面积的设计要合理
可以采用厚度小于0.3mm优质单向趋晶的冷轧硅钢片,从而来对磁轭减少铁损制造。由D形取代矩形来作为中频感应炉的感应线圈的横截面的形状。D型铜管的应用可节省线路走廊,而且能降低输送单位容量的价格,同时降低了输送成本。这对于目前中国能源相对紧张的情况下是非常重要的[2]。对这种偏心D型铜管绕制而成的感应器采用,整个设备可以提高效率10%。
中频电炉炉料的尺寸、炉料与炉壁的间隙等熔炼工艺对熔炼的效率和质量有直接影响,因此,对熔炼操作工艺进行改善不仅实现节能降耗而且可使炉衬的使用周期延长,节约设备维修经费,具有良好经济效益[3]。
四、改进熔炼作业的方式、加强生产管理
4.1执行正确的熔炼操作
为了加速炉料的熔化,加料的方法应当注意。炉膛空间需要充分利用,搭配大小块的炉料进行装料。由于炉料在感应炉内磁通的分布是不均匀的,磁通密度越靠近坩埚壁越大,越靠近坩埚的中心线越小,产生的电动势和电流外层中比里层大,即“集肤效应”。通常来说,炉料间隙由小块料来填充,坩埚壁的附近装大块的炉料,炉底和中间部分装小块的炉料。中频电源一般都具备必要的限压限流保护,加料时炉体内可先装约2/3的炉料,快速升温炉料,温度迅速超过居里点,然后炉料阻抗增大,电流在限流值以内,可保证电炉以额定功率运行,再将另外1/3的炉料加入,这样将会缩短限流时间[3]。在整个熔化过程中,不必要的限压时间必须被减少,采用炉钎捅料,避免由于炉料大小不同,长短不一,互相挤住发生“搭接”,使炉子出现中频电压高而限压,功率上不去,熔化速度将变慢。

最新-采用IGBT的正弦波中频逆变电源 精品

最新-采用IGBT的正弦波中频逆变电源 精品

采用IGBT的正弦波中频逆变电源摘要介绍了用作功率器件的中频逆变电源,对电路的工作原理进行了详尽的分析。

关键词绝缘栅双极晶体管;中频逆变电源;驱动;正弦波脉宽调制引言400中频电源在工业、国防、航海、航空等领域中应用非常广泛。

目前在我国,400中频供电系统大多为中频机组,体积大,噪音高,效率低,管理不便。

我们研制了一台用绝缘栅双极晶体管做为主功率开关器件的400正弦波中频逆变电源,它具有体积小,重量轻,噪音低,转换效率高,工作可靠,使用方便等优点,是中频机组的理想替代新产品。

是新一代复合型电力电子器件,它的控制级为绝缘栅控场效应晶体管,输出级为双极功率晶体管,因而它兼有两者的优点而克服了两者的缺点,如高的输入阻抗;高的开关频率;很小的驱动功率;通态压降小;电流密度大等。

图11系统组成及工作原理11逆变电源主电路正弦波中频逆变电源的主电路构成如图1中的上半部分所示,图中1为空气开关。

为滤波器,用以滤掉电网中的干扰和消除逆变电源对电网的干扰。

2,3,4为接触器,2的作用是在系统启动时接通电源,在故障时切断主电源,其辅助触点2′用来在停机或保护电路动作时使滤波电容1及2上贮存的能量通过电阻2快速放掉,以便检修或避免掉电时电容1及2中聚积的能量还未放完,逆变桥中同桥臂上下主功率因驱动脉冲电平不确定发生同时导通而损坏。

接触器3和电阻1构成软起动电路,其作用是在系统启动时,通过电阻1缓慢地对电容1及2充电,防止直接启动时由于电容器1及2上初始电压为零,导致整流桥模块承受过大的电流冲击而损坏,当电容1及2上的电压充到一定值时,接触器3动作,其触点将电阻1短接。

4用于将电源输出与负载隔开,等系统启动成功后再将负载接通,以保证电源系统顺利启动及保护用电设备。

滤波电容1及2用来对整流后的电压进行滤波,以保证提供给逆变桥的电压为平直的直流电压。

3及4分别并于1及2两端,以保证1及2各承受主电路中直流电压的一半。

中频感应加热电源的设计(毕业设计参考1)

中频感应加热电源的设计(毕业设计参考1)

0096编号:毕业设计论文课题:中频感应加热电源的设计院(系):机电与交通工程系专业:电气工程及其自动化学生姓名:吴科虎学号: 020120221指导教师单位:电气工程教研室姓名:何少佳职称:高级实验师题目类型:2006年 06月 03 日中频感应加热以其加热效率高、速度快,可控性好及易于实现机械化、自动化等优点,已在熔炼、铸造、弯管、热锻、焊接和表面热处理等行业得到广泛的应用。

本设计根据设计任务进行了方案设计,设计了相应的硬件电路,研制了20KW 中频感应加热电源。

本设计中感应加热电源采用IGBT作为开关器件,可工作在10 Hz~10 kHz 频段。

它由整流器、滤波器、和逆变器组成。

整流器采用不可控三相全桥式整流电路。

滤波器采用两个电解电容和一个电感组成Ⅱ型滤波器滤波和无源功率因数校正。

逆变器主要由PWM控制器SG3525A控制四个IGBT的开通和关断,实现DC-AC的转换。

设计中采用的芯片主要是PWM控制器SG3525A和光耦合驱动电路HCPL-316J。

设计过程中程充分利用了SG3525A的控制性能,具有宽的可调工作频率,死区时间可调,具有输入欠电压锁定功能和双路输出电流。

由于HCPL-316J 具有快的开关速度(500ns),光隔离,故障状态反馈,可配置自动复位、自动关闭等功能,所以选择其作为IGBT的驱动。

对原理样机的调试结果表明,所完成的设计实现了设计任务规定的基本功能。

此外,为了满足不同器件对功率需要的要求,设计了功率可调。

这部分超出了设计任务书规定的任务。

关键词:感应加热电源;串联谐振;逆变电路;IGBTThe Intermediate Frequency Induction Heating has been widely applied in melting, casting, bend, hot forging, welding, Surface Heat Treatment due to its advantages of high heating efficiency、high speed、easily controlled、easily being mechanized and automated.The scheme has made a plan of designs based on the task of design, designed corresponding hardware circuit and developed 20kW intermediate frequency induction heating power system.The thesis discusses the Choice of converter scheme in detail. Series Resonance Inverter has another name is Voltage Inverter. Its Output Voltage approaches square wave and load current approaches sine-wave. Inversion must follow the Principles of break before make and there is enough dead-time between turn-off and turn on in order to avoiding direct through in upper and lower bridges.The thesis discussed the Choice of converter scheme in detail as well as introduced the control circuit of this power source and its design principle. Develop 20kW intermediate frequency induction heating power system with switch element IGBT. Make a research on Converter Circuit, control circuit, driver circuit etc.The CMOS chip that is applied in the design is mainly PWM Controller SG3525A and optical coupler Drive Circuit HCPL-316J. The controlled feature of PWM Controller SG3525A is fully utilized in the process of design, which has wide adjustable operating frequency and dead time, input under voltage lock function and twin channel output current. The optical coupler Drive Circuit HCPL-316J is chosen as the driven of IGBT due to its functions, such as fast switch speed (500ns), optical isolation, the feedback of fault situation, wide operating voltage (15V~30V), automatic reset and automatic close down etc.Key words:Induction heating power supply; series resonance;inverse circuit;IGBT目录引言 (1)1 绪论 (2)1.1 感应加热的工作原理 (2)1.2 感应加热电源技术发展现状与趋势 (3)2 感应加热电源实现方案研究 (5)2.1 串并联谐振电路的比较 (5)2.2 串联谐振电源工作原理 (7)2.3 电路的功率调节原理 (8)2.4 本课题设计思路及主要设计内容 (8)3 感应加热电源电路的主回路设计 (9)3.1 主电路的主要设计元器件参数 (9)3.2 感应加热电源电路的主回路结构 (9)3.2.1主回路的等效模型 (10)3.2.2整流部分电路分析 (13)3.2.3逆变部分电路分析 (15)3.3 系统主回路的元器件参数设定 (16)3.3.1整流二极管和滤波电路元件选择 (16)3.3.2IGBT和续流二极管的选择 (17)3.3.3槽路电容和电感的参数设定 (18)4 控制电路的设计 (19)4.1控制芯片SG3525A (19)4.1.1内部逻辑电路结构分析 (20)4.1.2芯片管脚及其功能介绍 (21)4.2 电流互感器 (23)5 驱动电路的设计 (24)5.1 绝缘栅双极型晶体管(IGBT)对驱动电路的要求 (24)5.1.1门极电压对开关特性的影响及选择 (24)R对开关特性的影响及选择 (25)5.1.2门极串联电阻G5.2 IGBT过压的原因及抑制 (25)5.3 IGBT的过流保护 (26)5.3.1设计短路保护电路的几点要求 (27)5.4 集成光电隔离驱动模块HCPL-316J (27)5.4.1器件特性 (27)5.4.2芯片管脚及其功能介绍 (28)5.4.3内部逻辑电路结构分析 (28)5.4.4器件功能分析 (29)5.4.5驱动电路的试验和注意问题 (30)6 辅助直流稳压电源 (31)6.1 三端固定稳压器 (31)6.2 本次设计用的的电源 (32)6.2.1 18伏,15伏稳压电压电源 (32)6.2.2 ±12伏,±5伏双路稳压电源 (32)6.2.3元器件选择及参数计算 (33)7 硬件调试 (34)8 结论 (35)致谢 (37)参考文献 (38)附录一整体电路原理图 (39)附录二控制电路PCB (40)引言随着功率器件的发展,感应加热电源的频率也逐步提高,经历了中频、超音频、高频几个阶段。

中频电源

中频电源
2.将示波器探头接在逆变晶闸管的门极和阴极上,示波器置于内同步,接通控制电源后可以看到逆变触发脉 冲,它是一串尖脉冲,幅度应大于2V,通过示波器的时标读出脉冲周期,算出触发脉冲频率,正常时应比电源柜 的标称频率高约20%,这个频率称为启动频率。按下启动按钮后,脉冲的间距加大,频率变低,正常时应比电源 柜的标称频率低约40%,按一下停止按钮,脉冲频率立即跳回启动频率。
的结构
中频电源从早期的中频发电机组发展成为可控硅式变频电源,如今经过不断开发完善成为目前新一代变频电源 装置。
中频电源主要包括整流变压器、可控硅整流器、续流二极管、逆变器以及联结整流器与逆变器的直流电抗器, 还有相应的控制回路和保护回路.
变压器与整流装置
中频电源的可控硅整流装置能够产生大量的高次谐波电流,可以把它看成是一个谐波源。为了减少其谐波危害, 对其整流装置的设计采取增加整流脉动ቤተ መጻሕፍቲ ባይዱ作为抑制谐波的主要措施。通常情况下,对于1000kw以下的中频电源装 置采用6脉动整流,其产生的谐波主要为6k士1(k为正整数)次的特征谐波电流;而对于1000kw以上的中频电源装置 根据容量的大小,可采用12脉动或24脉动整流。对于12脉整流电路,它是由两组6脉动的三相桥并联组成。两组桥 的交流侧分别接到三绕组变压器的两个二次绕组上,一个绕组是星型接法,另一个是三角形接法,两者线电压相位 差为30“。当两组桥同步控制,使两组整流桥得到相同的触发角,经过分析可得来自两组整流桥的5次和7次谐波电 流将在变压器的一次侧相互抵消。同样17次和19次谐波电流亦相互抵消,这时侧的最低次特征谐波将是n次和13次 谐波,接下来就是23次和25次谐波了。其变压器一次线电流的波形是三阶梯形,更接近正弦波。
通过上列检查,基本上能排除完全不能启动的故障。

600kwIGBT串联谐振式节能中频电炉主电路的设计

600kwIGBT串联谐振式节能中频电炉主电路的设计

摘要就目前来说,中频感应加热的加热速度快并且控制起来十分方便,已经在诸多行业中得到了广泛的应用。

本文对600kwIGBT串联谐振式节能中频电炉主电路系统进行了设计,主要工作如下:一.高压10kV进线开关柜的设计,高压10kV系统为小电流接地系统,设计过电压和过电流保护,设计电压、电流和电能计量。

二.设计整流电路、滤波电路以及逆变电路,说明其原理。

三.说明元件工作原理和电路设计原理及依据,说明降低谐波和节能原理。

本设计阐述了串联谐振中频感应电炉的主电路整体结构,并且给予了基本电路的理论分析,推导了主电路的计算公式,阐述了经过整流桥和谐振负载改造后优点,完成了逆变电路、整流电路以及电抗器的设计。

目前为止,串联谐振中频电炉仍具有大量的使用空间,使得该课题具有其现实意义。

关键词:感应加热;串联谐振;晶闸管;逆变;整流AbstractFor now, the rate of heating of the medium frequency induction heating, fast and control is very convenient, has been widely used in many industries. This article 600KwIGBT series resonant energy-saving intermediate frequency electric furnace main circuit system design, the main work is as follows:One. The design of high voltage 10KV line switchgear, high voltage 10KV system for small current grounding system, the design of overvoltage and overcurrent protection, design voltage, current and power measurement.Two. The design phase into the 10KV six line rectifier transformer wiring, selection of the rated voltage and the voltage drop, low pressure outlet overvoltage and overcurrent protection, indicating that reducing the harmonic principle.Thire. Description of the components working principle and circuit design principles and basis of the lower harmonics and energy conservation principle.The design described the overall structure of the main circuit, the series resonant medium frequency induction furnace and give a theoretical analysis of the basic circuit, the main circuit is derived formula on the advantages of the transformation after the bridge rectifier and the resonant load inverter circuit is completed, design of the rectifier circuit, reactor, and the line inductance. So far, the series resonant intermediate frequency electric furnace still has a lot of use of space, the subject has its practical significance.Keywords: induction heating; series resonance; thyristor, inverter;rectifier目录摘要 (I)Abstract........................................................................................................................ I I 目录 ......................................................................................................................... I II 第一章概论 .......................................................................................................... - 1 -1.1 选择课题的背景及意义 ............................................................................ - 1 -1.2 串联谐振中频电炉主电路结构的设计 .................................................... - 2 -1.3 该课题的研究目标 .................................................................................... - 3 - 第二章中频电炉的工作原理 .............................................................................. - 4 -2.1 中频电炉的内部结构 ................................................................................ - 4 -2.2 电磁感应原理 ............................................................................................ - 4 -2.3 感应加热效应 ............................................................................................ - 5 -2.3.1集肤效应 ........................................................................................... - 6 -2.3.2邻近效应 ........................................................................................... - 7 -2.3.3端部效应 ........................................................................................... - 8 -2.3.4圆环效应 ........................................................................................... - 8 -2.4 中频电炉负载 ............................................................................................ - 9 -2.4.1负载磁场 ........................................................................................... - 9 -2.4.2负载电阻 ......................................................................................... - 10 -2.4.3负载参数 ......................................................................................... - 11 - 第三章中频电源和小电流接地系统 ................................................................ - 13 -3.1 中频电源系统 .......................................................................................... - 13 -3.2 小电流接地系统 ...................................................................................... - 15 -3.2.1 10kV进线开关柜的选择 ............................................................... - 15 -3.2.2 电压、电流和电能计量 ................................................................ - 17 -3.2.3 10kV线路过电压和过电流保护 ................................................... - 18 - 第四章整流电路 ................................................................................................ - 19 -4.1 中频电源整流电路的条件 ...................................................................... - 19 -4.2 整流电路原理分析 ................................................................................ - 20 -4.3 阻感负载时的工作情况 .......................................................................... - 20 -4.4 十二脉进线消除谐波 .............................................................................. - 22 -4.4.1 串联谐振主电路 ............................................................................ - 22 -4.4.2 谐波分析 ........................................................................................ - 23 -4.5 滤波电路原理分析 .................................................................................. - 23 - 第五章逆变电路 ................................................................................................ - 25 -5.1 中频电源逆变电路的条件 ...................................................................... - 25 -5.2 逆变电路原理分析 .................................................................................. - 25 -5.2.1 串联逆变器原理分析 .................................................................... - 25 -5.2.2 逆变器与谐振负载电路原理分析 ................................................ - 27 -5.3 逆变系统控制电路 .................................................................................. - 28 -5.3.1 调功电路 ........................................................................................ - 28 -5.3.2 压控振荡器 .................................................................................... - 29 - 第六章 IGBT串联谐振式节能中频电炉及其保护 ........................................... - 30 -6.1 IGBT简介................................................................................................. - 30 -6.1.1 IGBT的概念................................................................................... - 30 -6.1.2 IGBT与晶闸管............................................................................... - 30 -6.2 串联中频电炉的节能原理 ...................................................................... - 30 -6.2.1串联谐振与并联谐振的关系 .......................................................... - 30 -6.2.2节能原理 .......................................................................................... - 31 -6.3 中频电炉的保护系统 .............................................................................. - 31 -6.3.1过电流保护 ...................................................................................... - 31 -6.3.2过电压保护 ...................................................................................... - 32 -6.3.3晶闸管保护 ...................................................................................... - 32 - 结论 .................................................................................................................... - 35 - 参考文献 ................................................................................................................ - 36 - 致谢 .................................................................................................................... - 37 - 附录1:串联谐振式中频电炉主电路图 ............................................................. - 38 -附录2:串联谐振式中频电炉设计总图 ............................................................. - 39 -第一章概论1.1 选择课题的背景及意义目前,在先进技术的指引下,我国研制出了串联谐振式的中频感应电源,并且可以提供相当可观的容量。

IGBT和可控硅的中频炉比较及优点

IGBT和可控硅的中频炉比较及优点
,前者是可控制开-关元件, 后者大多数是只能控制开,不能控制关。受元件制造工艺 和工作原理等影响,前者可在较高频率下工作,后者大多 在5KHz以内,这个是前者比后者的优点。但是前者相比 的缺点是成本高,制造工艺复杂,在高压大电流元件的制 造上,还达不到可控硅的能力,并且在抗过载能力上远远 不及可控硅。但是随着制造工艺的进步,短路保护的日趋 完善,前者在元件成本上已经大大下降,在很多场合与可 控硅相比价格完全可以接受,并且由于控制灵活方便,能 取消可控硅电路的关断电路等,在很多场合完全可以替代 可控硅,并且性能更好。所以现在很多原来使用可控硅的 中频炉设备逐渐改用IGBT 了,不能 用是不是中频来判断IGBT 或可控硅了。
• 可控硅具有体积小、效率高、稳定性好、 工作可靠等优点。多用来作可控整流、逆 变、变频、调压、无触点开关等。家用电 器中的调光灯、调速风扇、空调机、电视 机、电冰箱、洗衣机、照相机、组合音响、 声光电路、定时控制器、玩具装置、无线 电遥控、摄像机及中频炉等工业控制等都 大量使用了可控硅器件。
• IGBT(Insulated Gate Bipolar Transistor),绝 缘栅双极型功率管,是由BJT和MOS组成的复合 全控型电压驱动式电力半导体器件, 兼有 MOSFET的高输入阻抗和GTR的低导通压降两方 面的优点。GTR饱和压降低,载流密度大,但驱 动电流大;MOSFET驱动功率很小,开关速度快, 但导通压降大,载流密度小。IGBT综合了以上两 种器件的优点,驱动功率小而饱和压降低。非常 适合应用于直流电压为600V及以上的变流系统如 交流电机、变频器、开关电源、照明电路、牵引 传动等领域。
IGBT和可控硅的中频炉比 较
• 可控硅整流元件的简称,亦称为晶闸管。是 一种具有三个PN 结的四层结构的大功率半 导体器件,一般由两晶闸管反向连接而成.它 的功用不仅是整流,还可以用作无触点开 关以快速接通或切断电路,实现将直流电 变成交流电的逆变,将一种频率的交流电 变成另一种频率的交流电等等。

igbt感应加热电源的原理和优势

igbt感应加热电源的原理和优势

IGBT感应加热电源的原理和优势IGBT中频电源控制部分的原理和优势:解释:当总功率是2500KW的时候,每个炉体为2200KW,并且可以在300KW到2200KW 范围内随意调整,但是总功率不能超过2500KW.双变频器电气图纸1.串联谐振中频感应炉采用IGBT中频电源。

IGBT中频电源是一种新型的IGBT逆变器模块(绝缘栅双极型晶体管,德国生产)主要用来熔炼碳钢,合金钢,铸钢,有色金属。

IGBT中频电源具有加热速度快,节能环保的特点。

2.IGBT中频电源作为恒功率电源,即使添加少量的金属也可达到全功率输出,并且保持恒定不变,因此加热速度快。

采用串联谐振变压器,变压器电压高,所有的IGBT中频电源比可控硅电源节能。

IGBT采用频率调控系统调整频率,整流部分包括全桥整流器,感应器和电容滤波器,它在500v的条件下工作,因此IGBT中频电源产生极少的低次谐波,低网格污染。

3.IGBT中频电源比可控硅中频电源节约电能15%-25%,原因有以下几个方面:A.逆变器电压高,电流,电路损失低,这部分可以节约电能15%。

IGBT中频电源变压器的功率是2800v,传统的可控硅中频电源变压器的功率是750v,电流减小了四倍,线路损失降低了。

B.高功率因素,功率因素大于0.98,无功损耗小,这部分比可控硅中频电源节约电能3% -5%。

IGBT 采用全桥式整流,整流部分不调整可控硅传导角,所以整个过程的功率因素大于0.98,无功损耗小。

C.炉体热损耗小,同功率条件下,IGBT比可控硅每批次快15分钟。

在路出口的热损失占整个过程的3%。

因此这部分比可控硅中频电源节约3%的能量。

4.高次谐波干扰:当可控硅产生电压峰值的时候整流器的高次谐波调整电压。

电压电网会被严重污染导致其他的设备不能工作,IGBT中频电源整流器部分采用全桥整流器。

直流电压总是在最高程度工作,不需要调整传导角,因此不会产生高次谐波,不会污染电网,变压器,交换器不会被加热,不会干扰其他电子器件的工作。

IGBT高频感应加热逆变电源原理

IGBT高频感应加热逆变电源原理

IGBT高频感应加热逆变电源原理(一)摘要本文以IGBT高频感应加热电源为研究对象,首先介绍了课题的背景,国内外高频感应加热电源的发展现状及选题意义,同时对电力电子器件的发展也做了简要的介绍,并简述了本课题所做工作的主要内容。

本文从感应加热的基本原理出发,对感应加热电源中的电流型逆变器和电压型逆变器作了比较分析,对感应加热电源常用的两种拓扑结构进行了分析,重点介绍了关于串联型感应加热的特点,由于其具有结构简单、加热效率高、设备体积小等优点,得出串联型逆变器拓扑更适合高频感应加热电源的结论,因此成为本课题的选定方案,也是整机制做的理论基础。

并分析了感应加热电源的各种调功方式,对谐振槽路基本理论进行了详细的分析。

整机制做首先要选择合适的器件,在本文对主要器件的参数、结构特性、驱动要求等进行了详细的说明。

在选择合适器件的基础上,设计出了整机的结构,其中包括整流环节、逆变环节、驱动技术、保护措施等。

在现场进行了大量的试验,选定电源的控制与保护等重要环节的实现方案,并对试验波形进行了测试和分析,通过现场的应用来验证了以上理论的正确性。

论文最后,对本课题所做的工作作了一个简单的总结。

第1章绪论§1.1 选题意义由于电磁感应加热具有加热效率高、升温快、可控性好,且易于实现机械化、自动化等优点,感应加热变频电源装置已越来越广泛的应用于熔炼、透热、淬火、弯管、焊接、加热等工业领域,已取得了明显的经济效益和社会效益。

感应加热变频电源装置的发展方向是沿着大容量、高频率、高效率、智能化,并以提高可靠性、拓宽用途为目标。

80年代出现的绝缘栅双极晶体管(IGBT)因具有开关频率高、驱动功率小、通态压降小、电流密度大等优点而得到越来越广泛的应用[1]。

在此之前,晶闸管中频电源和电子管式高频电源装置是应用于感应加热的主要产品,但它们都有体积庞大,价格昂贵,能耗大,效率偏低的共同缺点。

国外市场早在九十年代初就已出现IGBT感应加热变频电源。

论应用IGBT新技术的UPS电源

论应用IGBT新技术的UPS电源

论应用IGBT新技术的UPS电源摘要:随着新技术发展对供电质量需求的不断提高,ups经历了多次技术变革,特别是将igbt技术应用于ups领域,使ups发生了一次巨大的变革,使得整机性能发生了非常大的变化,并为下阶段的发展打下了坚实的基础。

关键词:ups电源;igbt技术;维护管理近年来,我国广播电视、通讯、网络等行业发展迅速,覆盖了全国绝大多数地区,已经成为人们现代生活密不可分的重要组成部分。

电源对保障系统安全可靠运行起着至关重要的作用。

为了确保可靠的供电,有交流电源供电的设备需要采用交流不间断电源(ups),在电源系统中引入ups是为了以优良的供电质量向负载连续供电,从而提高供电系统的可靠性和质量。

1 ups电源的构成原理1.1 ups电源的功能及主要构成ups实际上就是一个大容量蓄电池,它的原理是外电网为其供电,由它再给我们的设备供电,平时它处于不断充放电的状态,它主要作用有两个,第一当断电时它起到一个蓄电池的作用,为设备提供一定时长的供电,保证设备断电后仍然能正常工作;第二就是起到稳压作用,由于它能提供稳定的电压输出,从而避免因外电网的电压波动损坏设备。

通俗的讲他就好比一个蓄水池,在有水的时候把水存起来,一旦断水它就提供给我们水。

ups(uninterruptible power system )即不间断电源是一种储备能量的装置,它是一种恒频、恒压的以逆变器为主要组成部分的电源。

在广播电影电视领域,主要用于给发射机系统、天馈线系统、卫星上行系统、车载发射系统及直播系统提供不间断优质电源的设备。

当外接市电正常供电时,ups电源将市电进行净化整定后供应给后端负载使用,此时ups即是一台交流市电的稳压设备,同时它还负责向附属的12v,60ah蓄电池充电;当市电意外中断时,在线式的ups能够立即通过逆变器使用平时蓄电池储备的电能给负载供应220v的纯净、恒定交流电,避免负载在突然断电的情况下,电路板等设备受到冲击、flash等存储器数据丢失,但后备式的ups 不能够实现零秒切换,因此其使用受到了一定程度的限制。

IGBT技术

IGBT技术

IGBT技术在日益增长的变频器市场,许多厂商提供性能和尺寸各异的变换器类型。

这正是以低损耗和高开关频率而著称的新IGBT技术施展的舞台。

在62毫米(当前模块的标准尺寸)模块中使用新IGBT技术使用户可以因不必改变其机械设计概念而获益。

基于平台技术的标准62毫米SEMITRANS®模块,由于针对IGBT和二极管采用了不同的半导体技术,因此适合于多种应用场合。

采用标准尺寸模块外壳这一事实意味着用户有更多可供选择的供应商。

新1200V系列模块为我们展示了外壳和半导体之间的匹配是多么的完美,该系列产品基于英飞凌的IGBT4技术和赛米控稳健可靠的新CAL4二极管。

国内领先的IGBT技术研发公司山东金华信机电设备有限公司的IGBT 中频电源技术为各公司提供IGBT技术。

1. 半导体开关中的IGBT和二极管在电力电子里半导体器件IGBT和二极管仅作为开关。

“理想的开关”必须满足以下条件:·通态压降Vd = 0,与当前导通电流无关·反向电流Ir = 0,直到最大允许反向电压·开关损耗Psw = 0,与当前被切换的电流和直流母线电压无关·热阻Rth无足轻重,因为没有损耗产生然而,在实际的开关中,存在大量的正向和开关损耗。

因而设计中的热阻对模块性能来说是至关重要的。

本文讨论IGBT²、IGBT³以及SEMITRANS®模块采用的新IGBT4 半导体技术之间的区别,并展示在某些情况下新IGBT4技术所带来的性能提升。

2. 芯片技术的进展图1显示了基于英飞凌沟槽栅场截止(FS)IGBT4技术和赛米控CAL4续流二极管的新一代芯片的基本结构。

图1:场漕栅场截止技术(FS)IGBT4和CAL4 FWD的结构IGBT4 基本上是基于已知的IGBT³沟槽栅结构并结合经优化的包含n—衬底、n-场截止层和后端发射极的纵向结构。

IGBT简介介绍

IGBT简介介绍

过压、过流及短路保护
01
过压保护
为了防止IGBT在过高的电压下工作导致损坏,需要设置过压保护电路。
当电压超过设定值时,保护电路会迅速动作,切断IGBT的工作电源。
02
过流保护
当IGBT流过过大的电流时,过流保护电路会起作用,限制电流继续增加
,避免IGBT因过热而损坏。
03
短路保护
短路是IGBT运行过程中可能遇到的严重问题。短路保护电路能在发生短
IGBT具有较好的热稳定性 ,能够在高温环境下正常 工作。
IGBT的应用领域
电源变换
IGBT广泛应用于DC-DC变换器、ACDC整流器等电源电路中,实现电压、 电流的变换和控制。
01
02
电机驱动
IGBT可用于电机驱动电路中,如电动 汽车、电动自行车等驱动系统。
03
焊接设备
IGBT作为核心器件,应用于电阻焊、 电弧焊等焊接设备中。
IGBT的市场前景及展望
新能源汽车市场
随着新能源汽车市场的持续增长,IGBT作为核心 功率器件,其需求将继续旺盛。
智能电网与可再生能源
智能电网建设及可再生能源的快速发展将为IGBT 提供新的增长点。
轨道交通市场
轨道交通的电气化与智能化趋势将推动IGBT在轨 道交通领域的应用不断扩大。
展望
未来,随着技术的不断进步,IGBT将在更多领域 得到应用,市场规模将持续扩大。同时,国内品 牌在技术和市场上将不断取得突破,逐步缩小与 国外品牌的差距。
IGBT的驱动方式
栅极驱动:通过控制栅极与发射极之间的电压来控制IGBT的开通与关断。这种方式 简单、直接且效率高。
电流源驱动:通过电流源来为栅极提供驱动电流。这种方式更为稳定,但需要额外 的电流源。

中频炉原理及特点

中频炉原理及特点

(5)恒功率输出:可控硅中频电源采用调压调功,而节能型IGBT晶体管中频电源采用调频调功,它不受炉料多少和炉衬厚薄的影响,在整个熔炼过程中保持恒
B、功率因数高,功率因数始终大于0.98,无功损耗小,此部分比可控硅中频电源节能3%-5%。由于节能型IGBT晶体管中频电源采用了半可控整流方式,整流部分不调可控硅导通角,所以整个工作过程功率因数始终大于0.98,无功率损耗小。
C、 炉品热损失小,由于节能型IGBT晶体管中频电源比同等功率可控硅中频电源一炉可快15分钟左右,15分钟的时间内炉口损失的热量可占整个过程的3%,所以此部分比可控硅中频可节能3%左右。
中频炉电源原理及特点
(1)IGBT中频电源是一种采用串联谐振式的中频感应熔炼炉,它的逆变器件为一种新型IGBT模块(绝缘栅双极型晶体管,德国生产),它主要用于熔炼普通碳素钢、合金钢、铸钢、有色金属。它具有熔化速度快、节能、高次谐波污染低等优点。
(2)IGBT中频电源为一种恒功率输出电源,加少量料即可达到满功率输出,并且始终保持不变,所以熔化速度快;因逆变部分采用串联谐振,且逆变电压高,所有IGBT中频比普通可控硅中频节能;IGBT中频采用调频调功,整流部分采用全桥整流,电感和电容滤波,且一直工作在500V,所以IGBT中频产生高次谐波小,对电网产生污染工低。
(3)节能型IGBT晶体管中频电源比传统可控硅中频电源可节能15%-25%,节能的主要原因有以下几下方面:
A、逆变电压高,电流小,线路损耗小,此部分可节能15%左右,节能型IGBT晶体管中频电源逆变电压为2800V,而传统可控硅中频电源逆变电压仅为750V,电流主要来自整流部分调压时可控硅产生的毛刺电压,会严重污染电网,导致其他设备无法正常工作,而节能型IGBT晶体管中频电源的整流部分 采用半可控整流方式,直流电压始终工作在最高,不调导通角,所以它不会产生高次谐波,不会污染电网、变压器,开关不发热,不会干扰工厂内其他电子设备运行。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

IGBT中频电源的节能优势我国是铸造大国,铸铁件年产量几年来均居世界各国之首位,而其能耗在成本中所占比例却比工业发达国家高出2—3倍,冲天炉的能耗占了其中的大部分。

主要原因是小容量冲天炉所占比例太大,而其中采用烟尘净化和余热回收装置的微乎其微,实现高水平熔炼和计算机控制的更少了。

我国铸铁生产车间一万多个,每个车间年平均产量不足1000t,冲天炉开炉时间短。

在冲天炉结构方面,由于我国铸造厂点过多,限制了大容量冲天炉的使用。

由于产量低,效益差,限制了性能优越的现代化冲天炉及其配套设备的采用。

操作不当不但对冲天炉性能造成不良影响,也是增加冲天炉能耗和环境污染的重要原因,在我国为数众多的小容量冲天炉上,更是普遍存在的现象。

中频技术应用于铸造行业给铸造推广高质量、高效率、节能环保、低碳的中、高频科技技术应用与中国的铸造行业,是保持中国铸造业可持续发展的一项重大举措。

与传统的冲天炉熔炼相比,中频技术应用于熔炼、精铸诠释了科技的力量。

中频感应电炉经历了两次根本的变革,第一次变革源于20世纪60年代后期开发的晶闸管静态变频电源,第二次源于20世纪70年代中期开发的逆变变频及其控制技术。

这样使中频感应电炉的优越性得以充分的发挥。

随着大功率晶闸管变频电源的开发和可靠性的提高,中频感应电炉正在逐步替代工频感应电炉而在铸造业获得愈来愈广泛的应用。

中频电源的基本工作原理,就是通过一个三相桥式整流电路,把50 Hz的工频交流电流整流成直流,再经过一个滤波器(直流电抗器)进行滤波,最后经逆变器将直流变为单相中频交流以供给负载,所以这种逆变器实际上是一只交流—直流—交流变换器,其基本线路如图:中频炉的感应加热原理,它是利用电磁感应原理将电能转变为热能,当交变电流i感应线圈时,感应线圈便产生交变磁通Φ,使感应中的工件受到电磁感应而产生感应电动势e。

感应电动势e = dΦ/dt如果磁通Φ是呈正弦变化的,即Φ= -Φm sinwt则 e = -dΦ/dt=-Φm sinwtE的有效值E=fΦM (伏)感应电动势E在工件中产生电流I, i使工件内部开始加热,其焦耳热为;Q=I--工件中感应电流的有效值(安)R--工件电阻(欧);t—时间(秒)中频电源从最初的发展到今天应用于铸造行业,电源种类从原理上可以分为两类,一传统的可控硅中频电源,可控硅又分为并联和串联型(因串联可控硅的在现实实践中应用技术不成熟在这就不做分析),二是带有igbt(绝缘栅极型晶体管)串连谐振电源。

铸造、淬火、热处理应用不同,需求的中频电源也有改变,通过原理和实践经验本文仅作对igbt中频电源与传统可控硅中频电源应用在熔炼这方面节能分析。

节能优势是通过以下几点原理分析:整流,逆变,功率因数与高次谐波以及恒功率输出。

整流Igbt中频电源整流是采用三相半桥可控整流电路,此种整流电路只要三只晶闸管、只需三套触发电路、不需要宽脉冲或双脉冲触发。

三相半控桥式整流电路比三相全控桥更简单、经济,而带电阻性负载时性能并不比全控桥差。

电路如图所示。

它是把全控桥中共阳极组的3个晶闸管换成整流二极管,因此它具有不可控和可控两者的特性。

其显著特点是共阴极组元件必须触发才能换流;共阳极元件总是在自然换流点换流。

一周期中仍然换流6次,3次为自然换流,其余3次为触发换流,这是与全控桥根本的区别。

改变共阴极组晶闸管的控制角α,仍可获得0~Φ的直流可调电压。

由于igbt中频电源采用的是三相半桥可控整流方式,整流部分不调可控硅导通角,所以整个工作过程功率因数始终大于,无功率损耗小。

传统型可控硅(kgps)中频电源在整流上采用的是三相桥式可控整流,其原理图和半桥控制差不多,就是将半桥可控整流中的二极管更换为晶闸管,其控制复杂,导通角一般在0度——120度之间,导通角相比板桥可控整流小,6脉冲间隔60度整流控制电路,三相桥式全控整流电路共有六个桥臂,在每一个时刻必须2个桥臂同时工作,才能够成通路,六个桥臂的工作顺序如图3。

现假定在时刻t1-t2(t1-t2的时间间隔为60o电角度,既相当于一个周波的1/6)此时SCR1和SCR6同时工作(图3(a)中涂黑的SCR),输出电压即为VAB。

到时刻t2-t3可控硅SCR2因受脉冲触发而导通,而SCR6则受BC反电压而关闭,将电流换给了SCR2, 这时SCR1和SCR2同时工作,输出电压即为VAC,到时刻t3-t4,SCR3因受脉冲触发而导通,SCR1受到VAB的反电压而关闭,将电流换给了SCR3,SCR2和SCR3同时工作,输出电压为VBC,据此到时刻t4-t5, t5-t6, t6-t1分别为SCR3和SCR4, SCR4和SCR5, SCR5和SCR6 同时工作,加到负载上的输出电压分别为VBA,VCA,VCB,这样既把一个三相交流进行了全波整流,从上述分析可以看出,在一个周期中,输出电压有六次脉冲。

这种整流电路由于在每一瞬间都有两个桥臂同时导通,而且每个桥臂导通时间间隔为60,故对触发脉冲有一定要求,即脉冲的时间间隔必须为60,而且如果采用单脉冲方式,脉冲宽度必须大于60,如果采用窄脉冲,则必须采用双脉冲的方法, 既在主脉冲的后面60o的地方再出现一次脉冲。

控制复杂,抗干扰能力差,同步信号要求高,在现实维护及维修繁琐复杂,经济适用型相比半控要高,整流利用率低,逆变IGBT是电力晶体管{GTR}和电力效应晶体管{MOSFET}的复合体,它综合了GTR和MOSFET的优点,因而具有良好的特性。

Igbt中频电源采用电容与igbt模块控制单元串联形式连接电路,因采用调频来调功,其特点,逆变电压高,igbt你变电压在2800V左右,传统可控硅的逆变电压仅为750V,最大800V,电压小了近四倍,线路损耗小此部分节能15%。

Igbt中频电源逆变控制原理图如下图所示。

IGBT中频电源模块工作是采用的是栅极驱动模式,逆变过程是通过主板控制将信号A和信号B传输给电源板,电源板通过独立电源供给栅极驱动独立电源及传输信号A、B来完成对模块的控制。

栅极板驱动为IGBT模块正常工作,在实现控制电路部分与被驱动的IGBT隔离设计,以及适合栅极驱动的脉冲外还设计了部分保护元器件,在栅极控制的G极和E极之间增加了使栅极积累电荷泄放的电阻Rg,其阻值在使用中取得是欧姆的(Rg的选择是根据模块型号和栅源大小及负载选择的,因为当Rg增大时损耗发热控制,当Rg减小时,di/dt增高,可能产生误导通,损坏IGBT模块)。

防止栅源电压尖峰损坏IGBT模块,在栅极板栅源侧增加了瞬态拟制二极管(TVS)实际中的驱动电压约为15V,故而选型SMBJ15CA型,在实际使用的工业环境中,栅极驱动保护依然有较高的失效率,为防止模块受杂波的干扰,在IGBT模块工作时还增加了浪涌和漏电流吸收装置保护模块。

其控制模式瞬时速断性好,控制电源都是独立提供防干扰能力强。

由于这种电源是通过调节逆变器的工作频率来调节输出功率,整流器输出的直流电压是固定的,因此一台整流器可以同时带多个逆变器工作,在双向供电情况下,一台整流器同时向两台逆变器供电,可使二台电炉同时工作,而且二台电炉的功率可以自由分配。

一般情况下,一台用作熔炼,一台用作保温。

这是一种一拖二的中频熔炼设备是传统并联可控硅中频电源无法做到的,其优点在于熔炼保温能同时进行,减少了工作时间,增加了劳动效率降低劳动成本。

传统可控硅型中频电源并联逆变电路的负载是一个谐振回路,它的谐振频率基本上就是中频电源的工作品频率。

其工作过程分四个阶段。

1. 如果先触发晶闸管T1,T3,则电流Id从P端经T1到负载,在经T3流向N端,这个阶段为中频交流电的正半周,此时补偿电容Cn两端充上了左正右负的电压Ua。

2. 晶闸管T1、T3导电半个周期后,再发出触发脉冲,触发导通晶闸管T2、T4这时造成了四只晶闸管同时导通的“暂态短路”,但这并不会引起电源的故障,因为直流电路接有一个很大的滤波电感Ld,电流Id不能突变。

由于电容器Cn被四只元件短接,其第一阶段充上的电压Ua就要放电,其电压极性,将促使晶闸管T1、T3电流下降,使晶闸管T2、T4的电流上升,直至T1、T3中的电流下降为零,T2、T4电流上升为Id3. 换流结束后,电流经过T2、T4反向流过负载,电容器Cn两端的电压变为右正左负,此电压为第四阶段关断T2、T4做好准备,该阶段为中频电流的负半周。

4. 当晶闸管T2、T4导电半个周期后,再次触发T1、T3开始T1、T3与T2、T4的换流,其过程与第二阶段一样,所不同的是这次是将T2、T4中的电流换给T1、T3,不断的向负载供应中频电能,是震荡持续进行。

前面所述晶闸管的工作过程,是把元件看成理想化的,即元件有信号就导通,撤去信号就关断。

而实际上元件换流是需要时间的。

安全换流时间tr所对应的超前角α也不能太大,主要是考虑下面两个原因;(1)α角度增大,电容器两端电压Uc就要增高,这将受到电容器和可控硅所能承受电压的限制,在单相桥式逆变线路中,当直流输入电压为Ud,中频输出电压为Uc,则在Ud和Uc的有效值之间存在下述关系;Uc=cosα。

从式中可以看出,在输入直流电压Ud相同的条件下,当α角度增大,则cosα值减小,Uc将增大,也既加于电容器和可控硅两端的电压将增高。

这一点受到所选用的电容器即可控硅的耐压限制。

(2)中频输入的有功功率与α的关系:中频输出的有功功率P=α。

式中可以看出在相同的中频电压电流条件下ɑ角愈大,有功功率输出愈小,如果要保持一定的输出功率,则ɑ角度愈大,则必须使输出中频电压,电流愈大,这样恶化了可控硅的工作条件。

IGBT中频电源稳定工作在直流500V电压状态,调频率控制功率,不存在启动问题,IGBT具有自关断能力,通过对基极G的控制,可在任何时候令其瞬间通断,不想晶闸管那样需要关断时间,因此电路结构简单、可靠、负载功率因数高。

传统可控硅中频电源是通过调压调功,调压控制在采取电压信号,再反馈的过程中,有一定的时间滞后性,导致可控硅工作过程中的滞后性,且导通角小和IGBT模块快速导通、断开相比,同时间内IGBT电源输出功率多。

高次谐波IGBT双向电源由两个IGBT半桥串联逆变器并联组成,IBGT双向供电电源采用12脉波二级管桥式整流电路,能够较好的抑制电网谐波的产生。

通常的6脉波桥式整流电路在工作时对电网产生5次、7次、11次、13次和更高的谐波干扰电流,这些谐波电流的大小分别是工频基波电流的1/5、1/7、1/11和1/13。

由于中频电源的输出功率较大,如果采用三相6脉波桥式整流电路,它们工作时产生的谐波干扰可能造成当地电网谐波超标{取决于当地电网的短路容量},或导致某些精密设备和仪器无法正常工作。

采用六相12脉波桥式整流电路后,通过变压器的特殊接线方法,5次。

相关文档
最新文档