linux内核态与用户态通讯方式-guolele

linux内核态与用户态通讯方式-guolele
linux内核态与用户态通讯方式-guolele

内核态与用户态通讯方式

主要有几种:

1、procfs

2、系统调用(syscall)

3、netlink

4、mmap

5、驱动文件,统一API

proc 文件系统

特点:虚拟文件系统,提供一种便捷的用户和内核间的交互方式,一般用于调试日志以及配置参数

缺点:不够实时,无法传输大数据量

使用:创建proc文件驱动,然后像操作文件一样操作,驱动负责解析应用层的read write 请求

mmap

特点:直接用户空间与内核空间映射,直接操作,无需拷贝,可传输数据量大,实时性好。缺点:没有专门同步机制,需要配合别的操作使用,简单数据量不使用此方法,过于复杂使用:字符或者块设备驱动将内核空间地址提供mmap映射,此内核空间可在uboot中预留大空间,也可使用kmalloc(转小,连续物理内存) vmalloc(较大,连续虚拟内存,物理不连续)创建

在Linux内核中, kmalloc能够分配的最大连续内存为2的(MAX_ORDER-1)次方个page(参见alloc_pages函数, "if (unlikely(order >= MAX_ORDER)) return NULL;"), page的大小一般是4K bytes, MAX_ORDER缺省定义为11, 所以如果不修改内核, kmalloc能够分配的最大连续内存一般是4M bytes.vmalloc 一般用于将非连续物理内存映射成连续虚拟内存空间以便普通使用,也有预留于超大内存>8GB,使用内核参数vmalloc=xxxM来将超大的空间用起来,64bit不存在这个问题了。

内核启动参数传递"mem="参数, 如"mem=80M", 预留部分内存; 然后通过request_mem_region和ioremap_nocache将预留的内存映射到模块中. 需要修改内核启动参数, 无需重新编译内核. 但这种方法不支持x86架构, 只支持ARM, PowerPC等非x86架构. request_mem_region只为了显示在/proc/iomem,只为了显示,不用也能正常用。ioremap 实现已知物理地址到虚拟地址的映射适用于物理地址已知的场合

举个例子:

首先mem=xx预留了20M,驱动就应该

先在初始化时,ioremap,将物理地址映射到内核的虚拟地址,

然后在mmap中,提供页(virt_to_page)将内核虚拟地址映射到页表,然后赋值VMA

然后用户层就可以直接操作内存,其中通知通过netlink或者read ioctl等来操作。

系统调用(syscall)

修改内核以及应用,新增加系统调用来完成一些

特点:非标准化,难破解

缺点:过于复杂,还得修改内核

使用:不推荐

驱动文件,统一API

特点:通过字符,块设备驱动,通过read write ioctl,再通过Copy_from_user()/copy_to_user()等来直接从用户空间拷贝到内核空间。此方法简单,不用额外写驱动

缺点:需要拷贝,效率不高,无法传输大数据。ioctl作为同步使用需要不断轮循,不够实时,read,write 可以阻塞,但语义不够明确

使用:简单场景需求小数据量使用

netlink

优点:netlink socket提供了一组类似于BSD风格的API,用于用户态和内核态的IPC。相比于其他的用户态和内核态IPC机制,netlink有几个好处:1.使用自定义一种协议完成数据交换,不需要添加一个文件等。2.可以支持多点传送。3.支持内核先发起会话。4.异步通信,支持缓存机制。

缺点:无法传输大数据量,例如视频数据。

使用:用于进程间通讯,配合mmap来做同步信息传递等,传输中等数据量数据

操作系统复习题

复习题一 一、选择题 1、下列选项中,不可能在用户态发生的事件是() A.系统调用 B.外部中断 C.进程切换 D.缺页 2、中断处理和子程序调用都需要压栈以保护现场,中断处理一定会保存而子程序调用不需要保存其内容的是() A.程序计数器 B.程序状态字寄存器 C.通用数据寄存器 D.通用地址寄存器 3、下列关于虚拟存储器的叙述中,正确的是() A.虚拟存储只能基于连续分配技术 B.虚拟存储只能基于非连续分配技术 C.虚拟存储容量只受外存容量的限制 D.虚拟存储容量只受内存容量的限制 4、假设5个进程P0、P1、P2、P3、P4共享三类资源R1、R2、R3,这些资源总数分别为18、6、22。T0时刻的资源分配情况如下表所示,此时存在的一个安全序列是() A. P0,P2,P4,P1,P3 B. P1,P0,P3,P4,P2 C. P2,P1,P0,P3,P4 D. P3,P4,P2,P1,P0 5、操作系统的I/O软件通常由四个层次组成,每一层明确定义了与邻近层次的接口,其合理的层次组织排列顺序是() A.用户级I/O软件、设备无关软件、设备驱动程序、中断处理程序 B.用户级I/O软件、设备无关软件、中断处理程序、设备驱动程序 C.用户级I/O软件、设备驱动程序、设备无关软件、中断处理程序 D.用户级I/O软件、中断处理程序、设备无关软件、设备驱动程序 6、一个多道批处理系统中仅有P1和P2两个作业,P2比P1晚5ms到达,它的计算和I/O操作顺序如下: P1:计算60ms,I/O 80ms,计算20ms P2:计算120ms,I/O 40ms,计算40ms 若不考虑调度和切换时间,则完成两个作业需要的时间最少是()

基于32位ARM920T内核的微处理器的嵌入式Linux系统构建详解

基于32位ARM920T内核的微处理器的嵌入式Linux系统构建详解目前,在嵌入式系统中基于ARM微核的嵌入式处理器已经成为市场主流。随着ARM技术的广泛应用,建立面向ARM构架的嵌入式操作系统成为当前研究的热点问题。 已经涌现出许多嵌入式操作系统,如VxWork,windows-CE,PalmOS,Linux等。在众多的嵌入式操作系统中,Linux以其开源代码及免费使用倍受开发人员的喜爱。本文选用的微处理器S3C2410是基于32位ARM920T内核的微处理器,基于此处理器构造一Linux 嵌入式操作系统,将其移植到基于32位的ARM920T内核的系统中,在此基础上进行应用程序开发。 l、开发环境介绍 1.1、基于S3C2410ARM920T的硬件平台 该系统的硬件平台为深圳旋极公司提供,硬件的核心部件为三星$3C2410ARM920T芯片,外围还包括:64MNANDFLASH和RAM外围存储芯片;串口、网口和USB外围接口;CSTNLCD和触摸屏外围显示设备;UDAl34lTS的外围音频设备。S3C2410处理器和外围设备共同构成了基于ARM920T的开发板。 1.2、嵌入式Limlx软件系统 该嵌入式Linux的软件系统包括以下4个部分:引导加载程序vivi;Linux2.6.14内核;YAFFS2文件系统以及用户程序。他们的可执行映像依次存放在系统存储设备上. 与通常的嵌入式系统布局有所不同,本系统在引导加载程序和内核映像之间还增加了一个启动参数区,在这个区里存放着系统启动参数。引导加载程序通过调用这些参数来决定启动模式、启动等待时间等,这些启动参数的增加加强了系统的灵活性。本系统采用64MNANDFLASH的存储设备。 2、嵌入式Linux系统设计与实现 2.1、引导加载程序vivi

Linux内核崩溃原因分析及错误跟踪技术

Linux内核崩溃原因分析及错误跟踪技术 随着嵌入式Linux系统的广泛应用,对系统的可靠性提出了更高的要求,尤其是涉及到生命财产等重要领域,要求系统达到安全完整性等级3级以上[1],故障率(每小时出现危险故障的可能性)为10-7以下,相当于系统的平均故障间隔时间(MTBF)至少要达到1141年以上,因此提高系统可靠性已成为一项艰巨的任务。对某公司在工业领域14 878个控制器系统的应用调查表明,从2004年初到2007年9月底,随着硬软件的不断改进,根据错误报告统计的故障率已降低到2004年的五分之一以下,但查找错误的时间却增加到原来的3倍以上。 这种解决问题所需时间呈上升的趋势固然有软件问题,但缺乏必要的手段以辅助解决问题才是主要的原因。通过对故障的统计跟踪发现,难以解决的软件错误和从发现到解决耗时较长的软件错误都集中在操作系统的核心部分,这其中又有很大比例集中在驱动程序部分[2]。因此,错误跟踪技术被看成是提高系统安全完整性等级的一个重要措施[1],大多数现代操作系统均为发展提供了操作系统内核“崩溃转储”机制,即在软件系统宕机时,将内存内容保存到磁盘[3],或者通过网络发送到故障服务器[3],或者直接启动内核调试器[4]等,以供事后分析改进。 基于Linux操作系统内核的崩溃转储机制近年来有以下几种: (1) LKCD(Linux Kernel Crash Dump)机制[3]; (2) KDUMP(Linux Kernel Dump)机制[4]; (3) KDB机制[5]; (4) KGDB机制[6]。 综合上述几种机制可以发现,这四种机制之间有以下三个共同点: (1) 适用于为运算资源丰富、存储空间充足的应用场合; (2) 发生系统崩溃后恢复时间无严格要求; (3) 主要针对较通用的硬件平台,如X86平台。 在嵌入式应用场合想要直接使用上列机制中的某一种,却遇到以下三个难点无法解决: (1) 存储空间不足 嵌入式系统一般采用Flash作为存储器,而Flash容量有限,且可能远远小于嵌入式系统中的内存容量。因此将全部内存内容保存到Flash不可行。

探究linux内核,超详细解析子系统

探究linux内核,超详细解析子系统 Perface 前面已经写过一篇《嵌入式linux内核的五个子系统》,概括性比较强,也比较简略,现在对其进行补充说明。 仅留此笔记,待日后查看及补充!Linux内核的子系统 内核是操作系统的核心。Linux内核提供很多基本功能,如虚拟内存、多任务、共享库、需求加载、共享写时拷贝(Copy-On-Write)以及网络功能等。增加各种不同功能导致内核代码不断增加。 Linux内核把不同功能分成不同的子系统的方法,通过一种整体的结构把各种功能集合在一起,提高了工作效率。同时还提供动态加载模块的方式,为动态修改内核功能提供了灵活性。系统调用接口用户程序通过软件中断后,调用系统内核提供的功能,这个在用户空间和内核提供的服务之间的接口称为系统调用。系统调用是Linux内核提供的,用户空间无法直接使用系统调用。在用户进程使用系统调用必须跨越应用程序和内核的界限。Linux内核向用户提供了统一的系统调用接口,但是在不同处理器上系统调用的方法

各不相同。Linux内核提供了大量的系统调用,现在从系统 调用的基本原理出发探究Linux系统调用的方法。这是在一个用户进程中通过GNU C库进行的系统调用示意图,系 统调用通过同一个入口点传入内核。以i386体系结构为例,约定使用EAX寄存器标记系统调用。 当加载了系统C库调用的索引和参数时,就会调用0x80软件中断,它将执行system_call函数,这个函数按照EAX 寄存器内容的标示处理所有的系统调用。经过几个单元测试,会使用EAX寄存器的内容的索引查system_call_table表得到系统调用的入口,然后执行系统调用。从系统调用返回后,最终执行system_exit,并调用resume_userspace函数返回用户空间。 linux内核系统调用的核心是系统多路分解表。最终通过EAX寄存器的系统调用标识和索引值从对应的系统调用表 中查出对应系统调用的入口地址,然后执行系统调用。 linux系统调用并不单层的调用关系,有的系统调用会由

用户态至内核态的通讯

Proc fs /proc目录是系统模拟出来的一个文件系统,本身并不存在于磁盘上,其中的文件都表示内核 参数的信息 /proc 在linux系统中非常多地应用. 很多现代 Linux 发布中的工具, 例如 ps, top, 以及 uptime, 从 /proc 中获取它们的信息. 一些设备驱动也通过 /proc 输出信息. Netlink Netlink相对于其他的通信机制具有以下优点: 1.使用Netlink通过自定义一种新的协议并加入协议族即可通过socket API使用 Netlink协议完成数据交换,而ioctl和proc文件系统均需要通过程序加入相应的设 备或文件。 https://www.360docs.net/doc/8717545304.html,link使用socket缓存队列,是一种异步通信机制,而ioctl是同步通信机制,如 果传输的数据量较大,会影响系统性能。 https://www.360docs.net/doc/8717545304.html,link支持多播,属于一个Netlink组的模块和进程都能获得该多播消息。 https://www.360docs.net/doc/8717545304.html,link允许内核发起会话,而ioctl和系统调用只能由用户空间进程发起。 Syscall syscall的范围就广了,通过注册字符设备可以使用mmap和ioctl等来进行操作,要注意 的是在内核态ioctl已经被废弃,现在应该使用unlocked_ioctl,需要自己来加锁。 用户态通过系统暴露出来的系统调用来进行操作,如mmap,ioctl,open,close,read,write,内核态通过建立共享内存remap_pfn_range或者copy_to_user, copy_from_user 来进行操作。 IOCTL 内核和用户空间进行通信,大概有如下几种方式可以考虑: 采用内存映射的方式,将内核地址映射到用户态。这种方式最直接,可以适用大量的 数据传输机制。这种方式的缺点是很难进行“业务控制”,没有一种可靠的机制保障 内核和用户态的调动同步,比如信号量等都不能跨内核、用户层使用。因此内存映射 机制一般需要配合一种“消息机制”来控制数据的读取,比如采用“消息”类型的短 数据通道来完成一个可靠的数据读取功能。 ioctl机制,ioctl机制可以在驱动中扩展特定的ioctl消息,用于将一些状态从内核反应到用户态。Ioctl有很好的数据同步保护机制,不要担心内核和用户层的数据访问冲突,但是ioctl不适合传输大量的数据,通过和内存映射结合可以很好的完成大量数据交换 过程。但是,ioctl的发起方一定是在用户态,因此如果需要内核态主动发起一个通知 消息给用户层,则非常的麻烦。可能需要用户态程序采用轮询机制不停的ioctl。

嵌入式Linux内核移植详解(顶嵌)

内核移植阶段 内核是操作系统最基本的部分。它是为众多应用程序提供对计算机硬件的安全访问的一部分软件,这种访问是有限的,并且内核决定一个程序在什么时候对某部分硬件操作多长时间。直接对硬件操作是非常复杂的,所以内核通常提供一种硬件抽象的方法来完成这些操作。硬件抽象隐藏了复杂性,为应用软件和硬件提供了一套简洁,统一的接口,使程序设计更为简单。 内核和用户界面共同为用户提供了操作计算机的方便方式。也就是我们在windows下看到的操作系统了。由于内核的源码提供了非常广泛的硬件支持,通用性很好,所以移植起来就方便了许多,我们需要做的就是针对我们要移植的对象,对内核源码进行相应的配置,如果出现内核源码中不支持的硬件这时就需要我们自己添加相应的驱动程序了。 一.移植准备 1. 目标板 我们还是选用之前bootloader移植选用的开发板参数请参考上文的地址: https://www.360docs.net/doc/8717545304.html,/thread-80832-5-1.html。bootloader移植准备。 2. 内核源码 这里我们选用比较新的内核源码版本linux-2.6.25.8,他的下载地址是 ftp://https://www.360docs.net/doc/8717545304.html,/pub/linux/kernel/v2.6/linux-2.6.25.8.tar.bz2。 3. 烧写工具 我们选用网口进行烧写这就需要内核在才裁剪的时候要对网卡进行支持 4. 知识储备 要进行内核裁剪不可缺少的是要对内核源码的目录结构有一定的了解这里进 行简单介绍。 (1)arch/: arch子目录包括了所有和体系结构相关的核心代码。它的每一个子 目录都代表一种支持的体系结构,例如i386就是关于intel cpu及与之相兼容体 系结构的子目录。PC机一般都基于此目录。 (2)block/:部分块设备驱动程序。 (3)crypto:常用加密和散列算法(如AES、SHA等),还有一些压缩和CRC校验 算法。 (4) documentation/:文档目录,没有内核代码,只是一套有用的文档。 (5) drivers/:放置系统所有的设备驱动程序;每种驱动程序又各占用一个子目 录:如,/block 下为块设备驱动程序,比如ide(ide.c)。 (6)fs/:所有的文件系统代码和各种类型的文件操作代码,它的每一个子目录支持 一个文件系统, 例如fat和ext2。

Linux操作系统源代码详细分析

linux源代码分析:Linux操作系统源代码详细分析 疯狂代码 https://www.360docs.net/doc/8717545304.html,/ ?:http:/https://www.360docs.net/doc/8717545304.html,/Linux/Article28378.html 内容介绍: Linux 拥有现代操作系统所有功能如真正抢先式多任务处理、支持多用户内存保护虚拟内存支持SMP、UP符合POSIX标准联网、图形用户接口和桌面环境具有快速性、稳定性等特点本书通过分析Linux内核源代码充分揭示了Linux作为操作系统内核是如何完成保证系统正常运行、协调多个并发进程、管理内存等工作现实中能让人自由获取系统源代码并不多通过本书学习将大大有助于读者编写自己新 第部分 Linux 内核源代码 arch/i386/kernel/entry.S 2 arch/i386/kernel/init_task.c 8 arch/i386/kernel/irq.c 8 arch/i386/kernel/irq.h 19 arch/i386/kernel/process.c 22 arch/i386/kernel/signal.c 30 arch/i386/kernel/smp.c 38 arch/i386/kernel/time.c 58 arch/i386/kernel/traps.c 65 arch/i386/lib/delay.c 73 arch/i386/mm/fault.c 74 arch/i386/mm/init.c 76 fs/binfmt-elf.c 82 fs/binfmt_java.c 96 fs/exec.c 98 /asm-generic/smplock.h 107 /asm-i386/atomic.h 108 /asm- i386/current.h 109 /asm-i386/dma.h 109 /asm-i386/elf.h 113 /asm-i386/hardirq.h 114 /asm- i386/page.h 114 /asm-i386/pgtable.h 115 /asm-i386/ptrace.h 122 /asm-i386/semaphore.h 123 /asm-i386/shmparam.h 124 /asm-i386/sigcontext.h 125 /asm-i386/siginfo.h 125 /asm-i386/signal.h 127 /asm-i386/smp.h 130 /asm-i386/softirq.h 132 /asm-i386/spinlock.h 133 /asm-i386/system.h 137 /asm-i386/uaccess.h 139 //binfmts.h 146 //capability.h 147 /linux/elf.h 150 /linux/elfcore.h 156 /linux/errupt.h 157 /linux/kernel.h 158 /linux/kernel_stat.h 159 /linux/limits.h 160 /linux/mm.h 160 /linux/module.h 164 /linux/msg.h 168 /linux/personality.h 169 /linux/reboot.h 169 /linux/resource.h 170 /linux/sched.h 171 /linux/sem.h 179 /linux/shm.h 180 /linux/signal.h 181 /linux/slab.h 184 /linux/smp.h 184 /linux/smp_lock.h 185 /linux/swap.h 185 /linux/swapctl.h 187 /linux/sysctl.h 188 /linux/tasks.h 194 /linux/time.h 194 /linux/timer.h 195 /linux/times.h 196 /linux/tqueue.h 196 /linux/wait.h 198 init/.c 198 init/version.c 212 ipc/msg.c 213 ipc/sem.c 218 ipc/shm.c 227 ipc/util.c 236 kernel/capability.c 237 kernel/dma.c 240 kernel/exec_do.c 241 kernel/exit.c 242 kernel/fork.c 248 kernel/info.c 255 kernel/itimer.c 255 kernel/kmod.c 257 kernel/module.c 259 kernel/panic.c 270 kernel/prk.c 271 kernel/sched.c 275 kernel/signal.c 295 kernel/softirq.c 307 kernel/sys.c 307 kernel/sysctl.c 318 kernel/time.c 330 mm/memory.c 335 mm/mlock.c 345 mm/mmap.c 348 mm/mprotect.c 358 mm/mremap.c 361 mm/page_alloc.c 363 mm/page_io.c 368 mm/slab.c 372 mm/swap.c 394 mm/swap_state.c 395 mm/swapfile.c 398 mm/vmalloc.c 406 mm/vmscan.c 409

linux内核IMQ源码实现分析

本文档的Copyleft归wwwlkk所有,使用GPL发布,可以自由拷贝、转载,转载时请保持文档的完整性,严禁用于任何商业用途。 E-mail: wwwlkk@https://www.360docs.net/doc/8717545304.html, 来源: https://www.360docs.net/doc/8717545304.html,/?business&aid=6&un=wwwlkk#7 linux2.6.35内核IMQ源码实现分析 (1)数据包截留并重新注入协议栈技术 (1) (2)及时处理数据包技术 (2) (3)IMQ设备数据包重新注入协议栈流程 (4) (4)IMQ截留数据包流程 (4) (5)IMQ在软中断中及时将数据包重新注入协议栈 (7) (6)结束语 (9) 前言:IMQ用于入口流量整形和全局的流量控制,IMQ的配置是很简单的,但很少人分析过IMQ的内核实现,网络上也没有IMQ的源码分析文档,为了搞清楚IMQ的性能,稳定性,以及借鉴IMQ的技术,本文分析了IMQ的内核实现机制。 首先揭示IMQ的核心技术: 1.如何从协议栈中截留数据包,并能把数据包重新注入协议栈。 2.如何做到及时的将数据包重新注入协议栈。 实际上linux的标准内核已经解决了以上2个技术难点,第1个技术可以在NF_QUEUE机制中看到,第二个技术可以在发包软中断中看到。下面先介绍这2个技术。 (1)数据包截留并重新注入协议栈技术

(2)及时处理数据包技术 QoS有个技术难点:将数据包入队,然后发送队列中合适的数据包,那么如何做到队列中的数

激活状态的队列是否能保证队列中的数据包被及时的发送吗?接下来看一下,激活状态的队列的 证了数据包会被及时的发送。 这是linux内核发送软中断的机制,IMQ就是利用了这个机制,不同点在于:正常的发送队列是将数据包发送给网卡驱动,而IMQ队列是将数据包发送给okfn函数。

Linux内核结构详解教程

Linux内核结构详解教程 ─────Linux内核教程 linux内核就像人的心脏,灵魂,指挥中心。 内核是一个操作系统的核心,它负责管理系统的进程,内存,设备驱动程序,文件和网络系统,决定着系统的性能和稳定性。内核以独占的方式执行最底层任务,保证系统正常运行。协调多个并发进程,管理进程使用的内存,使它们相互之间不产生冲突,满足进程访问磁盘的请求等等. 严格说Linux并不能称做一个完整的操作系统.我们安装时通常所说的Linux,是有很多集合组成的.应称为GNU/Linux. 一个Linux内核很少1.2M左右,一张软盘就能放下. 内容基础,语言简短简洁 红联Linux论坛是致力于Linux技术讨论的站点,目前网站收录的文章及教程基本能满足不同水平的朋友学习。 红联Linux门户: https://www.360docs.net/doc/8717545304.html, 红联Linux论坛: https://www.360docs.net/doc/8717545304.html,/bbs 红联Linux 论坛大全,所有致力点都体现在这 https://www.360docs.net/doc/8717545304.html,/bbs/rf/linux/07.htm

目录 Linux内核结构详解 Linux内核主要五个子系统详解 各个子系统之间的依赖关系 系统数据结构 Linux的具体结构 Linux内核源代码 Linux 内核源代码的结构 从何处开始阅读源代码 海量Linux技术文章

Linux内核结构详解 发布时间:2006-11-16 19:05:29 Linux内核主要由五个子系统组成:进程调度,内存管理,虚拟文件系统,网络接口,进程间通信。

Linux内核主要五个子系统详解 发布时间:2006-11-16 19:05:54 1.进程调度(SCHED):控制进程对CPU的访问。当需要选择下一个进程运行时,由调度程序选择最值得运行的进程。可运行进程实际上是仅等待CPU资源的进程,如果某个进程在等待其它资源,则该进程是不可运行进程。Linux使用了比较简单的基于优先级的进程调度算法选择新的进程。 2.内存管理(MM)允许多个进程安全的共享主内存区域。Linux的内存管理支持虚拟内存,即在计算机中运行的程序,其代码,数据,堆栈的总量可以超过实际内存的大小,操作系统只是把当前使用的程序块保留在内存中,其余的程序块则保留在磁盘中。必要时,操作系统负责在磁盘和内存间交换程序块。内存管理从逻辑上分为硬件无关部分和硬件有关部分。硬件无关部分提供了进程的映射和逻辑内存的对换;硬件相关的部分为内存管理硬件提供了虚拟接口。 3.虚拟文件系统(VirtualFileSystem,VFS)隐藏了各种硬件的具体细节,为所有的设备提供了统一的接口,VFS提供了多达数十种不同的文件系统。虚拟文件系统可以分为逻辑文件系统和设备驱动程序。逻辑文件系统指Linux所支持的文件系统,如ext2,fat等,设备驱动程序指为每一种硬件控制器所编写的设备驱动程序模块。 4.网络接口(NET)提供了对各种网络标准的存取和各种网络硬件的支持。网络接口可分为网络协议和网络驱动程序。网络协议部分负责实现每一种可能的网络传输协议。网络设备驱动程序负责与硬件设备通讯,每一种可能的硬件设备都有相应的设备驱动程序。 5.进程间通讯(IPC) 支持进程间各种通信机制。 处于中心位置的进程调度,所有其它的子系统都依赖它,因为每个子系统都需要挂起或恢复进程。一般情况下,当一个进程等待硬件操作完成时,它被挂起;当操作真正完成时,进程被恢复执行。例如,当一个进程通过网络发送一条消息时,网络接口需要挂起发送进程,直到硬件成功地完成消息的发送,当消息被成功的发送出去以后,网络接口给进程返回一个代码,表示操作的成功或失败。其他子系统以相似的理由依赖于进程调度。

操作系统题库

《操作系统》题库 【注】本题库按照讲课内容的顺序进行组织,仅供15软件《操作系统》课程期 末复习使用。复习时可先理解每一讲PPT的内容以及教材相应的章节,然后通 过做题巩固所学知识。期末考试涉及的知识点大部分已覆盖,但并不意味着考 题一定会从此题库中出,出题的形式肯定会有变化。 1. 概述 (1)操作系统属于____。 A. 硬件 B. 系统软件 C. 通用库 D. 应用软件【注】操作系统是管理计算机硬件与软件资源的计算机程序,例如Windows,Linux,Android,iOS等。应用软件一般是基于操作系统提供的接口,为针对使用者的某种应用目的所撰写的软件,例如Office Word,浏览器,手机游戏等。而通用库,一般是指为了便于程序开发,对常用的程序功能封装后被调用的程序。 (2)以下哪个不能用于描述操作系统? A. 使计算机方便使用 B. 可以管理计算机硬件 C. 可以控制应用软件的执行 D. 负责生成应用软件 【注】操作系统负责管理计算机的硬件资源,使得用户不需要关心硬件的工作过程,极大地方便了计算机的使用。我们日常使用计算机,往往已经在使用了特定的操作系统,例如Windows,而在操作系统上,会同时运行多个应用软件,例如浏览器,音乐播放器等,为了让一个或者多个软件能够正常使用有限的硬件资源,操作系统需要管理应用程序的执行过程。一般来说,像浏览器,音乐播放器,和其他应用软件,都是由特定的个人和团队开发的,操作系统不负责生成应用软件。 (3)以下不属于操作系统的功能是____。 A. 进程调度 B. 内存管理 C. 视频编辑 D. 设备驱动【注】视频编辑是一个特定的功能,不是系统范围内的共性需求,具体完成这个功能的是视频编辑应用软件。 (4)操作系统中的多道程序设计方式用于提高____。 A. 稳定性 B. 效率 C. 兼容性 D. 可靠性

读Linux内核源代码

Linux内核分析方法 Linux的最大的好处之一就是它的源码公开。同时,公开的核心源码也吸引着无数的电脑爱好者和程序员;他们把解读和分析Linux的核心源码作为自己的最大兴趣,把修改Linux源码和改造Linux系统作为自己对计算机技术追求的最大目标。 Linux内核源码是很具吸引力的,特别是当你弄懂了一个分析了好久都没搞懂的问题;或者是被你修改过了的内核,顺利通过编译,一切运行正常的时候。那种成就感真是油然而生!而且,对内核的分析,除了出自对技术的狂热追求之外,这种令人生畏的劳动所带来的回报也是非常令人着迷的,这也正是它拥有众多追随者的主要原因: ?首先,你可以从中学到很多的计算机的底层知识,如后面将讲到的系统的引导和硬件提供的中断机制等;其它,象虚拟存储的实现机制,多任务机制,系统保护机制等等,这些都是非都源码不能体会的。 ?同时,你还将从操作系统的整体结构中,体会整体设计在软件设计中的份量和作用,以及一些宏观设计的方法和技巧:Linux的内核为上层应用提供一个与具体硬件不相关的平台; 同时在内核内部,它又把代码分为与体系结构和硬件相关的部分,和可移植的部分;再例如,Linux虽然不是微内核的,但他把大部分的设备驱动处理成相对独立的内核模块,这样减小了内核运行的开销,增强了内核代码的模块独立性。 ?而且你还能从对内核源码的分析中,体会到它在解决某个具体细节问题时,方法的巧妙:如后面将分析到了的Linux通过Botoom_half机制来加快系统对中断的处理。 ?最重要的是:在源码的分析过程中,你将会被一点一点地、潜移默化地专业化。一个专业的程序员,总是把代码的清晰性,兼容性,可移植性放在很重要的位置。他们总是通过定义大量的宏,来增强代码的清晰度和可读性,而又不增加编译后的代码长度和代码的运行效率; 他们总是在编码的同时,就考虑到了以后的代码维护和升级。甚至,只要分析百分之一的代码后,你就会深刻地体会到,什么样的代码才是一个专业的程序员写的,什么样的代码是一个业余爱好者写的。而这一点是任何没有真正分析过标准代码的人都无法体会到的。 然而,由于内核代码的冗长,和内核体系结构的庞杂,所以分析内核也是一个很艰难,很需要毅力的事;在缺乏指导和交流的情况下,尤其如此。只有方法正确,才能事半功倍。正是基于这种考虑,作者希望通过此文能给大家一些借鉴和启迪。 由于本人所进行的分析都是基于2.2.5版本的内核;所以,如果没有特别说明,以下分析都是基于i386单处理器的2.2.5版本的Linux内核。所有源文件均是相对于目录/usr/src/linux的。 方法之一:从何入手 要分析Linux内核源码,首先必须找到各个模块的位置,也即要弄懂源码的文件组织形式。虽然对于有经验的高手而言,这个不是很难;但对于很多初级的Linux爱好者,和那些对源码分析很

计算机操作系统实验_运行用户态程序

西北工业大学操作系统实验实验报告 一、实验目的 掌握在GeekOS系统用户态模式下加载并运行可执行程序的方法。 二、实验要求 1. 按照实验讲义P127页中的设计要求,实现在用户态模式下加载并运行可执行程序的代码,给出关键函数的代码以及实验结果。 三、实验过程及结果 答:核心函数代码如下: ================== user.c =============== //产生一个进程(用户态) int Spawn(const char *program, const char *command, struct Kernel_Thread **pThread) { //TODO("Spawn a process by reading an executable from a filesystem"); int rc; char *exeFileData = 0; ulong_t exeFileLength; struct User_Context *userContext = 0; struct Kernel_Thread *process = 0; struct Exe_Format exeFormat; if ((rc = Read_Fully(program, (void**) &exeFileData, &exeFileLength)) != 0 ) { Print("Failed to Read File %s!\n", program); goto fail; } if((rc = Parse_ELF_Executable(exeFileData, exeFileLength, &exeFormat)) != 0 ) { Print("Failed to Parse ELF File!\n"); goto fail; } if((rc = Load_User_Program(exeFileData, exeFileLength, &exeFormat, command, &userContext)) != 0) { Print("Failed to Load User Program!\n"); goto fail; } //在堆分配方式下释放内存并再次初始化exeFileData Free(exeFileData); exeFileData = 0;

Linux内核源代码阅读与工具介绍

Linux的内核源代码可以从很多途径得到。一般来讲,在安装的linux系统下,/usr/src/linux 目录下的东西就是内核源代码。另外还可以从互连网上下载,解压缩后文件一般也都位于linux目录下。内核源代码有很多版本,目前最新的版本是2.2.14。 许多人对于阅读Linux内核有一种恐惧感,其实大可不必。当然,象Linux内核这样大而复杂的系统代码,阅读起来确实有很多困难,但是也不象想象的那么高不可攀。只要有恒心,困难都是可以克服的。任何事情做起来都需要有方法和工具。正确的方法可以指导工作,良好的工具可以事半功倍。对于Linux内核源代码的阅读也同样如此。下面我就把自己阅读内核源代码的一点经验介绍一下,最后介绍Window平台下的一种阅读工具。 对于源代码的阅读,要想比较顺利,事先最好对源代码的知识背景有一定的了解。对于linux内核源代码来讲,基本要求是:⑴操作系统的基本知识;⑵对C语言比较熟悉,最好要有汇编语言的知识和GNU C对标准C的扩展的知识的了解。另外在阅读之前,还应该知道Linux内核源代码的整体分布情况。我们知道现代的操作系统一般由进程管理、内存管理、文件系统、驱动程序、网络等组成。看一下Linux内核源代码就可看出,各个目录大致对应了这些方面。Linux内核源代码的组成如下(假设相对于linux目录): arch这个子目录包含了此核心源代码所支持的硬件体系结构相关的核心代码。如对于X86平台就是i386。 include这个目录包括了核心的大多数include文件。另外对于每种支持的体系结构分别有一个子目录。 init此目录包含核心启动代码。 mm此目录包含了所有的内存管理代码。与具体硬件体系结构相关的内存管理代码位于arch/*/mm目录下,如对应于X86的就是arch/i386/mm/fault.c。 drivers系统中所有的设备驱动都位于此目录中。它又进一步划分成几类设备驱动,每一种也有对应的子目录,如声卡的驱动对应于drivers/sound。 ipc此目录包含了核心的进程间通讯代码。 modules此目录包含已建好可动态加载的模块。 fs Linux支持的文件系统代码。不同的文件系统有不同的子目录对应,如ext2文件系统对应的就是ext2子目录。 kernel主要核心代码。同时与处理器结构相关代码都放在arch/*/kernel目录下。 net核心的网络部分代码。里面的每个子目录对应于网络的一个方面。 lib此目录包含了核心的库代码。与处理器结构相关库代码被放在arch/*/lib/目录下。

Linux内核分析-网络[五]:网桥

看完了路由表,重新回到netif_receive_skb ()函数,在提交给上层协议处理前,会执行下面一句,这就是网桥的相关操作,也是这篇要讲解的容。 view plaincopy to clipboardprint? 1. s kb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 网桥可以简单理解为交换机,以下图为例,一台linux机器可以看作网桥和路由的结合,网桥将物理上的两个局域网LAN1、LAN2当作一个局域网处理,路由连接了两个子网1.0和2.0。从eth0和eth1网卡收到的报文在Bridge模块中会被处理成是由Bridge收到的,因此Bridge也相当于一个虚拟网卡。 STP五种状态 DISABLED BLOCKING LISTENING LEARNING FORWARDING 创建新的网桥br_add_bridge [net\bridge\br_if.c] 当使用SIOCBRADDBR调用ioctl时,会创建新的网桥br_add_bridge。 首先是创建新的网桥: view plaincopy to clipboardprint?

1. d ev = new_bridge_dev(net, name); 然后设置dev->dev.type为br_type,而br_type是个全局变量,只初始化了一个名字变量 view plaincopy to clipboardprint? 1. S ET_NETDEV_DEVTYPE(dev, &br_type); 2. s tatic struct device_type br_type = { 3. .name = "bridge", 4. }; 然后注册新创建的设备dev,网桥就相当一个虚拟网卡设备,注册过的设备用ifconfig 就可查看到: view plaincopy to clipboardprint? 1. r et = register_netdevice(dev); 最后在sysfs文件系统中也创建相应项,便于查看和管理: view plaincopy to clipboardprint? 1. r et = br_sysfs_addbr(dev); 将端口加入网桥br_add_if() [net\bridge\br_if.c] 当使用SIOCBRADDIF调用ioctl时,会向网卡加入新的端口br_add_if。 创建新的net_bridge_port p,会从br->port_list中分配一个未用的port_no,p->br会指向br,p->state设为BR_STATE_DISABLED。这里的p实际代表的就是网卡设备。 view plaincopy to clipboardprint? 1. p = new_nbp(br, dev); 将新创建的p加入CAM表中,CAM表是用来记录mac地址与物理端口的对应关系;而刚刚创建了p,因此也要加入CAM表中,并且该表项应是local的[关系如下图],可以看到,CAM表在实现中作为net_bridge的hash表,以addr作为hash值,链入 net_bridge_fdb_entry,再由它的dst指向net_bridge_port。

操作系统复习题(部分)(1)

一、选择题 1、在下列文件的外存分配方式中,不利于文件长度动态增长的文件物理结构是( A )。 A.连续分配 B.链接分配 C.索引分配 D.以上都不对 2、若文件的外存分配方式采用连续分配,则文件控制块FCB中有关文件的物理位置的信息应包括( B )。 (Ⅰ)起始块号(Ⅱ)文件长度(Ⅲ)索引表地址 A.全部 B.(Ⅰ)和(Ⅱ) C.(Ⅰ)和(Ⅲ) D.(Ⅱ)和(Ⅲ) 3、文件系统中可命名的最小数据单位是(C)。 A.字符串 B.记录 C.数据项 D.文件 4、文件系统最基本的目标之一是实现“按名存取”,它主要是通过( B )功能实现的。 A.存储空间管理 B.目录管理 C. 文件读写管理 D. 文件安全性管理 5、一个文件的绝对路径名是从( B )开始,逐步沿着每一级子目录向下追溯,最后到指定文件的通路上所有子目录名及“/”(或“\”)组成的字符串。 A. 当前目录 B. 根目录 C. 多级目录 D. 二级目录 6、假定盘块的大小为1KB,对于1.2M的硬盘,对于FAT,需占用( C )的存储空间。 A. 1KB B. 1.5KB C. 1.8KB D. 2.4KB 7、对文件存储空间的管理,在MS-DOS操作系统中是采用( B ),在Unix中采用( D )。 A. 空闲表 B. 文件分配表 C. 位示图 D. 成组链接法 8、在文件系统中通常是利用( D )来组织大量文件的。 A. 文件控制表 B. 索引结点 C. 符号名表 D. 目录 1、操作系统是一种____B____。 A.通用软件 B.系统软件 C.应用软件 D.软件包 2、操作系统是对 C 进行管理的软件。 A.软件 B.硬件 C.计算机资源 D.应用程序 3、操作系统中采用多道程序设计技术提高CPU与外部设备的 A 。 A.利用率 B.可靠性 C.稳定性 D.兼容性

linux源代码分析实验报告格式

linux源代码分析实验报告格式

Linux的fork、exec、wait代码的分析 指导老师:景建笃 组员:王步月 张少恒 完成日期:2005-12-16

一、 设计目的 1.通过对Linux 的fork 、exec 、wait 代码的分析,了解一个操作系统进程的创建、 执行、等待、退出的过程,锻炼学生分析大型软件代码的能力; 2.通过与同组同学的合作,锻炼学生的合作能力。 二、准备知识 由于我们选的是题目二,所以为了明确分工,我们必须明白进程的定义。经过 查阅资料,我们得知进程必须具备以下四个要素: 1、有一段程序供其执行。这段程序不一定是进程专有,可以与其他进程共用。 2、有起码的“私有财产”,这就是进程专用的系统堆栈空间 3、有“户口”,这就是在内核中有一个task_struct 结构,操作系统称为“进程控制 块”。有了这个结构,进程才能成为内核调度的一个基本单位。同时,这个结构又 是进程的“财产登记卡”,记录着进程所占用的各项资源。 4、有独立的存储空间,意味着拥有专有的用户空间:进一步,还意味着除前述的 系统空间堆栈外,还有其专用的用户空间堆栈。系统为每个进程分配了一个 task_struct 结构,实际分配了两个连续的物理页面(共8192字节),其图如下: Struct task_struct (大约1K) 系统空间堆栈 (大约7KB )两个 连续 的物 理页 面 对这些基本的知识有了初步了解之后,我们按老师的建议,商量分工。如下: 四、 小组成员以及任务分配 1、王步月:分析进程的创建函数fork.c ,其中包含了get_pid 和do_fork get_pid, 写出代码分析结果,并画出流程图来表示相关函数之间的相互调用关系。所占工作 比例35%。 2、张少恒:分析进程的执行函数exec.c,其中包含了do_execve 。写出代码分析结 果,并画出流程图来表示相关函数之间的相互调用关系。所占工作比例35% 。 3、余波:分析进程的退出函数exit.c,其中包含了do_exit 、sys_wait4。写出代码 分析结果,并画出流程图来表示相关函数之间的相互调用关系。所占工作比例30% 。 五、各模块分析: 1、fork.c 一)、概述 进程大多数是由FORK 系统调用创建的.fork 能满足非常高效的生灭机制.除了 0进程等少数一,两个进程外,几乎所有的进程都是被另一个进程执行fork 系统调 用创建的.调用fork 的进程是父进程,由fork 创建的程是子进程.每个进程都有一

史上最全linux内核配置详解

对于每一个配置选项,用户可以回答"y"、"m"或"n"。其中"y"表示将相应特性的支持或设备驱动程序编译进内核;"m"表示将相应特性的支持或设备驱动程序编译成可加载模块,在需要时,可由系统或用户自行加入到内核中去;"n"表示内核不提供相应特性或驱动程序的支持。只有<>才能选择M 1. General setup(通用选项) [*]Prompt for development and/or incomplete code/drivers,设置界面中显示还在开发或者还没有完成的代码与驱动,最好选上,许多设备都需要它才能配置。 [ ]Cross-compiler tool prefix,交叉编译工具前缀,如果你要使用交叉编译工具的话输入相关前缀。默认不使用。嵌入式linux更不需要。 [ ]Local version - append to kernel release,自定义版本,也就是uname -r可以看到的版本,可以自行修改,没多大意义。 [ ]Automatically append version information to the version string,自动生成版本信息。这个选项会自动探测你的内核并且生成相应的版本,使之不会和原先的重复。这需要Perl的支持。由于在编译的命令make-kpkg 中我们会加入- –append-to-version 选项来生成自定义版本,所以这里选N。 Kernel compression mode (LZMA),选择压缩方式。 [ ]Support for paging of anonymous memory (swap),交换分区支持,也就是虚拟内存支持,嵌入式不需要。 [*]System V IPC,为进程提供通信机制,这将使系统中各进程间有交换信息与保持同步的能力。有些程序只有在选Y的情况下才能运行,所以不用考虑,这里一定要选。 [*]POSIX Message Queues,这是POSIX的消息队列,它同样是一种IPC(进程间通讯)。建议你最好将它选上。 [*]BSD Process Accounting,允许进程访问内核,将账户信息写入文件中,主要包括进程的创建时间/创建者/内存占用等信息。可以选上,无所谓。 [*]BSD Process Accounting version 3 file format,选用的话统计信息将会以新的格式(V3)写入,注意这个格式和以前的v0/v1/v2 格式不兼容,选不选无所谓。 [ ]Export task/process statistics through netlink (EXPERIMENTAL),通过通用的网络输出工作/进程的相应数据,和BSD不同的是,这些数据在进程运行的时候就可以通过相关命令访问。和BSD类似,数据将在进程结束时送入用户空间。如果不清楚,选N(实验阶段功能,下同)。 [ ]Auditing support,审计功能,某些内核模块需要它(SELINUX),如果不知道,不用选。 [ ]RCU Subsystem,一个高性能的锁机制RCU 子系统,不懂不了解,按默认就行。 [ ]Kernel .config support,将.config配置信息保存在内核中,选上它及它的子项使得其它用户能从/proc/ config.gz中得到内核的配置,选上,重新配置内核时可以利用已有配置Enable access to .config through /proc/config.gz,上一项的子项,可以通过/proc/ config.gz访问.config配置,上一个选的话,建议选上。 (16)Kernel log buffer size (16 => 64KB, 17 => 128KB) ,内核日志缓存的大小,使用默认值即可。12 => 4 KB,13 => 8 KB,14 => 16 KB单处理器,15 => 32 KB多处理器,16 => 64 KB,17 => 128 KB。 [ ]Control Group support(有子项),使用默认即可,不清楚可以不选。 Example debug cgroup subsystem,cgroup子系统调试例子 Namespace cgroup subsystem,cgroup子系统命名空间 Device controller for cgroups,cgroups设备控制器

相关文档
最新文档