实验室环境温湿度无线监测系统设计
利用LabVIEW进行温湿度监测与控制

利用LabVIEW进行温湿度监测与控制温湿度监测与控制是当前生活和工业中广泛应用的一项技术。
利用LabVIEW软件可以实现对温湿度进行实时监测和控制,提高生产效率和保障生活质量。
本文将介绍利用LabVIEW进行温湿度监测与控制的原理和方法。
一、温湿度监测系统设计温湿度监测系统是由传感器、数据采集模块、数据处理模块和控制执行模块组成的。
传感器用于感知环境中的温湿度信息,数据采集模块负责将传感器获取的模拟信号转换为数字信号,数据处理模块通过LabVIEW软件进行信号处理和显示,控制执行模块实现对环境的温湿度控制。
二、LabVIEW软件介绍LabVIEW是美国国家仪器公司(National Instruments)推出的图形化编程软件,具有直观的界面和丰富的功能。
用户可以通过拖拽、连接图形化元件来编写程序,而无需编写繁琐的代码。
LabVIEW软件支持多种硬件设备的驱动程序,可以方便地与各类传感器和执行器进行连接和通信。
三、LabVIEW温湿度监测与控制流程1. 硬件连接:首先将温湿度传感器连接到数据采集模块,通过数据线将数据采集模块连接到计算机。
2. 创建VI:在LabVIEW软件中创建一个VI(Virtual Instrument,虚拟仪器),用于实现温湿度监测与控制功能。
3. 数据采集:在VI中添加数据采集模块的驱动程序,设置数据采集的参数,如采样间隔、采样时长等。
4. 信号处理:通过添加信号处理模块,对采集到的温湿度数据进行滤波、校准等处理,使其更加准确和可靠。
5. 数据显示:使用LabVIEW提供的图形绘制工具,在VI中添加显示窗口,将处理后的温湿度数据以实时曲线的形式显示出来。
6. 控制执行:在VI中添加控制执行模块的驱动程序,设置控制参数,如设定温度、湿度的阈值,实现对温湿度的控制。
7. 用户界面:通过LabVIEW提供的界面设计工具,创建一个用户友好的界面,方便用户实时监测温湿度和进行控制调节。
生物医学实验室智能温湿度监控系统的研制

D o i : 1 0 . 3 9 6 9 / J . i s s n . 1 0 0 9 - 0 1 3 4 . 2 0 1 3 . 0 2 ( 上) . 0 8
0 引言
储存 、生 产生 物制 品 的低温冰 箱 、恒温 箱 对温 湿度 的精 度要 求严 格 ,应2 4 4 " , 时 不 间断 的进 行温湿 度监 控 【 l 】 ,才 能保 证生 物 检验 的 有效 性 。一 旦 温度
参l
訇 化
生物 医学 实验 室智 能温 湿度 监控系统的研制
De vel opm ent of a t em per a t ur e and hum i di t y m oni t or i ng sy st em f or t he bi om edi cal l ab or at or y
一
个 智 能 监 控 终 端 组 成 。 系统 总 体 结 构 示 意 图如
无 线 传 感 器 节 点 被 放 置 在 监 测 区 域 内 ,形 成
图l 所示。
一
时 间到达 现场 ,使损 失最 小化 。
2 无线传感器 节点设计
2 . 1 节点硬件设计 节 点 包 括 传 感 器 模 块 、数 据 处 理 模 块 、射 频
第3 5 卷
第2 期
2 0 1 3 -0 2 ( 上) [ 2 7 1
、l
模 块 和 电池 四部 分 ,其 内部硬 件 结 构 如 图2 所示。
节 点 一 方面 通 过 铂 电 阻P t l O 0 获取 温 度 电压 信 号 , 经 过 放 大 和 滤波 电路 ,连 入 主 控 芯 片At me g a 8 8 进
扑分 布 图 、运 行状 态 图 、监 控 结果 图等 丰 富 的信
基于CC2530的温湿度监测系统

基于CC2530的温湿度监测系统1系统设计思路及整体结构本文的温湿度监测系统是利用ZigBee无线通讯技术为基础,采用CC2530芯片为核心设计的无线传感系统。
在现实中所应用的温湿度监测系统通常需要一个或多个路由器节点和至少一个或多个终端设备,往往是一个非常庞大的ZigBee 无线网络系统,具有非常复杂的网络结构,但是由于在实验环境下,节点数量、制作成本、技术能力等多方面因素,无法构成像现实中的大型无线网络,目前只能实现点对点的温湿度监测和数据传输来模拟现实中的温湿度监测ZigBee网络。
本文中所设计的温湿度监测系统采用点对点通信的模式,可以理解为简化的星型拓扑网络,由一个协调器和一个终端节点组成。
协调器具有无线收发通信部分、处理器部分、与PC机通信的串口部分和电源供电部分。
终端节点与协调器相比不具有串口通信部分而是增加了温湿度采集传感器部分。
当需要温湿度采集时,协调器向终端节点发送控制命令,终端节点通过温湿度传感器DS18B20进行温湿度的采集,之后终端节点将采集的温湿度数据通过无线发送给协调器,由协调器对温湿度数据进行处理后通过串口将温湿度数据传输给PC机,通过上位机软件对温湿度数据进行显示、分析、存储等处理。
由于ZigBee的特点是低功耗,因此本设计中为使节点满足低功耗要求,终端节点还能进入休眠模式,采用定时器唤醒模式每10秒唤醒一次,以最大限度的降低功耗。
系统总体方案图,如图3.1所示。
图3.1 系统总体方案图2系统硬件设计2.1 ZigBee开发套件本设计所用ZigBee开发套件由节点(底板和核心板)2套、仿真器1个、10pin排线1条、USB线2条、2db天线2条和DS18B20温湿度传感器1个构成。
此开发套件具有以下特点:①设计小巧,布局合理。
底板尺寸5*5cm,核心板尺寸2.5*2.5cm;②采用底板加核心板的设计,便于更换模块或板载天线模块;③板上接口资源丰富,传感器即插即用;④板载USB转串口电路,方便笔记本以及没有串口的电脑用户;⑤传输距离远;⑥具备USB高速下载功能,支持IAR集成开发环境;ZigBee开发套件节点底板实物图,如图3.2所示。
室内环境监测与调控系统设计

室内环境监测与调控系统设计随着人们对舒适室内环境需求的不断提高,室内环境监测与调控系统的设计变得越来越重要。
它不仅可以提供舒适的室内环境,还可以节省能源和降低运营成本。
本文将介绍室内环境监测与调控系统的设计原则、关键组成部分以及其优势。
一、设计原则室内环境监测与调控系统的设计需要遵循以下原则:1. 综合性:设计的系统要能够监测和调控多个环境参数,如温度、湿度、CO2浓度、光照强度等,以提供全面的室内环境信息。
2. 实时性:系统应能够实时监测环境参数,并能够及时调控,以确保室内环境始终保持在理想的水平。
3. 自动化:系统应具备自动调控的能力,通过预设的规则和算法,自动调整室内环境参数,避免人工干预带来的误差和延迟。
4. 可扩展性:系统设计应具备良好的可扩展性,能够方便地添加监测点和调控设备,以适应建筑的不同需求和规模。
二、关键组成部分1. 环境监测设备:室内环境监测设备是系统的核心部分,主要用于采集室内环境参数。
常见的监测设备包括温湿度传感器、CO2传感器、光照传感器等。
这些设备可以通过有线或无线方式与监测系统进行数据传输。
2. 数据采集与传输:为了实现实时监测,系统需要采集传感器所获取的环境数据,并将其传输到监测中心或云端服务器。
数据采集与传输可以通过有线或无线方式进行,例如使用以太网、WiFi或蓝牙等。
3. 数据分析与处理:采集到的环境数据需要进行分析和处理,以便获取有用的信息和趋势。
数据处理可以采用机器学习、人工智能等技术,根据历史数据和预设规则,预测室内环境的变化趋势,并进行相应的调控。
4. 调控设备:根据环境监测数据和分析结果,系统需要控制相关设备进行调控。
例如,调控系统可以自动调整空调温度或湿度,调整室内照明亮度等,以实现舒适的室内环境。
5. 用户界面:为了方便用户使用和了解室内环境情况,系统应提供一个友好的用户界面。
用户可以通过界面查看实时环境数据、设定调控规则和监控系统运行状态等。
温湿度监测系统及方法与设计方案

图片简介:本技术介绍了一种温湿度监测系统及方法,其中,温湿度监测系统包括显示屏、中心控制器、交换机以及多个安装在各个应用环境内的温湿度检测单元,中心控制器的信号端分别与各个温湿度检测单元连接,中心控制器的信号输出端与显示屏连接,所述交换机分别与中心控制器、数据服务器以及客户端电脑信号连接。
本技术能够实时监控各个应用环境的温湿度,并根据实时的温湿度信息与设定的温湿度信息对比,如果超标,能够实时报警提示,确保生产安全,操作使用方便。
技术要求1.一种温湿度监测系统,其特征在于:包括显示屏(1)、中心控制器(2)、交换机(3)以及多个安装在各个应用环境内的温湿度检测单元(6),中心控制器(2)的信号端分别与各个温湿度检测单元(6)连接,中心控制器(2)的信号输出端与显示屏(1)连接,所述交换机(3)分别与中心控制器(2)、数据服务器(4)以及客户端电脑(5)信号连接。
2.根据权利要求1所述的一种温湿度监测系统,其特征在于:所述温湿度检测单元(6)包括温湿度检测盒体、温湿度控制器(61)以及温湿度检测探头(62),所述温湿度检测盒体内安装温湿度控制器(61),温湿度控制器(61)与温湿度检测探头(62)信号连接,温湿度检测探头(62)伸出温湿度检测盒体。
接有用于显示温度正常的绿灯(63)、用于显示温度非正常的红灯(64)以及用于报警提示的蜂鸣器(65)。
4.根据权利要求1所述的一种温湿度监测系统,其特征在于:所述中心控制器(2)与各个温湿度检测单元(6)之间连接的线缆穿插在KBG管内,KBG管通过管扣固定在墙上。
5.根据权利要求3所述的一种温湿度监测系统,其特征在于:所述温湿度控制器(61)采用485控制器。
6.一种温湿度监测方法,其特征在于:具体包括如下步骤:S1、在各个应用环境中分别安装温湿度检测单元(6),将温湿度检测单元(6)的供电端与市电接通,在监控室内安装显示屏(1)和中心控制器(2),将显示屏(1)和中心控制器(2)的供电端与市电接通;S2、将各个温湿度检测单元(6)的信号端与中心控制器(2)的信号端接通,将显示屏(1)和中心控制器(2)的信号端接通;S3、将中心控制器(2)的信号端与交换机(3)接通,交换机(3)与对应的数据服务器(4)接通,交换机通过互联网与客户端电脑(5)信号连接;S4、通过客户端电脑(5)设定各个应用环境中的预定温度范围和预定湿度范围,并将数据保存至数据服务器(4)内;S5、各个温湿度检测单元(6)检测对应应用环境中的温度和湿度,并将温度信息和湿度信息发送至中心控制器(2),中心控制器(2)将接收的温度信息和湿度信息通过交换机(3)存储在数据服务器(4)内,以便后期查询,同时中心控制器(2)将接收的温度信息和湿度信息通过显示屏(1)显示出来,并显示对应的应用环境信息以及对应的预定温度范围和预定湿度范围。
温湿度监控系统设计

温湿度监控系统设计谈敏【摘要】针对环境温、湿度多点监测需要,设计了基于RS485通信总线的下位机十上位机温、湿度多点监控系统,下位机以STC12C5A60S2单片机为主控机节点,从机节点使用的是DHT21数字温湿度传感器进行温湿度的数据采集,温度精确到0.1℃,湿度精确到1%,通过RS-485总线传输到主控机后转发给上位机(PC机),用户可通过PC机实时查看各节点数据;文章着重介绍了电路和通信软件的设计和调试过程,上位机终端软件采用C++语言设计,实现了温、湿度数据的实时数字和曲线显示以及上下限设置和控制功能;该系统已在实验室实际使用,实践表明该系统运行可靠,具有体积小,价格便宜等优点,有一定的实用性,可以在生活小区、工厂、楼宇等领域使用.【期刊名称】《计算机测量与控制》【年(卷),期】2018(026)011【总页数】5页(P137-140,144)【关键词】单片机STC12C5A60S2;数字温湿度传感器DHT21;RS485总线;C++语言【作者】谈敏【作者单位】江阴职业技术学院电子信息工程系,江苏江阴 214405【正文语种】中文【中图分类】TP3990 引言环境温湿度的变化会时刻影响着人们的日常生活,而伴随着气候和环境问题的日益严峻,人们对于温湿度这一基本环境要素愈加关注,更希望可以实时获知一定范围内具体温湿度要素信息。
多点分布式监控系统能够适用于该采集控制领域。
但其具有采样节点多,传输距离相对较远,且工作环境较为恶劣的特点。
本课题根据设计需要,构建了以STC12C5A60S2单片机为控制核心,基于RS-485总线的温湿度监测与控制系统,实现了PC上位机与多个终端检测节点之间的远距离通信功能。
主要设计内容有:1)提出一种基于RS-485总线的远程温湿度监测与控制系统的方案,该监控系统主要由PC上位机、232/485转换接口以及终端温湿度检测节点组成;2)完成终端检测节点的硬件电路与软件设计,温度精确到0.1 ℃,湿度精确到1%,在检测到数据之后,通过控制风扇或加湿器实现对温湿度远程监测和控制,将温湿度控制在设定阈值范围之内;3)设计基于RS-485总线通讯的通信协议,完成多个终端检测点对环境温湿度的采集并通过RS-485总线传输到PC上位机;4) 设计完成PC上位机监控界面,能够对温湿度数据进行实时波形和数值显示,此外还能够对环境温湿度设定阈值,当环境温湿度变化超出了预设情况时,工作人员可以通过系统对终端部分的温湿度进行实时调控。
基于ZigBee的温湿度采集系统设计

基于ZigBee的温湿度采集系统设计近年来,随着无线通信网络技术的飞速发展,人们不需要花费高成本和进行复杂的布线,就能实现系统组网和数据通信。
而ZigBee无线传感器网络因其低功率、低成本的特性,受到了科学爱好者和人们的广泛的关注。
它作为ZigBee 技术和传感器技术相结合的产物,能组建ZigBee无线传感器网络,实现点与点之间的通信。
本设计采用符合ZigBee标准的CC2530作为传感器节点的数据采集和处理单元,并采用了温湿度复合传感器芯片DHT11进行温湿度进行数据采集。
在IAR开发环境下进行传感器节点程序的编写,实现无线传感器网络对温湿度信号的采集,并实现传感器节点之间的数据传输功能。
标签:ZigBee DHT11 CC2530 无线传感网络温湿度数据采集一、温湿度采集系统的总体设计协调器上电后,能够建立ZigBee无线网络,接着终端节点能查找并自动加入该ZigBee无线网络中,这时就建立起了协调器和终端节点的通信。
终端节点能够定时的采集温湿度数据,并将其通过网络发送给协调器,协调器收到温湿度数据后,通过RS232通信串口传输上到PC机。
系统设计原理图如图3-1:图1-1 系统设计原理图1.无线传感器网络节点设计针对ZigBee无线传感器网络的功能和组成,将传感器节点大致分成如下几个部分:采集单元、处理单元、通讯单元、电源单元。
无线传感器网络节点的模块如图1-2:图1-2 无线传感器网络节点的模块2.系统设计的主要任务2.1硬件平台的搭建:基于符合ZigBee标准的CC2530和温湿度传感器DHT11相结合,实现系统对温湿度的采集、存储和收集功能,并通过RS232与PC机相联,把收集到的温湿度数据传输到PC机中进行分析处理。
2.2软件平台的搭建:在IAR开发环境下进行传感器节点程序的编写和编译,实现无线传感器网络对温湿度数据的采集,还能实现传感器节点之间的数据传输功能。
二、温湿度采集系统的硬件设计1.系统采集单元设计鉴于本实验测量环境的特殊要求,需要对温湿度高精确度的测量和长期的保持工作。
基于ZigBee的无线温湿度检测系统设计

基于ZigBee的无线温湿度检测系统设计作者:刘亚杨少川来源:《科技风》2017年第20期DOI:10.19392/ki.16717341.201720004摘要:对于温湿度的精准监测是未来社会发展智能家居与智能农业的基础,传统温湿度系统的采集具有一定的局限性。
基于ZigBee的无线温湿度检测系统具有简单、集成、智能、成本低的优点,简化了温湿度控制系统的设计,降低系统的成本,使温湿度控制系统能给人们的生产生活带来更多的便利。
关键词:ZigBee;温湿度;检测系统温湿度检测技术是将来物联网重要组成部分随着科技水平的不断发展,将会有越来越多的领域应用到温湿度监测系统,比方说:安全生产、保证产品质量与农业灌溉等方面,并且对于检测的要求也变得越来越严格。
然而传统的系统具有一定的局限性,比如系统的灵活性不高、可扩展性比较低,会有严重的干扰现象。
基于ZigBee的无线传感网络的技术能实现环境温湿度的检测,实现温湿度的智能控制,使人们体验到现代智能化技术。
1 总体系统设计本系统采用SHT10传感器来进行温湿度数据的检测,CC2530作为电路板来进行数据的读取,之后将采样以后的数据经过RS232串口总线传导到主板上面,利用液晶屏幕将采集到的数据显示出来,之后设计并搭建系统硬件的平台,之后完成对环境温湿度信息采集系统的设计。
硬件总体设计,如图1所示。
图1 总体系统设计2 硬件设计温度湿度传感器 SHT10 和 CC2530 来构成这次设计的温度湿度检测部分,利用电源来对终端传感器的硬件部分进行供电,CC2530ZigBee的 P2_8 口与 P2_7 口两者分别对应温度湿度传感器的2端口和3端口,数据是由SHT10传感器和 CC2530间借助 I2 C 总线技术而产生交换,RS232串口电路域计算机通信成为了协调器节点硬件的主要组成部分,为了使测量数据拥有较高的准确度,此次设计通过信号转换时进行分现行补偿与温度补偿以便获取精确的数据,当接受收到CRC 8 是确认位之后,再通过保持 ACK高电平来完结通信并且自动进入休眠模式。
基于nRF905的无线温湿度检测与传输系统设计

外 , 要注 意 S I 口只 有在 掉 电和 Sa d y模式 需 P接 t b n 下 处 于工作 状态 。
只需 对程 序稍 加 修 改 便 可 实 现 系 统 的灵 活扩 展 。 显 示 部分 由性 价 比高 、 耗 低 的 L D10 功 C 6 2液 晶 显 示 模块 组成 , 模块 的 数据接 口与 A 8 S 2的 P 该 T95 1 口相 连接 , 中 P . P . 其 12、 1 3分 别 用 于 控 制 液 晶屏 的读 写操 作 , 温 湿 度 数 据 通 过 单 片 机 P 口的 而 o
S T 1的 D T H 1 A A线 接 到 A 8 S 2的 P . T95 1 0口, C SK 时钟线 连 接 到 P. 1 1口 , 时 在 D T 线 上 加 同 AA
P 2 2.
1 _
MOS I
一
,
SI | P接 J
P 3 2.
—'
Mf S0
——
P 2 3.
P. 0 0~P . 0 7分 另 传 递 至 C 6 2的 D U 0 D10 L O~D 口 7
并 实 时显示 在 液 晶屏 幕 上 , 了解 现 场 的 温湿 为 度 情况 提供 了直观 的观 测手段 。
专 用转 换 芯 片 , 支 持 R 2 2 串行 接 口 , 全 兼 其 S3 完 容 UB. S 1 1规 范 , 有 双 向数 据 流 缓 冲器 和 片 上 具 U B 收 发 器 , 输 速 率 超 过 1 / … 。 由 于 S 传 s Mb P 20 L 3 3的输 入输 出 电压要 求 T L C S电平 , T / MO 因
构成 。上 位 机 和 下位 机 之 间通 过 n 9 5无 线 收 发 模 块 和 P 2 0 RF 0 L 3 3转 换 芯 片 完 成 数 据 的 无 线 传 输 以 及
实验室智能温湿度监控系统设计

设计研发2021.08实验室智能温湿度监控系统设计兰鸽,李川江,徐磊(新疆工程学院,新疆乌鲁木齐,830000)摘要:本设计根据实验室的环境特点,利用单片机结合传感器技术开发一套能实时监测实验室环境并及时报警的温湿度监测仪,DHT11数字温湿度传感器,AT89S51单片机为控制核心与其他电子外设结合而设计的该温湿度监测系统具有灵敏度高,响应速度快,抗干扰能力强,维护方便,安装方便等优点。
监控系统可以通过按键设定报警温度和湿度的上限和下限。
当警报激活时,相应的指示灯亮起,蜂鸣器报警。
关键词:DHT11数字温湿度传感器;AT89S51单片机;监控系统Design of Intelligent Temperature and Humidity MonitoringSystem in LaboratoryLan Ge,Li Chuanjiang,Xu Lei(Xinjiang Institute of engineering,Urumqi Xinjiang,830000)Abstract:According to the environmental characteristics of the laboratory,this design uses SCM combined with sensor technology to develop a set of temperatnre and humidity monitoring instmmerrt which can real-time monitor the laboratory environment and timely alarm,DHT11digital temperature and humidity sensor,AT89S51microcontroller as the control core and other electronic peripherals.The temperature and humidity monitoring system has high sensitivity,fast response speed and anti—int erference ability St r ong,easy to main t ain,easy to ins t all and so on.The mon ito r ing sys tem canset the upper and lower limits of alarm temperature and humidity by pressing the key.When the alarmis activated,the corresponding indicator lights up and the buzzer gives an alarm.Keywords:DHT11digital temperature and humidity sensor;AT89S51single chip microcomputer; monitoring system0引言为了保证实验教学的正常进行,尤其是电类实验室,实验室的环境需要保持在一个相对稳定的状态,使实验设备正常运行,实验室温湿度过高过低都不利于设备的正常运行。
温湿度监测系统课程设计

温湿度监测系统课程设计一、课程目标知识目标:1. 学生能理解温湿度监测系统的基本构成及其工作原理;2. 学生能掌握温度、湿度传感器的工作原理及其在监测系统中的应用;3. 学生能了解数据采集、处理和传输的基本方法。
技能目标:1. 学生能运用所学知识,设计简单的温湿度监测系统;2. 学生能通过编程实现对温湿度数据的采集、处理和显示;3. 学生能运用团队协作和沟通技巧,完成课程项目的实施。
情感态度价值观目标:1. 学生培养对物理与信息技术融合的兴趣,增强对科学研究的热情;2. 学生通过实践活动,培养动手能力、问题解决能力和创新意识;3. 学生在学习过程中,注重环保、节能理念,认识到温湿度监测系统在智能生活、环境保护等领域的重要性。
分析课程性质、学生特点和教学要求,本课程以实践性、综合性、创新性为特点,结合初中年级学生的认知水平和兴趣,注重引导学生动手实践、合作探究。
通过课程学习,使学生将理论知识与实际应用紧密结合,提高学生的科学素养和创新能力。
课程目标分解为具体学习成果,以便于后续教学设计和评估。
二、教学内容1. 温湿度监测系统的基本构成- 传感器原理与应用(教材第3章)- 数据采集、处理与传输(教材第4章)2. 温湿度监测系统的设计与实现- 系统设计原理(教材第5章)- 硬件连接与编程(教材第6章)- 数据显示与报警(教材第7章)3. 课程项目实施与评价- 团队协作与沟通技巧(教材第8章)- 项目实施流程(教材第9章)- 项目评价与反馈(教材第10章)教学内容安排与进度:第一周:学习传感器原理,了解温湿度监测系统的基本构成;第二周:学习数据采集、处理与传输方法,掌握编程技巧;第三周:设计并实现温湿度监测系统,进行硬件连接与编程;第四周:完善系统功能,实现数据显示与报警;第五周:团队协作完成项目实施,进行项目评价与反馈。
教学内容注重科学性和系统性,结合教材章节,引导学生从理论学习到实践应用,逐步掌握温湿度监测系统的设计与实现。
基于ZigBee的温室无线监测系统设计

3 /4 18K 闪 存 、8 B S A 等 高 性 能 模 块 , 26/2 B K R M
3 一 0
基于 Zg e i e的温室无线监测 系统设计 B
王
辉 ,等
并 内 置 了 Zg e 协 议 栈 ,集 成 有 支 持 2 4 Hz iB e .G
I E 0 . 5 4 Zg e 协议 的 R E E 8 2 1 . / iB e F收 发 器 。该 芯 片
插脚 的红 外气体 传感 器 ,其 中 2个 管脚为 U R A T管 脚 ,可 与仪表 电路直 接 通 讯 ,具 有 很 好 的选 择性 ,
无 氧气 依 赖性 ,性 能稳定 、寿命 长 ,并具 有 E P— E
图 2 C2 3 C, 0基 本 收 发 电路 4
R M 存储 器 。在 提 供 高 精 度 的 同时 ,具 有 更 小 的 O
2 2 网络 协调 器节 点硬 件设计 .
协调 器节 点 的 传 感 器 单 元 采 用 与 传 感 器 节 点 相 同的 设 计 ,在 传 感 器 节 点 的 硬 件 基 础 上 采 用
MA 4 5芯片 构建 R 4 5接 口 ,MA 4 5的 电源 X8 S一 8 X8 由 4 5总线 上获 得 。电路 如 图 6所示 。 8
三
P1 5
一
R0
VCC.
V
P1 3
一
I
B
图 3 S T 0与 C 2 3 H1 C4 0接 口 电 路
P1 4
一
b E D
DI
A
GND
2 1 2 光照 强度 传感 器及 接 口电路 ..
光照强度传感 器采用 T L 5 1 S 2 6 ,该芯 片是 一
基于ZigBee无线的温湿度测量设计与实现

测湿范围:0-100%RH
测湿精度:+2.5%RH
图2.1 系统组成框图
3.
1)了解温湿度传感器工作原理,根据原理画好PCB原理图。
2)根据PCB原理图自制PCB板电路,将液晶屏,温湿度传感器,ZigBee开发板等相关元件设备进行集成。
3)测试PCB电路,检查相关电路能否正常工作,以及ZigBee核心板的能否正常调试。
ﻩ
JLabellblNewLabel=newJLabel("\u5C0F\u7EC4\u6210\u5458\uFF1A\u79B9\u542F\u6807 \u4F59\u742A");
lblNewLabel.ห้องสมุดไป่ตู้etForeground(Color.CYAN);
ﻩlblNewLabel.setBounds(192, 168, 262, 31);
4)在完成电路调试后,用下载器下载调试程序成功完成程序对相关元件的驱动
5)实验完成后做好相应的实验总结。
4.
此处用CC2530芯片用作接收信息和控制芯片,实现无线遥控,单跳控制距离可以达到100米以上,L298N驱动模块(驱动电机)
(1)温湿度传感器,
(2)电脑和ZigBee核心板和JLINK下载模块及其相关的驱动
ﻩﻩgetContentPane().add(lblNewLabel);
ﻩ
JLabellblNewLabel_1=newJLabel("\u6C6A\u548C\u5143 \u5F20\u7FFC \u8D39\u51CC\u4E91");
ﻩﻩlabel_1.setBounds(168, 83, 86, 31);
ﻩﻩgetContentPane().add(label_1);
无线部署温度感测施工方案设计

无线部署温度感测施工方案设计1. 项目背景随着物联网技术的不断发展,无线传感技术在各个领域的应用越来越广泛。
温度感测作为无线传感技术中的重要组成部分,在工业生产、智能家居、医疗卫生等领域具有广泛的应用前景。
为了满足不同场景下对温度监测的需求,本项目旨在设计一套无线部署温度感测施工方案。
2. 项目目标1. 设计一套无线温度感测方案,实现对温度数据的实时监测、传输和分析。
2. 确保无线传感器的部署和维护便捷,降低使用成本。
3. 提高温度监测数据的准确性和稳定性,满足不同场景下的应用需求。
3. 施工方案设计3.1 无线传感器的选型本项目选用XX品牌的无线温度传感器,具有以下特点:1. 采用低功耗设计,适用于长期部署。
2. 支持无线传输,安装方便。
3. 具有较高的测量精度和稳定性。
4. 具备防水、防尘、抗干扰等性能。
3.2 无线传感网络构建1. 根据监测区域的大小和环境特点,合理规划无线传感器的部署位置。
2. 采用星型或网状拓扑结构搭建无线传感网络。
3. 通过无线传输模块,将传感器数据传输至数据采集终端。
3.3 数据采集与处理1. 数据采集终端负责接收无线传感器发送的温度数据。
2. 对采集到的数据进行滤波处理,提高数据稳定性。
3. 数据采集终端可接入互联网,实现远程数据传输和监控。
3.4 系统集成与调试1. 将无线温度感测系统与现有业务系统进行集成,实现数据交互和业务联动。
2. 对系统进行调试,确保温度监测数据的准确性和实时性。
3. 根据实际需求,为用户提供数据分析和报表功能。
3.5 施工注意事项1. 遵循国家相关法规和行业标准,确保施工安全。
2. 无线传感器安装位置应避免信号干扰,确保数据传输稳定。
3. 定期对无线传感器进行维护和检修,确保系统长期稳定运行。
4. 项目验收与售后服务1. 项目验收依据:《无线温度感测系统施工验收规范》2. 验收内容包括:系统稳定性、数据准确性、系统集成等方面。
3. 提供完善的售后服务,包括设备维护、系统升级、技术支持等。
zigbee温湿度课程设计

zigbee温湿度课程设计一、课程目标知识目标:1. 学生能理解Zigbee技术的基本原理和应用场景;2. 学生能掌握温湿度传感器的工作原理和数据处理方法;3. 学生能了解无线传感器网络在智能家居、环境监测等领域的应用。
技能目标:1. 学生能运用Zigbee模块搭建简单的无线通信系统;2. 学生能通过编程实现对温湿度传感器的数据采集、处理和显示;3. 学生能设计并实现一个基于Zigbee的温湿度监测系统。
情感态度价值观目标:1. 学生对物联网技术产生兴趣,提高学习积极性和主动性;2. 学生培养团队协作精神,学会与他人共同解决问题;3. 学生增强环保意识,认识到物联网技术在环境监测中的重要作用。
课程性质:本课程为信息技术学科,结合实际应用,培养学生的动手能力和创新能力。
学生特点:学生处于初中年级,具有一定的电子和编程基础,对新鲜事物充满好奇心。
教学要求:注重理论与实践相结合,强调学生的动手实践,鼓励创新思维,提高学生的问题解决能力。
通过分解课程目标,为教学设计和评估提供具体的学习成果依据。
二、教学内容1. Zigbee技术原理:介绍Zigbee无线通信技术的起源、特点、协议栈结构,使学生理解其工作原理和应用优势。
教材章节:第三章“无线传感器网络技术”2. 温湿度传感器:讲解温湿度传感器的工作原理、测量范围、精度等参数,分析传感器数据采集和处理方法。
教材章节:第四章“传感器技术与应用”3. 程序设计与数据处理:教授如何使用编程语言(如C语言)对Zigbee模块和温湿度传感器进行编程,实现对数据的采集、处理和显示。
教材章节:第五章“程序设计与数据处理”4. 系统设计与实现:引导学生运用所学知识,设计并实现一个基于Zigbee的温湿度监测系统,包括硬件连接、软件编程、系统调试等。
教材章节:第六章“综合项目设计与实践”5. 应用案例分析:介绍Zigbee温湿度监测系统在实际应用中的成功案例,激发学生的创新意识。
基于ZigBee的温湿度监测系统设计

基于ZigBee的温湿度监测系统设计作者:柴世龙刘毅张振虎来源:《科技视界》2015年第04期【摘要】本文提出一种利用新型低功率、低成本的ZigBee无线网络技术来实现分布式温湿度检测系统的方法。
该方法采用一款含有已校准数字信号输出的温湿度复合传感器芯片DHT11作为数据采集单元,采用符合ZigBee标准的CC2530射频芯片作为数据传送单元。
在IAR开发环境下编写和编译传感器节点程序,实现无线传感器网络采集温湿度信号及传感器节点之间的数据传输功能。
【关键词】ZigBee;无线传感网络;温湿度数据采集0 引言近年来,物联网技术得到了快速发展,与此相关的一些技术如RFID、无线传感器网络也得到了快速的发展。
与此同时,各种无线传感器网络协议标准也日渐规范化,其中得到广泛应用和推广的一种协议就是ZigBee 2007协议[1]。
其中ZigBee作为一种低复杂度、低功耗、低成本的低速率无线连接技术越来越被人们所重视[2],如利用ZigBee技术开发的智能家居系统[3]、智能公交系统[4]、安防系统[5]、电子门锁[6]、智能牧场[7]等已成为业内的热点。
本文依据ZigBee的相关特点设计了一种对环境温湿度进行实时监测的系统。
1 ZigBee技术的简介ZigBee技术是一种近距离、低复杂度、低功耗、低速率、低成本的双向无线通讯技术。
主要用于距离短、功耗低且传输速率不高的各种电子设备之间进行数据传输以及典型的有周期性数据、间歇性数据和低反应时间数据传输的应用。
总体而言,ZigBee技术具有如下特点:(1)高可靠性ZigBee联盟在制定ZigBee规范时已经考虑到这种数据传输过程中的内在的不确定性,采取了一些措施来提高数据传输的可靠性,主要包括:物理层兼容高可靠的短距离无线通信协议IEEE 802.11.5同时使用OQPSK和DASS技术;使用CSMA—CA技术来解决数据冲突问题;使用16-bits CRC来确保数据的正确性;使用带应答的数据传输方式来确保数据正确的传输目的地址;采用星型网络尽量保证数据可以沿着不同的传输路径从源地址到达目的地址。
基于STM32的温湿度监测系统设计

术, 提 出一种基于S T M3 2 的温湿度 监测 系
c i r c ui t i s s i m pl e,e xt e ns i bl e ,hi gh r e l i a b i l i t y ,go od
传 统 的磨 损 试 验 中 大 多 采 用 模 拟 温 湿 度 传感 器 采集 信息 , 通过 数 据 采 集卡 将 温湿度 信息传 送 给
计算机 , 这种方式成本比较高, 同时精度低, 误差较 大。 随着嵌入式技术的不断发展 , 采用嵌入式设备
对 实 验 环 境 进行 监 测 , 成 为一 种 趋 势 。 本 文 提 出了
张 祥 蔡 景 林 海 彬 刁海 飞
t he var i o us t as ks s che dul i ng a nd ma nage me nt , t hus c ompl e t i ng t he e x pe r i me nt of e nvi r onme nt al
』 i j 小科研 、 』 务费 号项 资金资助
6 2
WWW. Cnl m . Cn
中阅诹嚣 住表 C H I N A I N S T R U M E N T A T I O N
2 0 1 3 年 第7 期
T E C HNI C AL E XP L OR A T I ON 技术探讨
Ab s t r a c t :Ac c o r di n g t o t h e o r i gi na l a b r a s i o n t e s t e r t e m pe r a t ur e a nd hum i di t y m oni t o r i n g s ys t e m hi gh c os t ,l o w p r e c i s i o n c ha r a c t e r i s t i c s ,ba s e d o n e mb e d d e d t e c hn o l o g y ,a n d p u t f o r wa r d a d e s i g n o f t he t e mp e r a t ur e a nd hu mi di t y moni t o r i ng s y s t e m b a s e d o n t h e S TM 3 2. Th i s s ys t e m t o S TM 3 2 a s t h e c o r e b u i l di n g ha r d wa r e pl a t f o r m ,a nd t r a ns p l a n t e d C/ O S— I I r e al - t i me o pe r a t i ng s ys t e m t o a c hi e v e
无线湿温度监测系统的设计

{
CRect rectClient;
GetClientRect( &rectClient );
CMemDC memDC(pDC, rectClient);
EraseBkgnd(&memDC);
// OnEraseBkgnd 失效了,但是仍然需要在内存缓冲区中擦除背景
3.2 温度测量模块
温度传感器采用采用 Dallas 公司的单总线数字温度传感器 DS18B20,芯片内部集成了温度传感器和模数转换器。其测温范围为-55-+125℃,测量的温度值可编程为9、10、11 和12 位数字表示,相应温度分辨力分别为0.5℃、0.25℃、0.125℃ 和 0.0625℃。用户可设定温度超标报警的上、下限值。
2.2 技术指标
温度测试范围:-55- +125 ℃ 测试精度:0.5 ℃湿度测试范围:10%-100%RH 测试精度:1%RH无线传输范围:开阔地80m 左右。
3 系统组成模块
3.1 无线发射接收模块
系统通过无线收发模块传输现场采集的数据,系统所处环境较恶劣,对数据传输的可靠性要求较高。综合考虑以上因素,采用以nRF2401AG 为核心芯片的无线数传模块。nRF2401AG 是单片无线收发一体的芯片。模块工作电压为2.7~3.6V,内置天线;采用全球开放2.4GHz ISM 频段,免许可证使用;采用高效GMSK 调制最高传输速率达到1Mbit/s,抗干扰能力强;有125 个频道,可满足多频及跳频需要;内置硬件CRC 检错,支持点对多点通信地址控制。
模块可以通过软件设置地址,只有收到本机地址时才会输出数据,可直接连接各种MCU,软件编程非常方便。nRF2401AG 可通过软件设置40 bit 的地址,适合点对多点的数据传输;CRC 纠检错硬件电路和协议,提高了系统的可靠性,且不再需要用软件对传输数据进行差错控制编码,简化了软件编程。PTR4000PA 是PTR4000 的功率加强型产品,传输距离更远(开阔地约300-400m,室内约 50-100m)。nRF2401AG 最突出的特点是具有一种ShockBurstTM Mode(突发模式)的通信模式。ShockBurst Mode 使用芯片内部的先入先出堆栈区,数据可以从低速微控制器送入,高速(1 Mb/s)发射出去,字头和校验码由硬件自动添加和去除。其优点是功耗低,抗干扰能力强。