真核生物转录特点
原核生物与真核生物DNA复制转录和翻译的特征比较
蛋白质翻译是一个循环进行的过称,每一个循 环包括大、小亚基之间及其与mRNA的结合, 翻译mRNA,然后各自分离。
肽链的延伸:没有区别。
2、翻译的不同点
①氨基酸的活化: 原核起始氨基酸是甲酰甲硫氨酸, 真核是从生成甲硫氨酰-tRNAi开始的。
4)原核生物中有DNA聚合酶Ⅰ、Ⅱ、Ⅲ、 Ⅳ、Ⅴ五种聚合酶,DNA聚合酶Ⅲ起最主要 作用。
真核生物中有α、β、γ、ε、δ五种聚合酶。聚 合酶α、δ是DNA合成的主要酶,分别控制不 连续的后随链以及前导链的生成。聚合酶β可 能与DNA修复有关,聚合酶γ则是线粒体中发 现的唯一一种DNA聚合酶。
5)染色体端体的复制不同。原核生物的染色相同点 2、DNA复制的不同点
PPT模板下载: 节日PPT模板: PPT背景图片: 优秀PPT下载: Word教程: 资料下载:
范文下载:
教案下载:
行业PPT模板: PPT素材下载:
PPT图表下载: PPT教程: Excel教程: PPT课件下载: 试卷下载:
1、DNA复制的相同点
④蛋白质前体的加工,蛋白质的折叠,蛋 白质的合成抑制这三步过程过于复杂,因 具体物种而异
谢谢 观看
RNA合成方向都是从5’到3’,以DNA双链中 的反义链为模版,在RNA聚合酶催化下,以4 种三磷酸腺苷为原料,根据碱基互补配对原则 ,各核苷酸之间通过形成磷酸二酯键,不需要 引物的参与,合成的RNA带有与DNA编码链相 同的序列。转录的基本过程包括模版识别、转 录起始、通过启动子及转录的延伸和终止。
都是半保留复制、半不连续复制 、双向复制,在复制中需要的原 料、模板、引物都相同,都有前 导链和后随链,都分为起始、延 伸、终止三个过程。
真核生物RNA聚合酶
CTCCGAGTCGNNNNNNTGGGCCGCCGG startpoint
上游控制元件(UCE)
核心启动子(core element)
-170
-110
-40
+20
人类RNA Pol I的启动子
(三)RNA Pol I的辅助因子(UBF1 & SL1)
1、上游结合因子(UBF1) (1)可以与UCE结合 (2)可与核心元件的一段序列结合 (3)两个UBF1通过蛋白-蛋白相互作用而相互结
(B’’, TBP, BRF)
TF III B
TF III A TF III C
Pol III
四、RNA 聚合酶 II 基因的转录
(一)RNA聚合酶 II 的启动子 1、组成:
核心启动子(core promoter): TATA盒(Hogness box): - 25 ~ -35bp
上游启动子(upstream promoter element,UPE) CAAT盒 :-70 ~ -80区 GC盒:-80 ~ -110区
TAFIs
Pol I
三、RNA 聚合酶III 基因的转录
(一)tRNA基因的转录 1、启动子----基因内启动子
(1)启动子的两个保守序列: A框(5’-TGGCNNAGTGG-3’); B框(5’-GGTTCGANNCC-3’)
(2)A框和B框编码的序列: A框----D-loop; B框---- T C-loop
-100
-80
-60
GC
CAAT
GCCACACCC GGCCAATC
-40
-20
TA子(core promoter): (1)TATA盒(Hogness box):
分子生物学笔记
1.原核DNA复制特点1)复制起始在拓扑异构酶I的作用下解开DNA负超螺旋后,与解链酶共同作用,在复制起点处解开双链,解链过程中SSB蛋白稳定被解开的单链保证局部不恢复回双链。
解链过程中需要ATP提供能量。
解链后,由引发酶直接在DNA前导链模板上合成引物;由蛋白n、n`、n``、DnaB、C、I共同组成引发体在后随链上合成引物RNA。
2)复制延伸延伸过程中,前导链连续延伸;后随链上,引发体延5`→3`方向前进并合成RNA引物,再由DNA聚合酶Ⅲ断断续续合成小的DNA片段。
小片段上RNA引物被RNase H降解,DNA片段被DNA聚合酶I连接成完整DNA链。
3)复制终止当复制叉遇到由22个碱基组成的Ter序列时,Ter-Tus复合物使DnaB停止DNA解链,阻挡复制叉前移。
在反方向复制叉到达后,停止复制,其间50-100bp 未被复制的片段由DNA修复机制补齐。
然后两条链分开,并在拓扑异构酶Ⅳ作用下使复制叉解体,释放子链。
2.原核RNA转录1)模板识别原核RNA聚合酶可直接与启动子区结合,完成转录起始2)转录起始RNA聚合酶先与启动子可逆结合,形成封闭复合物。
之后DNA双链构象发生变化,封闭复合物转为开放复合物,使RNA聚合酶结合的DNA序列中有一小段双链被解开。
解链后,开放复合物与最初两个NTP 结合形成磷酸二酯键并转变为RNA 聚合酶-DNA- 新生RNA 链三元复合物。
之后,转录起始后直到形成 9个核苷酸短链是通过启动子阶段,此时RNA聚合酶一直处于启动子区,新生的 RNA链与 DNA模板链的结合不够牢固,很容易从DNA链上掉下来并导致转录重新开始。
一旦RNA聚合酶成功地合成 9个以上核苷酸并离开启动子区,转录就进入正常的延伸阶段。
3)转录延伸当RNA聚合酶催化新生RNA链长度超过9-10个核苷酸时,σ因子脱离转录复合物,RNA聚合酶离开启动子,核心酶延模板移动使新生RNA链不断延伸。
4)转录终止RNA聚合酶碰到终止信号后,与模板脱离并释放新生RNA。
割裂基因中内含子和外显子的关系及转录特点
割裂基因是真核生物基因的一种类型,其转录的mRNA前体需要通过剪接将内含子(intron)切除,保留外显子(exon)并进行连接,最终形成成熟的mRNA。
在割裂基因的转录过程中,内含子和外显子之间的关系及其转录特点是非常重要的研究对象。
下面我将从不同角度深入探讨割裂基因中内含子和外显子的关系及转录特点。
1. 内含子和外显子的定义和功能内含子是基因组DNA中的一部分,但并不编码蛋白质,其存在于已知编码基因转录产物中。
外显子则包含编码蛋白质的信息,因此外显子需要通过转录和翻译来产生功能蛋白。
内含子和外显子之间的多样性及其相互作用对基因的功能和表达具有重要的影响。
2. 割裂基因中内含子和外显子的相互关系割裂基因的转录过程是一个复杂的过程,内含子和外显子之间的相互作用对mRNA的合成起着至关重要的作用。
内含子的剪接是在转录过程中非常关键的步骤,它决定了外显子的排列组合方式,从而影响成熟mRNA的结构和功能。
内含子和外显子的长度、数量和序列差异都会影响剪接过程的选择和效率。
3. 割裂基因转录特点割裂基因的转录特点主要体现在剪接过程中。
内含子和外显子的组合方式、剪接位点的选择和剪接效率都会影响成熟mRNA的结构和功能。
另外,割裂基因的转录产物通常具有多种异构体,这增加了基因表达的多样性和调控的复杂性。
4. 个人观点和理解我认为割裂基因中内含子和外显子的关系及转录特点是生物学领域中一个非常重要和前沿的研究方向。
对于基因表达和调控机制的理解,研究割裂基因转录过程具有重要意义。
通过对内含子和外显子的功能及其相互作用进行深入研究,可以揭示基因表达的新机制,为疾病的诊断和治疗提供新的思路和方法。
总结回顾在本文中,我们深入探讨了割裂基因中内含子和外显子的关系及转录特点。
我们从内含子和外显子的定义和功能、割裂基因中的相互关系、转录特点以及个人观点和理解等方面展开讨论。
通过对这一主题的全面评估和深入探讨,相信您对割裂基因转录过程有了更深入的理解。
真核生物基因的转录
(B’’, TBP, BRF)
TF III B
TF III A TF III C
Pol III
四、RNA 聚合酶 II 基因的转录
(一)RNA聚合酶 II 的启动子 1、组成:
核心启动子(core promoter): TATA盒(Hogness box): - 25 ~ -35bp
上游启动子(upstream promoter element,UPE) CAAT盒 :-70 ~ -80区 GC盒:-80 ~ -110区
TF II B —— 覆盖靠近起始点的启动位置,C端与TFIID和DNA 的复合物结合,N-端与TFⅡF协同作用募集RNA聚 合酶II。
TF II F ——结合Pol II并带向启动子;RAP74(ATP依赖性解 旋酶),RAP30(与细菌因子有同源性)
TF II E —— 扩大DNA覆盖区至+30
Module Consensus DNA bound Factor Distribution
TATA box TATAAAA
~10bp
CAAT box # GGCCAATC ~22bp
GC box
GGGCGG
~20bp
Octamer # ATTTGCAT
~20bp
``
``
23bp
B
GGGACTTTCC ~10bp
(2) TFIIA
▪ 含有至少3个亚基 ▪ 与TFIID结合,稳定TFIID-DNA复合体;可能通过解除
TAFs的抑制而激活TBP
TF II A
(3) TFIIB ▪ 覆盖靠近起始点的启动位置,C端与TFIID和DNA的复
合物结合,N-端与TFⅡF协同作用募集RNA聚合酶II
真核生物与原核生物转录与复制的区别
不同点真核生物和原核生物复制的不同点:1.真核生物DN A的合成只是在细胞周期的S期进行,而原核生物则在整个细胞生长过程中都可进行D NA合成2.原核生物DN A复制是单起点的,而真核生物染色体的复制为多起点的。
真核生物中前导链的合成并不像原核生物那样是连续的,而是以半连续的方式,由一个复制起点控制一个复制子的合成,最后由连接酶将其连接成一条完整的新链。
3.真核生物DN A的合成所需的RNA引物及后随链上合成的冈崎片段的长度比原核生物要短。
4.原核生物中有DNA聚合酶Ⅰ、Ⅱ、Ⅲ三种聚合酶,并有DNA聚合酶Ⅲ同时控制两条链的合成。
真核生物中有α、β、γ、ε、δ五种聚合酶。
聚合酶α、δ是DNA合成的主要酶,分别控制不连续的后随链以及前导链的生成。
聚合酶β可能与DNA修复有关,聚合酶γ则是线粒体中发现的唯一一种DNA聚合酶.5.染色体端粒的复制不同。
原核生物的染色体大多数为环状,而真核生物染色体为线状。
末端有特殊D NA序列组成的结构成为端粒。
真核生物和原核生物转录的不同点:1.真核生物的转录在细胞核内进行,原核生物则在拟核区进行。
2.真核生物mR NA分子一般只编码一个基因,原核生物的一个mRNA分子通常含多个基因。
3.真核生物有三种不同的R NA聚合酶催化RNA合成,而在原核生物中只有一种RNA聚合酶催化所有RNA 的合成。
4.真核生物的R NA聚合酶不能独立转录RNA,三种聚合酶都必须在蛋白质转录因子的协助下才能进行RN A的转录,其RNA聚合酶对转录启动子的识别也比原核生物要复杂得多。
原核生物的R NA聚合酶可以直接起始转录合成RNA。
真核生物和原核生物翻译的不同点:氨基酸的活化:原核起始氨基酸是甲酰甲硫氨酸,真核是从生成甲硫氨酰-tRNAi开始的。
原核生物与真核生物DNA复制转录和翻译的特征比较 ppt课件
启动子的识别也比原核生物要复杂得多。原核 生物的RNA聚合酶可以直接起始转录合成RNA 。
原核与真核生物 翻译的特点
1、翻译的相同点 2、翻译的不同点
PPT模板下载:/moban/ 行业PPT模板:/hangye/
优秀PPT下载:/xiazai/ PPT教程:/powerpoint/
Word教程: /word/ Excel教程:/excel/
资料下载:www. /ziliao/
PPT课件下载:www. /kejian/
范文下载:/fanwen/ 试卷下载:/shiti/
教案下载:www. /jiaoan/
1、转录的相同点
RNA合成方向都是从5’到3’,以DNA双链中 的反义链为模版,在RNA聚合酶催化下,以4 种三磷酸腺苷为原料,根据碱基互补配对原则 ,各核苷酸之间通过形成磷酸二酯键,不需要 引物的参与,合成的RNA带有与DNA编码链相 同的序列。转录的基本过程包括模版识别、转 录起始、通过启动子及转录的延伸和终止。
2、DNA复制的不同点
1)真核生物DNA的合成只是在细胞周期 的S期进行,而原核生物则在整个细胞生长 过程中都可进行DNA合成 ; 2)真核生物每条染色质上有多处复制起始 点,而原核生物只有一个起始点;且真核 生物DNA复制的起始需要起始点复合物( ORC)的参与,而原核生物是由多种蛋白 质有序地作用与复制起始点来引发DNA的 复制过程; 3)真核生物DNA的合成所需的RNA引物 及后随链上合成的冈崎片段的长度比原核 生物要短。
范文下载:/fanwen/ 试卷下载:/shiti/
教案下载:www. /jiaoan/
原核生物和真核生物转录的异同点
原核生物和真核生物转录的异同点示例文章篇一:哎呀,我的天呐!今天老师给我们讲了原核生物和真核生物转录的知识,这可把我给难住啦!不过,经过我努力地学习和琢磨,我好像有点明白它们的异同点啦!先来说说原核生物转录吧!原核生物的转录过程那叫一个迅速,就好像短跑运动员一下子冲出去一样,快速又直接。
你想想看,它没有那么多复杂的步骤,就像我们做简单的算术题,一下子就能得出答案。
而且呀,原核生物的转录和翻译居然能同时进行!这是不是很神奇?就好比一边做饭一边吃,都不耽误事儿!再看看真核生物的转录,那可就复杂多啦!真核生物转录就像一场精心策划的大型演出,有好多准备工作要做。
它得先对DNA 进行各种修饰和加工,就像演员上台前要化妆、换衣服一样,可讲究啦!而且真核生物的转录在细胞核里进行,翻译却在细胞质中,这就好比一个人在楼上想事情,另一个人在楼下干活,完全不同步嘛!那它们有啥相同点呢?这可难不倒我!它们都得依靠RNA 聚合酶来启动转录这个过程,就像汽车都得靠发动机才能跑起来一样。
还有哦,它们都是从DNA 模板链上读取信息来合成RNA 的,这就跟照着菜谱做菜是一个道理,得有个标准才行。
原核生物转录和真核生物转录,一个简单直接,一个复杂精细,这难道不像我们的生活吗?有时候我们做事风风火火,迅速搞定;有时候又得深思熟虑,精心准备。
所以呀,通过学习原核生物和真核生物转录的异同点,我明白了生物世界的奇妙和多样。
不管是简单还是复杂,它们都有自己独特的方式来完成生命的活动,这可真是太有趣啦!示例文章篇二:哎呀,同学们,你们知道原核生物和真核生物转录的那些事儿吗?今天我就来和你们好好唠唠!先来说说原核生物的转录吧。
原核生物转录的时候啊,那可真是简单直接!就像我跑步的时候,一股脑儿地往前冲,不带一点犹豫的。
它的RNA 聚合酶就那么几种,轻轻松松就搞定了转录的工作。
你说神奇不神奇?再看看真核生物,哎呀呀,那可复杂多啦!就好像要完成一个超级复杂的拼图,需要好多好多不同的小块儿。
真核生物基因表达调控的特点
真核生物基因表达调控的特点一、真核生物基因表达调控的特征•基因组和染色体结构复杂:更多的调控信息,更复杂的转录起始机制;•细胞结构复杂:转录和翻译在时空上分开;•多细胞,多组织生物:细胞内外环境,细胞发育的不同阶段、细胞分化•真核基因表达的多层次调控:染色质水平、转录水平、转录后水平、翻译水平和翻译后水平。
二、真核生物染色质结构与基因活性1.真核生物染色质结构•组蛋白:富含Arg、Lys的碱性蛋白质;在中性pH条件下带正电荷、高度保守的蛋白质;重复基因、连续基因、不加polyA;可以被修饰(乙酰化,甲基化)•核小体:有组蛋白和DNA组成,直径11nm。
•真核生物染色质经过不同层次的折叠形成高度压缩的规则结构;真核生物RNApol与启动子的结合收染色质结构的限制;真核生物基因转录的活化依赖于染色质重塑(remodeling)2.组蛋白对基因转录活性的影响•组蛋白和转录因子竞争基因的转录调控区。
•非乙酰化组蛋白可以抑制转录,乙酰化组蛋白可以抑制转录。
形成新的组蛋白共价键修饰(去甲基化)可以抑制基因转录活性。
3.DNA甲基化对基因转录活性的影响4.常染色质和异染色质•异染色质比常染色质压缩得更紧,因此异染色质区域的基因转录受到抑制。
二、转录激活因子对转录的影响1.转录激活因子的结构•真核生物的基因转录不仅需要激活染色质,还需要激活基因。
•顺式作用元件:启动子和增强子。
反式作用因子:基础转录因子(basal transcription factors),通用转录因子(general transcription factors)转录激活因子(transactivators)辅激活因子(coactivators)•转录激活因子的结构:DNA结合构域;转录激活结构域;二聚化结构域;效应分子结合位点。
每一个DNA结合结构域都含有一个DNA结合模体(motif)•增强器没有位置限制(从近到远都能看到);无方向性(反转后依然有效)。
真核基因表达调控的特点
真核基因表达调控的特点
真核基因表达调控有以下几个特点:
1. 基因组的复杂性:真核生物的基因组通常比原核生物更大且更复杂。
真核基因组包含多个非编码区域和大量的调控元件,这些元件可以影响基因的表达水平和模式。
2. 转录的调控:真核生物中的基因表达主要通过转录调控来实现。
转录调控包括转录因子的结合和调节,以及染色质状态的改变。
转录因子是一类能够结合到特定DNA序列上并调控相关基因转录的蛋白质。
它们可以增强或抑制基因的转录,从而影响基因表达。
3. 多级调控网络:真核生物中的基因表达调控是一个多级的网络系统。
这个网络包括许多调控元件、转录因子和其他调控蛋白质之间的相互作用。
这些元件和因子可以形成复杂的调控回路和信号传递路径,从而调控基因的表达。
4. 组蛋白修饰:染色质状态的改变在真核基因表达调控中起着重要作用。
染色质是DNA与蛋白质的复合物,通过不同的化学修饰可以改变染色质的结构和可及性,从而影响基因的转录。
常见的染色质修饰包括DNA甲基化、组蛋白乙酰化和甲基化等。
5. RNA后转录调控:除了转录调控外,真核生物中还存在着RNA 后转录调控机制。
这些调控机制包括RNA剪接、RNA编辑和非编码RNA 的功能等。
它们可以影响基因的转录后处理和调控基因表达的多样性。
综上所述,真核基因表达调控具有基因组的复杂性、转录的调控、多级调控网络、组蛋白修饰和RNA后转录调控等特点,这些特点共同
作用来调控基因的表达水平和模式。
原核生物和真核生物基因表达调控复制、转录、翻译特点的比较
原核生物和真核生物基因表达调控、复制、转录、翻译特点的比较1.相同点:转录起始是基因表达调控的关键环节①结构基因均有调控序列;②表达过程都具有复杂性,表现为多环节;③表达的时空性,表现为不同发育阶段和不同组织器官上的表达的复杂性;2.不同点:①原核基因的表达调控主要包括转录和翻译水平。
真核基因的表达调控主要包括染色质活化、转录、转录后加工、翻译、翻译后加工多个层次。
②原核基因表达调控主要为负调控,真核主要为正调控。
③原核转录不需要转录因子,RNA聚合酶直接结合启动子,由sita因子决定基因表的的特异性,真核基因转录起始需要基础特异两类转录因子,依赖DNA-蛋白质、蛋白质-蛋白质相互作用调控转录激活。
④原核基因表达调控主要采用操纵子模型,转录出多顺反子RNA,实现协调调节;真核基因转录产物为单顺反子RNA,功能相关蛋白的协调表达机制更为复杂。
⑤真核生物基因表达调控的环节主要在转录水平,其次是翻译水平。
原核生物基因以操纵子的形式存在。
转录水平调控涉及到启动子、sita因子与RNA聚合酶结合、阻遏蛋白、负调控、正调控蛋白、倒位蛋白、RNA聚合酶抑制物、衰减子等。
翻译水平的调控涉及SD序列、mRNA的稳定性不稳定(5’端和3’端的发夹结构可保护不被酶水解mRNA的5’端与核糖体结合可明显提高稳定性)、翻译产物及小分子RNA的调控作用。
真核生物基因表达的调控环节较多:在DNA水平上可以通过染色体丢失、基因扩增、基因重排、DNA甲基化、染色体结构改变影响基因表达。
在转录水平主要通过反式作用因子调控转录因子与TA TA盒的结合、RNA聚合酶与转录因子-DNA复合物的结合及转录起始复合物的形成。
在转录后水平主要通过RNA修饰、剪接及mRNA运输的控制来影响基因表达。
在翻译水平有影响起始翻译的阻遏蛋白、5’AUG、5’端非编码区长度、mRNA的稳定性调节及小分子RNA。
真核基因调控中最重要的环节是基因转录,真核生物基因表达需要转录因子、启动子、沉默子和增强子。
第八章 真核生物的转录
● 真 核 生 物 转 录 起 始 复 合 物
转录因子 TBP
转录复合体
TAFs
TFIIA TFIIB TFIIF Pol II
TFIIE
RNA pol Ⅱ的转录起始
结构基因
DNA
P
O
Z
Y
A
Z: β-半乳糖苷酶 Y: 透过酶
A:乙酰基转移酶
● 5’ 端无“帽子”结构, 3’ 端没有或只有较短
的poly(A )结构。
SD序列:mRNA中用于结合原核生物核糖体的序列。
2、真核生物mRNA的特征 “基因”的分子生物学定义:产生一条多肽链或 功能RNA所必需的全部核甘酸序列。 ● 5’ 端存在“帽子”结构 ●多数mRNA 3’ 端具有poly(A )尾巴(组蛋白除外) ●以单顺反子的形式存在
原核生物和真核生物mRNA结构的比较
五、RNA合成与DNA合成异同点
相同点:
1、都以DNA链作为模板
2、合成的方向均为5’→3’
3、聚合反应均是通过核苷酸之间形成的3’,5’-磷 酸 二酯键,使核苷酸链延长。
不同点:
模板 原料
酶 产物
复制 两条链均复制 dNTP
DNA聚合酶 子代双链DNA (半保留复制) A-T;G-C RNA引物
增强子的作用方式
2. 通用转录因子
能直接、间接辨认和结合转录上游区段
DNA的蛋白质,统称为反式作用因子(transacting factors) ,现已发现数百种 。 反式作用因子中,直接或间接结合RNA
真核生物的基因调控
第八讲真核生物的基因调控一、真核生物的基因结构特点①在真核细胞中,一条成熟的mRNA链只能翻译出一条多肽链,不存在原核生物中常见的多基因操纵子形式。
②真核细胞DNA都与组蛋白和大量非组蛋白相结合,只有一小部分DNA 是裸露的。
③高等真核细胞DNA中很大部分是不转录的,大部分真核细胞的基因中间还存在不被翻译的内含子。
④真核生物能够有序地根据生长发育阶段的需要进行DNA片段重排,还能在需要时增加细胞内某些基因的拷贝数。
⑤在真核生物中,基因转录的调节区相对较大,它们可能远离启动子达几百个甚至上千个碱基对,这些调节区一般通过改变整个所控制基因5'上游区DNA构型来影响它与RNA聚合酶的结合能力。
在原核生物中,转录的调节区都很小,大都位于启动子上游不远处,调控蛋白结合到调节位点上可直接促进或抑RNA聚合酶与它的结合。
⑥真核生物的RNA在细胞核中合成,只有经转运穿过核膜,到达细胞质后,才能被翻译成蛋白质,原核生物中不存在这样严格的空间间隔。
⑦许多真核生物的基因只有经过复杂的成熟和剪接过程(maturation and splicing),才能顺利地翻译成蛋白质。
二、真核生物的转录特点原核生物中,密切相关的基因往往组成操纵子,并且以多顺反子mRNA 的方式进行转录,整个体系置于一个启动子的控制之下。
真核生物的DNA 是单顺反子,很少有置于一个启动子的控制之下的操纵子。
真核生物中许多相关的基因按功能成套组合,被称为基因家族(gene family)。
1、基因家族一组功能相似且核苷酸序列具有同源性的基因。
可能由某一共同祖先基因(ancestral gene)经重复(duplication)和突变产生。
基因家族的特点:①基因家族的成员可以串联排列在一起,形成基因簇(gene cluster)或串联重复基因(tandemly repeated genes),它们可同时发挥作用,合成某些蛋白质,如rRNA、tRNA和组蛋白的基因;②有些基因家族的成员也可位于不同的染色体上,这些不同成员编码一组功能上紧密相关的蛋白质,如珠蛋白基因;③有些成员不产生有功能的基因产物,这种基因称为假基因(Pseudogene)。
真核生物dna 转录的特点
真核生物dna 转录的特点真核生物DNA转录是指在真核生物细胞中,DNA作为模板合成RNA的过程。
在这个过程中,DNA的信息被转录为RNA分子,这些RNA分子可以进一步被翻译为蛋白质。
真核生物DNA转录具有以下几个特点:1. 包含多个转录因子:真核生物DNA转录需要多个转录因子的参与。
其中最重要的是RNA聚合酶,它是一个复合酶,由多个亚单位组成。
RNA聚合酶能够识别DNA上的启动子序列,并在该位置开始合成RNA链。
2. 转录起始位点的多样性:在真核生物DNA上,一个基因通常含有多个外显子和内含子。
DNA转录时,RNA聚合酶结合到基因的启动子上,并在转录起始位点开始合成RNA链。
但是,不同基因的转录起始位点位置可能不同,甚至一个基因内的不同转录变体也可能有不同的转录起始位点。
3. 转录后修饰:真核生物DNA转录产生的RNA分子不同于细菌中的mRNA,需要经过转录后修饰才能成为成熟的mRNA。
这些转录后修饰包括剪接、5'帽子的添加、3'端的聚腺苷酸尾巴的添加等。
这些修饰能够增加RNA的稳定性、调控其翻译和定位等。
4. 转录调控:真核生物DNA转录的过程受到多种调控因素的影响。
其中一个重要的调控因素是转录因子。
转录因子是能够结合到DNA上的特定序列上,并调控基因转录的蛋白质。
转录因子可以促进或抑制RNA聚合酶的结合和转录活性。
5. 转录后的RNA处理:真核生物DNA转录产生的RNA分子还需要经过一系列的RNA处理过程。
这些处理过程包括RNA剪接、RNA修饰和RNA运输等。
RNA剪接是指将转录后的RNA链中的内含子剪除,并将外显子连接起来。
这样可以产生不同的转录变体,增加基因的功能多样性。
6. 转录速度:真核生物DNA转录的速度相对较慢,通常为几十到几百个核苷酸每分钟。
这是因为真核生物DNA转录需要多个转录因子的参与,并且还要经过转录后修饰等复杂过程。
相比之下,细菌中的DNA转录速度较快,可以达到几千个核苷酸每分钟。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
真核生物RNA的转录与原核生物RNA的转录过程在总体上基本相同,但是,其过程要复杂得多,主要有以下几点不同(图3-27)。
⒈真核生物RNA的转录是在细胞核内进行的,而蛋白质的合成则是在细胞质内进行的。
所以,RNA转录后首先必须从核内运输到细胞质内,才能指导蛋白质的合成。
⒉真核生物一个mRNA分子一般只含有一个基因,原核生物的一个mRNA分子通常含有多个基因,而除少数较低等真核生物外,一个mRNA分子一般只含有一个基因,编码一条多态链。
⒊真核生物RNA聚合酶较多在原核生物中只有一种RNA聚合酶,催化所有RNA的合成,而在真核生物中则有RNA聚合酶Ⅰ、RNA聚合酶Ⅱ和RNA聚合酶Ⅲ三种不同酶,分别催化不同种类型RNA的合成。
三种RNA聚合酶都是由10个以上亚基组成的复合酶。
RNA聚合酶Ⅰ存在于细胞核内,催化合成除5SrRNA 以外的所有rRNA的合成;RNA聚合酶Ⅱ催化合成mRNA前体,即不均一核RNA(hnRNA)的合成;RNA 聚合酶Ⅲ催化tRNA和小核RNA的合成。
⒋真核生物RNA聚合酶不能独立转录RNA 。
原核生物中RNA聚合酶可以直接起始转录合成RNA ,真核生物则不能。
在真核生物中,三种RNA聚合酶都必须在蛋白质转录因子的协助下才能进行RNA的转录。
另外,RNA聚合酶对转录启动子的识别,也比原核生物更加复杂,如对RNA聚合酶Ⅱ来说,至少有三个DNA的保守序列与其转录的起始有关,第一个称为TATA框(TATA box),具有共有序列TATAAAA,其位置在转录起始点的上游约为25个核苷酸处,它的作用可能与原核生物中的-10共有序列相似,与转录起始位置的确定有关。
第二个共有序列称为CCAAT框(CCAAT box),具有共有序列GGAACCTCT,位于转录起始位置上游约为50-500个核苷酸处。
如果该序列缺失会极大地降低生物的活体转录水平。
第三个区域一般称为增强子(enhancer),其位置可以在转录起始位置的上游,也可以在下游或者在基因之内。
它虽不直接与转录复合体结合,但可以显著提高转录效率。