弹性力学简明教程(第四版)_第三章_课后作业题答案
弹性力学简明教程_课后习题解答

弹性力学简明教程(第四版)课后习题解答徐芝纶第一章绪论【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体?【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。
【解答】均匀的各项异形体如:竹材,木材。
非均匀的各向同性体如:混凝土。
【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体?【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。
【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。
【1-3】五个基本假定在建立弹性力学基本方程时有什么作用?【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。
引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。
因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。
完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。
这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。
均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。
各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。
小变形假定:假定位移和变形是微小的。
亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。
弹性力学简明习题提示与参考答案

题提示和答案《弹性力学简明教程》习题提示和参考答案第二章习题的提示与答案2-1 是2-2 是2-3 按习题2-1分析。
2-4 按习题2-2分析。
2-5 在的条件中,将出现2、3阶微量。
当略去3阶微量后,得出的切应力互等定理完全相同。
2-6 同上题。
在平面问题中,考虑到3阶微量的精度时,所得出的平衡微分方程都相同。
其区别只是在3阶微量(即更高阶微量)上,可以略去不计。
2-7 应用的基本假定是:平衡微分方程和几何方程─连续性和小变形,物理方程─理想弹性体。
2-8 在大边界上,应分别列出两个精确的边界条件;在小边界(即次要边界)上,按照圣维南原理可列出3个积分的近似边界条件来代替。
2-9 在小边界OA边上,对于图2-15(a)、(b)问题的三个积分边界条件相同,因此,这两个问题为静力等效。
2-10 参见本章小结。
2-11 参见本章小结。
2-12 参见本章小结。
2-13 注意按应力求解时,在单连体中应力分量必须满足(1)平衡微分方程,(2)相容方程,(3)应力边界条件(假设)。
2-14 见教科书。
2-15 见教科书。
2-16 见教科书。
2-17 取它们均满足平衡微分方程,相容方程及x=0和的应力边界条件,因此,它们是该问题的正确解答。
2-18 见教科书。
2-19 提示:求出任一点的位移分量和,及转动量,再令,便可得出。
第三章习题的提示与答案3-1 本题属于逆解法,已经给出了应力函数,可按逆解法步骤求解:(1)校核相容条件是否满足,(2)求应力,(3)推求出每一边上的面力从而得出这个应力函数所能解决的问题。
3-2 用逆解法求解。
由于本题中 l>>h, x=0,l 属于次要边界(小边界),可将小边界上的面力化为主矢量和主矩表示。
3-3 见3-1例题。
3-4 本题也属于逆解法的问题。
首先校核是否满足相容方程。
再由求出应力后,并求对应的面力。
本题的应力解答如习题3-10所示。
应力对应的面力是:主要边界:所以在边界上无剪切面力作用。
弹性力学简明教程(第四版)_课后习题解答

弹性力学简明教程(第四版)课后习题解答之答禄夫天创作徐芝纶第一章绪论【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体?【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。
【解答】均匀的各项异形体如:竹材,木材。
非均匀的各向同性体如:混凝土。
【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体?【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。
【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不成以作为理想弹性体。
【1-3】五个基本假定在建立弹性力学基本方程时有什么作用?【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。
引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。
因此,建立弹性力学的基本方程时就可以用坐标的连续函数来暗示他们的变更规律。
完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。
这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。
均匀性假定:假定物体是均匀的,即整个物体是由同一资料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变更。
各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。
小变形假定:假定位移和变形是微小的。
亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。
弹性力学简明教程(第四版)课后习题解答

弹性力学简明教程(第四版)课后习题解答正,沿坐标轴的正方向为负。
面力的符号规定是:当面力的指向沿坐标轴的正方向时为正,沿坐标轴的负方向为负。
由下图可以看出,正面上应力分量与面力分量同号,负面上应力分量与面力分量符号相反。
正的应力正的面力【1-5】试比较弹性力学和材料力学中关于切应力的符号规定。
【解答】材料力学中规定切应力符号以使研究对象顺时针转动的切应力为正,反之为负。
弹性力学中规定,作用于正坐标面上的切应力以沿坐标轴的正方向为正,作用于负坐标面上的切应力以沿坐标轴负方向为正,反之为负。
【1-6】试举例说明正的应力对应于正的形变。
【解答】正的应力包括正的正应力与正的切应力,正的形变包括正的正应变与正的切应变,本题应从两方面解答。
正的正应力对应于正的正应变:轴向拉伸情况下,产生轴向拉应力为正的应力,引起轴向伸长变形,为正的应变。
正的切应力对应于正的切应变:在如图所示应力状态情况下,切应力均为正的切应力,引起直角减小,故为正的切应变。
【1-7】试画出图1-4中矩形薄板的正的体力、面力和应力的方向。
【解答】正的体力、面力正的体力、应力【1-8】试画出图1-5中三角形薄板的正的面力和体力的方向。
【解答】【1-9】在图1-3的六面体上,y 面上切应力yz τ的合力与z 面上切应力zy τ的合力是否相等?【解答】切应力为单位面上的力,量纲为12L MT --,单位为2/N m 。
因此,应力的合力应乘以相应的面积,设六面体微元尺寸如dx ×dy ×dz ,则y 面上切应力yzτ的合力为:xyz dx dzτ⋅⋅(a)z面上切应力zyτ的合力为:zy dx dyτ⋅⋅(b)由式(a)(b)可见,两个切应力的合力并不相等。
【分析】作用在两个相互垂直面上并垂直于该两面交线的切应力的合力不相等,但对某点的合力矩相等,才导出切应力互等性。
第一章 平面问题的基本理论【2-1】试分析说明,在不受任何面力作用的空间体表面附近的薄层中(图2-14)其应力状态接近于平面应力的情况。
弹性力学简明教程(第四版)_课后习题解答汇总

弹性力学简明教程(第四版)课后习题解答徐芝纶第一章绪论【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体?【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。
【解答】均匀的各项异形体如:竹材,木材。
非均匀的各向同性体如:混凝土。
【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体?【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。
【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。
【1-3】五个基本假定在建立弹性力学基本方程时有什么作用?【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。
引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。
因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。
完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。
这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。
均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。
各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。
小变形假定:假定位移和变形是微小的。
亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。
[2018年最新整理]弹性力学简明教程(第四版)-课后习题解答(2021年整理精品文档)
![[2018年最新整理]弹性力学简明教程(第四版)-课后习题解答(2021年整理精品文档)](https://img.taocdn.com/s3/m/a14d9867b9d528ea81c779ec.png)
(完整)[2018年最新整理]弹性力学简明教程(第四版)-课后习题解答编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)[2018年最新整理]弹性力学简明教程(第四版)-课后习题解答)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)[2018年最新整理]弹性力学简明教程(第四版)-课后习题解答的全部内容。
【3-1】为什么在主要边界(大边界)上必须满足精确的应力边界条件式(2—15),而在小边界上可以应用圣维南原理,用三个积分的应力边界条件(即主矢量、主矩的条件)来代替?如果在主要边界上用三个积分的应力边界条件代替式(2-15),将会发生什么问题?【解答】弹性力学问题属于数学物理方程中的边值问题,而要使边界条件完全得到满足,往往比较困难。
这时,圣维南原理可为简化局部边界上的应力边界条件提供很大的方便。
将物体一小部分边界上的面力换成分布不同,但静力等效的面力(主矢、主矩均相同),只影响近处的应力分布,对远处的应力影响可以忽略不计。
如果在占边界绝大部分的主要边界上用三个积分的应力边界条件来代替精确的应力边界条件(公式2—15),就会影响大部分区域的应力分布,会使问题的解答精度不足。
【3-2】如果在某一应力边界问题中,除了一个小边界条件,平衡微分方程和其它的应力边界条件都已满足,试证:在最后的这个小边界上,三个积分的应力边界条件必然是自然满足的,固而可以不必校核。
【解答】区域内的每一微小单元均满足平衡条件,应力边界条件实质上是边界上微分体的平衡条件,即外力(面力)与内力(应力)的平衡条件。
研究对象整体的外力是满足平衡条件的,其它应力边界条件也都满足,那么在最后的这个次要边界上,三个积分的应力边界条件是自然满足的,因而可以不必校核。
弹性力学简明教程(第四版)_课后习题解答

弹性力学简明教程(第四版)课后习题解答之巴公井开创作徐芝纶第一章绪论【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体?【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定.【解答】均匀的各项异形体如:竹材,木材.非均匀的各向同性体如:混凝土.【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体?【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定.【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不成以作为理想弹性体.【1-3】五个基本假定在建立弹性力学基本方程时有什么作用?【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙.引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的.因此,建立弹性力学的基本方程时就可以用坐标的连续函数来暗示他们的变动规律.完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变.这一假定,还包括形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的年夜小而变.均匀性假定:假定物体是均匀的,即整个物体是由同一资料组成的,引用这一假定后整个物体的所有各部份才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变动.各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变.小变形假定:假定位移和变形是微小的.亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1.这样在建立物体变形以后的平衡方程时,就可以方便的用变形以前的尺寸来取代变形以后的尺寸.在考察物体的位移与形变的关系时,它们的二次幂或乘积相对其自己都可以略去不计,使得弹性力学中的微分方程都简化为线性的微分方程.【1-4】应力和面力的符号规定有什么区别?试画出正坐标面和负坐标面上的正的应力和正的面力的方向.【解答】应力的符号规定是:看成用面的外法线方向指向坐标轴方向时(即正面时),这个面上的应力(不论是正应力还是切应力)以沿坐标轴的正方向为正,沿坐标轴的负方向为负.看成用面的外法线指向坐标轴的负方向时(即负面时),该面上的应力以沿坐标轴的负方向为正,沿坐标轴的正方向为负.面力的符号规定是:当面力的指向沿坐标轴的正方向时为正,沿坐标轴的负方向为负.由下图可以看出,正面上应力分量与面力分量同号,负面上应力分量与面力分量符号相反.正的应力正的面力【1-5】试比力弹性力学和资料力学中关于切应力的符号规定.【解答】资料力学中规定切应力符号以使研究对象顺时针转动的切应力为正,反之为负.弹性力学中规定,作用于正坐标面上的切应力以沿坐标轴的正方向为正,作用于负坐标面上的切应力以沿坐标轴负方向为正,反之为负.【1-6】试举例说明正的应力对应于正的形变.【解答】正的应力包括正的正应力与正的切应力,正的形变包括正的正应变与正的切应变,本题应从两方面解答.正的正应力对应于正的正应变:轴向拉伸情况下,发生轴向拉应力为正的应力,引起轴向伸长变形,为正的应变.正的切应力对应于正的切应变:在如图所示应力状态情况下,切应力均为正的切应力,引起直角减小,故为正的切应变.【1-7】试画出图1-4中矩形薄板的正的体力、面力和应力的方向.【解答】正的体力、面力 正的体力、应力【1-8】试画出图1-5中三角形薄板的正的面力和体力的方向. 【解答】【1-9】在图1-3的六面体上,y 面上切应力yz τ的合力与z 面上切应力zy τ的合力是否相等?【解答】切应力为单位面上的力,量纲为12L MT --,单位为2/N m .因此,应力的合力应乘以相应的面积,设六面体微元尺寸如dx×dy×dz,则y 面上切应力yz τ的合力为:yz dx dz τ⋅⋅ (a)z 面上切应力zy τ的合力为:zy dx dy τ⋅⋅ (b)由式(a )(b)可见,两个切应力的合力其实不相等.【分析】作用在两个相互垂直面上并垂直于该两面交线的切应力的合力不相等,但对某点的合力矩相等,才导出切应力互等性.第二章平面问题的基本理论【2-1】试分析说明,在不受任何面力作用的空间体概况附近的薄层中(图2-14)其应力状态接近于平面应力的情况.【解答】在不受任何面力作用的空间概况附近的薄层中,可以认为在该薄层的上下概况都无面力,且在薄层内所有各点都有0===z xz yz σττ,只存在平面应力分量,,x y xy σστ,且它们不沿z 方向变动,仅为x,y 的函数.可以认为此问题是平面应力问题.【2-2】试分析说明,在板面上处处受法向约束且不受切向面力作用的等厚度薄片中(2-15),当板边上只受x,y 向的面力或约束,且不沿厚度变动时,其应变状态接近于平面应变的情况.【解答】板上处处受法向约束时0z ε=,且不受切向面力作用,则0xz yz γγ==(相应0zx zy ττ==)板边上只受x,y 向的面力或约束,所以仅存在,,x y xy εεγ,且不沿厚度变动,仅为x,y 的函数,故其应变状态接近于平面应变的情况.【2-3】在图2-3的微分体中,若将对形心的力矩平很条件C M 0=∑改为对角点的力矩平衡条件,试问将导出什么形式的方程?【解答】将对形心的力矩平衡条件C M 0=∑,改为分别对四个角点A 、B 、D 、E 的平衡条件,为计算方便,在z 方向的尺寸取为单位1.0AM=∑1()1()11222()1()1110222xy x y x xy y y yx y yx x x dx dy dydx dx dy dx dy dx dy x x dx dy dx dy dx dy dx dy f dxdy f dxdy y y τσσστσστστ∂∂⋅⋅++⋅⋅-+⋅⋅-⋅⋅∂∂∂∂-+⋅⋅++⋅⋅+⋅⋅-⋅⋅=∂∂(a)0BM=∑Ozy()1()1()1221111102222yx y x x yx y xy x y x y dy dxdx dy dy dx dy dy dx x y y dy dx dy dxdy dx dy dx f dxdy f dxdy τσσστστσσ∂∂∂+⋅⋅++⋅⋅++⋅⋅∂∂∂-⋅⋅-⋅⋅-⋅⋅+⋅⋅+⋅⋅= (b)0DM=∑()1111221()11102222yy xy x yx x x x x y dx dydy dx dy dx dy dx dyy dx dy dy dxdx dx dy f dxdy f dxdy x σστστσσσ∂+⋅⋅-⋅⋅+⋅⋅+⋅⋅∂∂-⋅⋅-+⋅⋅-⋅⋅+⋅⋅=∂(c)0EM=∑()1111222()1()1110222yy x yx y xy x x xy x y dx dy dxdy dx dy dx dy dx y dy dy dxdx dy dx dy dx f dxdy f dxdy x x σσστστσστ∂-+⋅⋅+⋅⋅+⋅⋅+⋅⋅-∂∂∂+⋅⋅-+⋅⋅-⋅⋅+⋅⋅=∂∂ (d)略去(a)、(b)、(c)、(d)中的三阶小量(亦即令22,d xdy dxd y 都趋于0),并将各式都除以dxdy 后合并同类项,分别获得xy yx ττ=.【分析】由本题可得出结论:微分体对任一点取力矩平衡获得的结果都是验证了切应力互等定理.【2-4】在图2-3和微分体中,若考虑每一面上的应力分量不是均匀分布的,验证将导出什么形式的平衡微分方程?【解答】微分单位体ABCD 的边长,dx dy 都是微量,因此可以假设在各面上所受的应力如图a 所示,忽略了二阶以上的高阶微量,而看作是线性分布的,如图(b )所示.为计算方便,单位体在z 方向的尺寸取为一个单位.y)Cy)C(a) (b)各点正应力:()=x A x σσ;()=y A y σσ ()xx B x dy yσσσ∂=+∂;()y y B y dy y σσσ∂=+∂()∂=+∂x x D x dx x σσσ;()∂=+∂xy D y dx xσσσ ()∂∂=++∂∂∂x x x C x dx y x yσσσσ; ()∂∂=++∂∂∂y y y C y dx y xyσσσσ各点切应力:()xy A xy ττ=; ()yx A yx ττ= ()∂=+∂xy xy B xy dy yτττ;()∂=+∂yx yx A yx dy y τττ()xy xy D xy dx xτττ∂=+∂;()∂=+∂yx yx D yx dx xτττ()xy xy xy C xy dx dy xyττττ∂∂=++∂∂;()∂∂=++∂∂yx yx yx C yx dx dy xyττττ由微分单位体的平衡条件 0,∑=x F 0,∑=y F 得112211+22x x x x x x x x yx yx yx yx yx yx yx yx dy dy dx dx dy dy y x x y y dx dx dy dx dy x y x y σσσσσσσστττττττ⎧⎧⎫⎫⎡⎤⎡⎤⎛⎫⎛⎫∂∂∂∂⎪⎪⎪⎪⎛⎫-+++++++-⎨⎬⎨⎬⎢⎥⎢⎥ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎪⎪⎣⎦⎣⎦⎪⎪⎭⎭⎩⎩⎧⎫⎡∂⎤⎡∂∂∂⎤⎛⎫⎛⎫⎛⎫⎪⎪++++++⎨⎬⎢⎥⎢⎥ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎪⎣⎦⎣⎦⎪⎭⎩0x dx f dxdy ⎧⎫⎪⎪+=⎨⎬⎪⎪⎭⎩112211+++22y y y y y y y y xy xy xy xy xy xy xy xydx dx dy dx dy dx x y x y dy dy dx dy dx y x y x σσσσσσσσττττττττ⎧⎧⎫⎫⎡∂⎤⎡∂∂∂⎤⎛⎫⎛⎫⎛⎫⎪⎪⎪⎪-+++++++-⎨⎬⎨⎬⎢⎥⎢⎥ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎪⎪⎣⎦⎣⎦⎪⎪⎭⎭⎩⎩⎧⎫⎡∂⎤⎡∂∂∂⎤⎛⎫⎛⎫⎛⎫⎪⎪++++⎨⎬⎢⎥⎢⎥ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎪⎣⎦⎣⎦⎪⎭⎩0y dy f dxdy ⎧⎫⎪⎪+=⎨⎬⎪⎪⎭⎩以上二式分别展开并约简,再分别除以dxdy ,就获得平面问题中的平衡微分方程:0;0yxy xy x x y f f x y y x τστσ∂∂∂∂++=++=∂∂∂∂【分析】由本题可以得出结论:弹性力学中的平衡微分方程适用于任意的应力分布形式.【2-5】在导出平面问题的三套基本方程时,分别应用了哪些基本假定?这些方程的适用条件是什么?【解答】(1)在导出平面问题的平衡微分方程和几何方程时应用的基本假设是:物体的连续性和小变形假定,这两个条件同时也是这两套方程的适用条件.(2)在导出平面问题的物理方程时应用的基本假定是:连续性,完全弹性,均匀性和各向同性假定,即理想弹性体假定.同样,理想弹性体的四个假定也是物理方程的使用条件.【思考题】平面问题的三套基本方程推导过程中都用到了哪个假定? 【2-6】在工地上技术人员发现,当直径和厚度相同的情况下,在自重作用下的钢圆环(接近平面应力问题)总比钢圆筒(接近平面应变问题)的变形年夜.试根据相应的物理方程来解释这种现象.【解答】体力相同情况下,两类平面问题的平衡微分方程完全相同,故所求的应力分量相同.由物理方程可以看出,两类平面问题的物理方程主要的区别在于方程中含弹性常数的系数.由于E 为GPa 级另外量,而泊松比μ取值一般在(0,0.5),故主要控制参数为含有弹性模量的系数项,比力两类平面问题的系数项,不难看出平面应力问题的系数1/E 要年夜于平面应变问题的系数()21/-E μ.因此,平面应力问题情况下应变要年夜,故钢圆环变形年夜.【2-7】在常体力,全部为应力鸿沟条件和单连体的条件下,对分歧资料的问题和两类平面问题的应力分量x σ,y σ和xy τ均相同.试问其余的应力,应变和位移是否相同?【解答】(1)应力分量:两类平面问题的应力分量x σ,y σ和xy τ均相同,但平面应力问题0z yz xz σττ===,而平面应变问题的()0,xz yz z x y ττσμσσ===+.(2)应变分量:已知应力分量求应变分量需要应用物理方程,而两类平面问题的物理方程不相同,故应变分量0,xz yz xy γγγ==相同,而,,x y z εεε不相同.(3)位移分量:由于位移分量要靠应变分量积分来求解,故位移分量对两类平面问题也分歧.【2-8】在图2-16中,试导出无面力作用时AB 鸿沟上的xy ,,x y σστ之间的关系式【解答】由题可得:()()()cos ,cos 90sin 0,0x y l m f AB f AB ααα==-===将以上条件代入公式(2-15),得:()()()()()2cos sin 0, sin ()cos 0()tan tan x yx y xy AB AB AB AB x AB yx y ABABσατασαταστασα+=+=⇒=-=【2-9】试列出图2-17,图2-18所示问题的全部鸿沟条件.在其端部小鸿沟上,应用圣维南原理列出三个积分的应力鸿沟条件.xM图2-17图2-18【分析】有约束的鸿沟上可考虑采纳位移鸿沟条件,若为小鸿沟也可写成圣维南原理的三个积分形式,年夜鸿沟上应精确满足公式(2-15).【解答】图2-17:上(y=0)左(x=0) 右(x=b )l0 -1 1 m-1()x f s()1g y h ρ+()1g y h ρ-+() y f s1gh ρ代入公式(2-15)得①在主要鸿沟上x=0,x=b 上精确满足应力鸿沟条件:()()100(),0;===-+=x xy x x g y h σρτ ()()1b b (),0;===-+=x xy x x g y h σρτ②在小鸿沟0y =上,能精确满足下列应力鸿沟条件:()(),0yxy y y gh σρτ===-=③在小鸿沟2y h =上,能精确满足下列位移鸿沟条件:()()220,0====y hy h u v这两个位移鸿沟条件可以应用圣维南原理,改用三个积分的应力鸿沟条件来取代,当板厚=1δ时,可求得固定端约束反力分别为:10,,0s N F F ghb M ρ==-=由于2y h =为正面,故应力分量与面力分量同号,则有:()()()222100000b y y h by y h bxy y h dx gh b xdx dx σρστ===⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩⎰⎰⎰ ⑵图2-18①上下主要鸿沟y=-h/2,y=h/2上,应精确满足公式(2-15)lmx f (s)y f (s)2h y =-0 -1 0 q2h y =1-1q-/2()y y h q σ==-,-/2()0yx y h τ==,/2()0y y h σ==,/21()yx y h q τ==-②在x =0的小鸿沟上,应用圣维南原理,列出三个积分的应力鸿沟条件:负面上应力与面力符号相反,有/20/2/20/2/20/2()()()h xy x Sh h x x N h h x x h dx Fdx F ydx M τσσ=-=-=-⎧=-⎪⎪=-⎨⎪⎪=-⎩⎰⎰⎰ ③在x=l 的小鸿沟上,可应用位移鸿沟条件0,0====l x l x v u 这两个位移鸿沟条件也可改用三个积分的应力鸿沟条件来取代.首先,求固定端约束反力,按面力正方向假设画反力,如图所示,列平衡方程求反力:M'110,xN NN N F F F q l F q l F ''=+=⇒=-∑ 0,0yS S S S FF F ql F ql F ''=++=⇒=--∑2211110,'02222A S S q lh ql M M M F l ql q lh M M F l =+++-=⇒=---∑由于x=l 为正面,应力分量与面力分量同号,故/21/22/21/2/2/2()()22()h x x l N Nh h x x l S h h xy x l S Sh dy F q l Fq lh ql ydy M M F l dy F ql Fσστ=-=-=-⎧'==-⎪⎪⎪'==---⎨⎪⎪'==--⎪⎩⎰⎰⎰【2-10】试应用圣维南原理,列出图2-19所示的两个问题中OA 边上的三个积分的应力鸿沟条件,并比力两者的面力是否是是静力等效?【解答】由于hl ,OA 为小鸿沟,故其上可用圣维南原理,写出三个积分的应力鸿沟条件:(a)上端面OA 面上面力q bxf f y x ==,0由于OA 面为负面,故应力主矢、主矩与面力主矢、主矩符号相反,有()()()0000200000022120bb b y y y b b b y y y byx y x qb dx f dx qdx b x b qb xdx f xdx q x dx b dx σστ===⎧=-=-=-⎪⎪⎪⎛⎫=-=-=⎨ ⎪⎝⎭⎪⎪=⎪⎩⎰⎰⎰⎰⎰⎰⎰(对OA 中点取矩) (b)应用圣维南原理,负面上的应力主矢和主矩与面力主矢和主矩符号相反,面力主矢y 向为正,主矩为负,则()()()00200002120by N y by y b xy y qb dx F qb xdx M dx σστ===⎧=-=-⎪⎪⎪=-=⎨⎪⎪=⎪⎩⎰⎰⎰2qb212qb 图2-19综上所述,在小鸿沟OA 上,两个问题的三个积分的应力鸿沟条件相同,故这两个问题是静力等效的.【2-11】检验平面问题中的位移分量是否为正确解答的条件是什么? 【解答】(1)在区域内用位移暗示的平衡微分方程式(2-18); (2)在s 上用位移暗示的应力鸿沟条件式(2-19); (3)在u s 上的位移鸿沟条件式(2-14); 对平面应变问题,需将E 、μ作相应的变换.【分析】此问题同时也是按位移求解平面应力问题时,位移分量必需满足的条件.【2-12】检验平面问题中的应力分量是否为正确解答的条件是什么? 【解答】(1)在区域A 内的平衡微分方程式(2-2);(2)在区域A 内用应力暗示的相容方程式(2-21)或(2-22);(3)在鸿沟上的应力鸿沟条件式(2-15),其中假设只求解全部为应力鸿沟条件的问题;(4)对多连体,还需满足位移单值条件.【分析】此问题同时也是按应力求解平面问题时,应力分量必需满足的条件. 【补题】检验平面问题中的应变分量是否为正确解答的条件是什么? 【解答】用应变暗示的相容方程式(2-20)【2-13】检验平面问题中的应力函数是否为正确解答的条件是什么? 【解答】(1)在区域A 内用应力函数暗示的相容方程式(2-25); (2)在鸿沟S 上的应力鸿沟条件式(2-15),假设全部为应力鸿沟条件; (3)若为多连体,还需满足位移单值条件. 【分析】此问题同时也是求解应力函数的条件. 【2-14】检验下列应力分量是否是图示问题的解答:y图2-20 图2-21(a )图2-20,22xy q b ,0==y xyστ. 【解答】在单连体中检验应力分量是否是图示问题的解答,必需满足:(1)平衡微分方程(2-2);(2)用应力暗示的相容方程(2-21);(3)应力鸿沟条件(2-15).(1)将应力分量代入平衡微分方程式,且0==x y f f0∂∂+=∂∂yx x x y τσ0∂∂+=∂∂y xyy xστ 显然满足 (2)将应力分量代入用应力暗示的相容方程式(2-21),有等式左=()2222x y x y σσ⎛⎫∂∂++ ⎪∂∂⎝⎭=220≠qb =右应力分量不满足相容方程.因此,该组应力分量不是图示问题的解答.(b )图2-21,由资料力学公式,=x M y I σ,*=s xy F S bIτ(取梁的厚度b=1),得出所示问题的解答:332=-x x y q lh σ,22233-(4)4=-xy q x h y lh τ.又根据平衡微分方程和鸿沟条件得出:333222=--y q xy xy q xq lh lh lσ.试导出上述公式,并检验解答的正确性. 【解答】(1)推导公式在分布荷载作用下,梁发生弯曲形变,梁横截面是宽度为1,高为h 的矩形,其对中性轴(Z 轴)的惯性矩312=h I ,应用截面法可求出任意截面的弯矩方程和剪力方程()23(),62=-=-q qx M x x F x l l.所以截面内任意点的正应力和切应力分别为:()332==-x M x x yy q I lhσ()()2222233431.424⎛⎫=-=-- ⎪⎝⎭s xy F x y q x h y bh h lh τ. 根据平衡微分方程第二式(体力不计).0∂∂+=∂∂y xy yxστ得:333.22=-+y q xy xy q A lh lhσ 根据鸿沟条件()/20==yy h σ得q .2=-x A l故 333.2.22=--y q xy xy q xq lh lh lσ将应力分量代入平衡微分方程(2-2) 第一式:22336.60x y x yq q lh lh=-+==左右 满足第二式 自然满足 将应力分量代入相容方程(2-23)()22223312.12.0⎛⎫∂∂=++=--≠= ⎪∂∂⎝⎭左右x y xy xyq q x y lh lh σσ应力分量不满足相容方程.故,该分量组分量不是图示问题的解答.【2-15】试证明:在发生最年夜与最小切应力的面上,正应力的数值都即是两个主应力的平均值.【解答】(1)确定最年夜最小切应力发生位置任意斜面上的切应力为()21n lm τσσ=-,用关系式221l m +=消去m,得)))212121n τσσσσσσ=±-=-=-由上式可见那时2102l -=,即l =时,n τ为最年夜或最小,为 ()12max min2n σστ-=±.因此,切应力的最年夜,最小值发生在与x 轴及y 轴(即应力主向)成45°的斜面上.(2)求最年夜,最小切应力作用面上,正应力n σ的值任一斜面上的正应力为()2122n l σσσσ=-+最年夜、最小切应力作用面上2/1±=l ,带入上式,得()()122121122n σσσσσσ=-+=+ 证毕.【2-16】设已求得一点处的应力分量,试求112,,σσα()100,50,)2000,400;x y xy x y xy a b σστσστ======-,()20001000400; ()1000,1500,500.x y xy x y xy c d σστσστ=-==-=-=-=,,【解答】由公式(2-6)122x y σσσσ+⎫=⎬⎭11tan x xy σσατ-=,得11arctan x xy σσατ-= (a)121501005002σσ⎫⎧+=±=⎬⎨⎩⎭13516'α==︒(b)1251220003122σσ⎫⎧+==⎬⎨-⎩⎭()1512200arctanarctan 0.783757'400α-==-=-︒-(c)1210522000100020522σσ⎫⎧-+=±=⎬⎨-⎩⎭()110522000arctanarctan 7.388232'400α+==-=-︒-(d)126911000150018092σσ-⎫⎧--=±=⎬⎨-⎩⎭16911000arctanarctan 0.6183143'500α-+===︒【2-17】设有任意形状的等待厚度薄板,体力可以不计,在全部鸿沟上(包括孔口鸿沟上)受有均匀压力q.试证-xyq及0xy τ=能满足平衡微分方程、相容方程和应力鸿沟条件,也能满足位移单值条件,因而就是正确的解答.【解答】(1)将应力分量,0x y xy q σστ==-=,和体力分量0x y f f ==分别带入平衡微分方程、相容方程00xyx x y xy yf x y f yx τσστ∂⎧∂++=⎪∂∂⎪⎨∂∂⎪++=⎪∂∂⎩ (a ) ()20x y σσ∇+= (b )显然满足(a )(b )(2)对微小的三角板A,dx,dy 都为正值,斜边上的方向余弦()()cos ,,cos ,l n x m n y ==,将-,0x y xy q σστ===,代入平面问题的应力鸿沟条件的表达式(2-15),且()()-cos ,,cos ,x y f q n x f q n y ==,则有()()()()cos ,cos ,,cos ,cos ,x y n x q n x n y q n y σσ=-=-所以,x y q q σσ=-=-.对单连体,上述条件就是确定应力的全部条件. (3)对多连体,应校核位移单值条件是否满足.该题为平面应力情况,首先,将应力分量代入物理方程(2-12),得形变分量,(1)(1),,0x y xy q q E Eμμεεγ---=== (d )将(d )式中形变分量代入几何方程(2-8),得=,=,0u v v u q q x y x yμμ∂∂∂∂+=∂∂∂∂(-1)(-1)E E (e ) 前两式积分获得12--=(),=()u qx f y v qy f x μμ++(1)(1)E E(f )其中()()12,f y f x 分别任意的待定函数,可以通过几何方程的第三式求出,将式(f )代入式(e )的第三式,得12()()df y df x dy dx -=等式左边只是y 的函数,而等式右边只是x 的函数.因此,只可能两边都即是同一个常数ω,于是有12()(),df y df x dy dxωω=-= 积分后得()()1020,f y y u f x x v ωω=-+=+ 代入式(f )得位移分量00(1)(1)u qx y u Ev qy x v Eμωμω-⎧=-+⎪⎪⎨-⎪=++⎪⎩ (g ) 其中00,,u v ω为暗示刚体位移量的常数,需由约束条件求得从式(g )可见,位移是坐标的单值连续函数,满足位移单值条件.因而,应力分量是正确的解答.【2-18】设有矩形截面的悬臂梁,在自由端受有集中荷载F (图2-22),体力可以不计.试根据资料力学公式,写出弯应力0y σ=,然后证明这些表达式满足平衡微分方程和相容方程,再说明这些表达式是否就暗示正确的解答.【解答】(1)矩形悬臂梁发生弯曲变形,任意横截面上的弯矩方程()M x Fx =-,横截面对中性轴的惯性矩为3/12z I h =,根据资料力学公式弯应力3()12x z M x Fy xy I hσ==-; 该截面上的剪力为()s F x F =-,剪应力为()*2233()/262241/12s xy z F x S F h h y F h y b y y bI h h τ⎛⎫--⎛⎫⎡⎤==⋅-⋅⋅+=-- ⎪ ⎪⎢⎥⨯⎝⎭⎣⎦⎝⎭取挤压应力0y σ=(2)将应力分量代入平衡微分方程检验 第一式:2312120F Fy y h h=-+==左右第二式:左=0+0=0=右 该应力分量满足平衡微分方程.(3)将应力分量代入应力暗示的相容方程y2()0x y σσ=∇+==左右 满足相容方程 (4)考察鸿沟条件①在主要鸿沟/2y h =±上,应精确满足应力鸿沟条件(2-15)lmx fyf2h y =-上0 -1 0 0 2h y =上1代入公式(2-15),得()()()()-/2/2/2/20,0;0,0yxy y yx y h y h y h y h στστ==-======②在主要鸿沟x=0上,列出三个积分的应力鸿沟条件,代入应力分量主矢主矩/20/2/20/22/2/2203/2/2()0()06()()4h x x h h x x h h h xy x h h dy x ydy F h dy y dy F y h σστ=-=-=--⎧⎪==⎪⎪==⎨⎪⎡⎤⎪=--=-=⎢⎥⎪⎣⎦⎩⎰⎰⎰⎰向面力主矢面力主矩向面力主矢满足应力鸿沟条件③在主要鸿沟上,首先求出固定边面力约束反力,按正方向假设,即面力的主矢、主矩,0,,N S F F F M Fl ==-=- 其次,将应力分量代入应力主矢、主矩表达式,判断是否与面力主矢与主矩等效:/2/23/2/212()0h h x x l Nh h Fdy lydy F h σ=--=-==⎰⎰/2/223/2/212()h h x x l h h F ydy ly dy Fl M h σ=--=-=-=⎰⎰2/2/223/2/26()4h h xy x l S h h F h dy y dy F F h τ=--⎛⎫=--=-=⎪⎝⎭⎰⎰满足应力鸿沟条件,因此,它们是该问题的正确解答.【2-19】试证明,如果体力虽然不是常量,但却是有势的力,即体力分量可以暗示为,x y V Vf f x y∂∂=-=-∂∂,其中V 是势函数,则应力分量亦可用应力函数暗示成为M22222=,=,x y xy V V y x x yσστ∂Φ∂Φ∂Φ++=-∂∂∂∂,试导出相应的相容方程. 【解答】(1)将,x y f f 带入平衡微分方程(2-2)00 00yx yx x x x y xy y xy yVf x y x y x V f y x yx y ττσσστστ∂∂⎧⎧∂∂∂++=+-=⎪⎪∂∂∂∂∂⎪⎪⇒⎨⎨∂∂∂∂∂⎪⎪++=+-=⎪⎪∂∂∂∂∂⎩⎩ (a ) 将(a )式变换为()0()0yx x xy yV x y V yy τστσ∂⎧∂-+=⎪∂∂⎪⎨∂∂⎪-+=⎪∂∂⎩ (b ) 为了满足式(b ),可以取22222,,x y xy V V y x x yσστ∂Φ∂Φ∂Φ-=-==-∂∂∂∂即22222,,x y xy V V y x x yσστ∂Φ∂Φ∂Φ=+=+=-∂∂∂∂(2)对体力、应力分量,,,x y x y f f σσ求偏导数,得222222424222222422242422422222, , , y x xx yy f f V Vx x y y V V xx y x y y y V V x x x y x y y σσσσ⎧∂∂∂∂=-=-⎪∂∂∂∂⎪⎪∂∂∂Φ∂∂Φ∂⎪=+=+⎨∂∂∂∂∂∂∂⎪⎪∂∂∂Φ∂∂Φ∂⎪=+=+∂∂∂∂∂∂∂⎪⎩(c )将(c )式代入公式(2-21)得平面应力情况下应力函数暗示的相容方程()2(1)y x x y f f x y σσμ∂⎛⎫∂∇+=-++ ⎪∂∂⎝⎭(2-21)4242424222222424222222(1)V V V VV V x y x y y x x x y y x y μ⎛⎫∂Φ∂∂Φ∂∂Φ∂∂Φ∂∂∂+++++++=++ ⎪∂∂∂∂∂∂∂∂∂∂∂∂⎝⎭ 整理得:444224224222(1)V V x x y y xy μ⎛⎫∂Φ∂Φ∂Φ∂∂++=--+ ⎪∂∂∂∂∂∂⎝⎭(d ) 即平面应力问题中的相容方程为42(1)V μ∇Φ=--∇将(c )式代入公式(2-22)或将(d )式中的替换为1μμ-,的平面应变情况下的相容方程:444224224221221V Vx x y y x yμμ⎛⎫∂Φ∂Φ∂Φ-∂∂++=-+ ⎪∂∂∂∂-∂∂⎝⎭(e ) 即 42121V μμ-∇Φ=-∇-. 证毕.第三章平面问题的直角坐标解答【3-1】为什么在主要鸿沟(年夜鸿沟)上必需满足精确的应力鸿沟条件式(2-15),而在小鸿沟上可以应用圣维南原理,用三个积分的应力鸿沟条件(即主矢量、主矩的条件)来取代?如果在主要鸿沟上用三个积分的应力鸿沟条件取代式(2-15),将会发生什么问题?【解答】弹性力学问题属于数学物理方程中的边值问题,而要使鸿沟条件完全获得满足,往往比力困难.这时,圣维南原理可为简化局部鸿沟上的应力鸿沟条件提供很年夜的方便.将物体一小部份鸿沟上的面力换成份布分歧,但静力等效的面力(主矢、主矩均相同),只影响近处的应力分布,对远处的应力影响可以忽略不计.如果在占鸿沟绝年夜部份的主要鸿沟上用三个积分的应力鸿沟条件来取代精确的应力鸿沟条件(公式2-15),就会影响年夜部份区域的应力分布,会使问题的解答精度缺乏.【3-2】如果在某一应力鸿沟问题中,除一个小鸿沟条件,平衡微分方程和其它的应力鸿沟条件都已满足,试证:在最后的这个小鸿沟上,三个积分的应力鸿沟条件肯定是自然满足的,固而可以不用校核.【解答】区域内的每一微小单位均满足平衡条件,应力鸿沟条件实质上是鸿沟上微分体的平衡条件,即外力(面力)与内力(应力)的平衡条件.研究对象整体的外力是满足平衡条件的,其它应力鸿沟条件也都满足,那么在最后的这个主要鸿沟上,三个积分的应力鸿沟条件是自然满足的,因而可以不用校核.【3-3】如果某一应力鸿沟问题中有m个主要鸿沟和n个小鸿沟,试问在主要鸿沟和小鸿沟上各应满足什么类型的应力鸿沟条件,各有几个条件?【解答】在m个主要鸿沟上,每个鸿沟应有2个精确的应力鸿沟条件,公式(2-15),共2m个;在n个主要鸿沟上,如果能满足精确应力鸿沟条件,则有2n个;如果不能满足公式(2-15)的精确应力鸿沟条件,则可以用三个静力等效的积分鸿沟条件来取代2个精确应力鸿沟条件,共3n个.【3-4】试考察应力函数3ayΦ=在图3-8所示的矩形板和坐标系中能解决什么问题(体力不计)?【解答】⑴相容条件:不论系数a取何值,应力函数3ayΦ=总能满足应力函数暗示的相容方程,式(2-25).⑵求应力分量y当体力不计时,将应力函数Φ代入公式(2-24),得6,0,0x y xy yx ay σσττ====⑶考察鸿沟条件上下鸿沟上应力分量均为零,故上下鸿沟上无面力. 左右鸿沟上;当a>0时,考察x σ分布情况,注意到0xy τ=,故y 向无面力 左端:0()6x x x f ay σ===()0y h ≤≤()00y xy x f τ=== 右端:()6x x x l f ay σ===(0)y h ≤≤()0y xy x l f τ=== 应力分布如图所示,那时l h 应用圣维南原理可以将分布的面力,等效为主矢,主矩xf xf主矢的中心在矩下鸿沟位置.即本题情况下,可解决各种偏心拉伸问题.偏心距e :因为在A 点的应力为零.设板宽为b,集中荷载p 的偏心距e :2()0/6/6x A p pee h bh bh σ=-=⇒=同理可知,当a <0时,可以解决偏心压缩问题.【3-5】取满足相容方程的应力函数为:⑴2,ax y Φ=⑵2,bxy Φ=⑶3,cxy Φ=试求出应力分量(不计体力),画出图3-9所示弹性体鸿沟上的面力分布,并在小鸿沟上暗示出头具名力的主矢量和主矩.【解答】(1)由应力函数2ax y Φ=,得应力分量表达式0,2,2x y xy yx ay ax σσττ====-考察鸿沟条件,由公式(2-15)()()()()x yx s x y xy s y l m f s m l f s στστ⎧+=⎪⎨+=⎪⎩yO )①主要鸿沟,上鸿沟2hy =-上,面力为()22=-=x hf y ax ()2y h f y ah =-=②主要鸿沟,下鸿沟2hy =,面力为()2,2x h f y ax ==-()2y hf y ah ==③主要鸿沟,左鸿沟x=0上,面力的主矢,主矩为x 向主矢:/20/2()0h x x x h F dy σ=-=-=⎰y 向主矢:/20/2()0h y xy x h F dy τ=-=-=⎰主矩:/20/2()0h x x h M ydy σ=-=-=⎰主要鸿沟,右鸿沟x=l 上,面力的主矢,主矩为 x 向主矢:/2/2()0h x x x l h F dy σ=-'==⎰y 向主矢:/2/2/2/2()(2)2h h y xy x l h h F dy al dy alh τ=--'==-=-⎰⎰主矩:/2/2()0h x x l h M ydy σ=-==⎰弹性体鸿沟上面力分布及主要鸿沟面上面力的主矢,主矩如图所示 ⑵2bxy Φ=将应力函数代入公式(2-24),得应力分量表达式2x bx σ=,0y σ=,2xy yx by ττ==-考察应力鸿沟条件,主要鸿沟,由公式(2-15)得在2h y =-主要鸿沟,上鸿沟上,面力为,022x y h h f y bh f y ⎛⎫⎛⎫=-==-= ⎪ ⎪⎝⎭⎝⎭在2h y =,下鸿沟上,面力为,022x y h h f y bh f y ⎛⎫⎛⎫==-== ⎪ ⎪⎝⎭⎝⎭ 在主要鸿沟上,分布面力可按(2-15)计算,面里的主矢、主矩可通过三个积分鸿沟条件求得:在左鸿沟x=0,面力分布为()()00,02x y f x f x by ==== 面力的主矢、主矩为 x 向主矢:()2020hh x x x F dy σ=-=-=⎰Oxyy 向主矢:()()22002220h h h h y xy x x F dy by dy τ==--=-=--=⎰⎰主矩;/20/2()0h x x h M ydy σ=-=-=⎰在右鸿沟x=l 上,面力分布为()()2,2x y f x l bl f x l by ====- 面力的主矢、主矩为 x 向主矢:()/2/2/2/222h h x x x lh h F dy bldy blh σ=--'===⎰⎰y 向主矢:()()/2/2/2/2'20h h y xy x lh h F dy by dy τ=--==-=⎰⎰主矩:()/2/2/2/2'20h h x x l h h M ydy blydy σ=--===⎰⎰弹性体鸿沟上的面力分布及在主要上面力的主矢和主矩如图所示ahxyah(3)3cxy Φ=将应力函数代入公式(2-24),得应力分量表达式26,0,3x y xy yx cxy cy σσττ====-考察应力鸿沟条件,在主要鸿沟上应精确满足式(2-15)①2hy =-上边界上,面力为23,0242x y h h f y ch f y ⎛⎫⎛⎫=-==-= ⎪ ⎪⎝⎭⎝⎭②hy=2下边界上,面力为23,0242x y h h f y ch f y ⎛⎫⎛⎫==-== ⎪ ⎪⎝⎭⎝⎭主要鸿沟上,分布面力可按(2-15)计算,面力的主矢、主矩可通过三个积分鸿沟求得:③左鸿沟x=0上,面力分布为。
弹性力学简明教程习题答案

《弹性力学简明教程》习题提示和参考答案第二章习题的提示与答案2-1是2-2是2-3按习题2-1分析。
2-4按习题2-2分析。
2-5在的条件中,将出现2、3阶微量。
当略去3阶微量后,得出的切应力互等定理完全相同。
2-6同上题。
在平面问题中,考虑到3阶微量的精度时,所得出的平衡微分方程都相同。
其区别只是在3阶微量(即更高阶微量)上,可以略去不计。
2-7应用的基本假定是:平衡微分方程和几何方程─连续性和小变形,物理方程─理想弹性体。
2-8在大边界上,应分别列出两个精确的边界条件;在小边界(即次要边界)上,按照圣维南原理可列出3个积分的近似边界条件来代替。
2-9在小边界OA边上,对于图2-15(a)、(b)问题的三个积分边界条件相同,因此,这两个问题为静力等效。
2-10参见本章小结。
2-11参见本章小结。
2-12参见本章小结。
2-13注意按应力求解时,在单连体中应力分量必须满足(1)平衡微分方程,(2)相容方程,(3)应力边界条件(假设)。
2-14见教科书。
2-15见教科书。
2-16见教科书。
2-17取它们均满足平衡微分方程,相容方程及x=0和的应力边界条件,因此,它们是该问题的正确解答。
2-18见教科书。
2-19提示:求出任一点的位移分量和,及转动量,再令,便可得出。
第三章习题的提示与答案3-1本题属于逆解法,已经给出了应力函数,可按逆解法步骤求解:(1)校核相容条件是否满足,(2)求应力,(3)推求出每一边上的面力从而得出这个应力函数所能解决的问题。
3-2用逆解法求解。
由于本题中l>>h, x=0,l 属于次要边界(小边界),可将小边界上的面力化为主矢量和主矩表示。
3-3见3-1例题。
3-4本题也属于逆解法的问题。
首先校核是否满足相容方程。
再由求出应力后,并求对应的面力。
本题的应力解答如习题3-10所示。
应力对应的面力是:主要边界:所以在边界上无剪切面力作用。
下边界无法向面力;上边界有向下的法向面力q。
弹性力学简明教程_课后习题解答

【解答】板上处处受法向约束时,且不受切向面力作用,则(相应)板边上只受x,y向的面力或约束,所以仅存在,且不沿厚度变化,仅为x,y的函数,故其应变状态接近于平面应变的情况。
面力的符号规定是:当面力的指向沿坐标轴的正方向时为正,沿坐标轴的负方向为负。
由下图可以看出,正面上应力分量与面力分量同号,负面上应力分量与面力分量符号相反。
正的应力正的面力
【1-5】试比较弹性力学和材料力学中关于切应力的符号规定。
【解答】材料力学中规定切应力符号以使研究对象顺时针转动的切应力为正,反之为负。
【解答】切应力为单位面上的力,量纲为,单位为。因此,应力的合力应乘以相应的面积,设六面体微元尺寸如dx×dy×dz,则y面上切应力的合力为:
(a)
z面上切应力的合力为:
(b)
由式(a)(b)可见,两个切应力的合力并不相等。
【分析】作用在两个相互垂直面上并垂直于该两面交线的切应力的合力不相等,但对某点的合力矩相等,才导出切应力互等性。
(s)
(s)
0
-1
0
0
1
-
0
,,,
②在=0的小边界上,应用圣xx原理,列出三个积分的应力边界条件:负面上应力与面力符号相反,有
③在x=l的小边界上,可应用位移边界条件这两个位移边界条件也可改用三个积分的应力边界条件来代替。
首先,求固定端约束反力,按面力正方向假设画反力,如图所示,列平衡方程求反力:
由于x=l为正面,应力分量与面力分量同号,故
【2-6】在工地上技术人员发现,当直径和厚度相同的情况下,在自重作用下的钢圆环(接近平面应力问题)总比钢圆筒(接近平面应变问题)的变形大。试根据相应的物理方程来解释这种现象。
弹性力学简明教程 课后习题答案

《弹性力学简明教程》习题提示和参考答案第二章习题的提示与答案2-1 是2-2 是2-3 按习题2-1分析。
2-4 按习题2-2分析。
2-5 在的条件中,将出现2、3阶微量。
当略去3阶微量后,得出的切应力互等定理完全相同。
2-6 同上题。
在平面问题中,考虑到3阶微量的精度时,所得出的平衡微分方程都相同。
其区别只是在3阶微量〔即更高阶微量〕上,可以略去不计。
2-7 应用的基本假定是:平衡微分方程和几何方程─连续性和小变形,物理方程─理想弹性体。
2-8 在大边界上,应分别列出两个精确的边界条件;在小边界〔即次要边界〕上,按照圣维南原理可列出3个积分的近似边界条件来代替。
2-9 在小边界OA边上,对于图2-15〔a〕、〔b〕问题的三个积分边界条件相同,因此,这两个问题为静力等效。
2-10 参见本章小结。
2-11 参见本章小结。
2-12 参见本章小结。
2-13 注意按应力求解时,在单连体中应力分量必须满足〔1〕平衡微分方程,〔2〕相容方程,〔3〕应力边界条件〔假设>。
2-14 见教科书。
2-15 见教科书。
2-16 见教科书。
2-17 取它们均满足平衡微分方程,相容方程与x=0和的应力边界条件,因此,它们是该问题的正确解答。
2-18 见教科书。
2-19 提示:求出任一点的位移分量和,与转动量,再令,便可得出。
第三章习题的提示与答案3-1 本题属于逆解法,已经给出了应力函数,可按逆解法步骤求解:〔1〕校核相容条件是否满足,〔2〕求应力,〔3〕推求出每一边上的面力从而得出这个应力函数所能解决的问题。
3-2 用逆解法求解。
由于本题中l>>h,x=0,l属于次要边界〔小边界〕,可将小边界上的面力化为主矢量和主矩表示。
3-3 见3-1例题。
3-4 本题也属于逆解法的问题。
首先校核是否满足相容方程。
再由求出应力后,并求对应的面力。
本题的应力解答如习题3-10所示。
应力对应的面力是:主要边界:所以在边界上无剪切面力作用。
弹性力学简明教程(第四版)_课后习题解答

弹性力学简明教程(第四版)课后习题解答徐芝纶第一章绪论【1-1】试举例解释什么是平均的各向异性体,什么长短平均的各向同性体?【剖析】平均的各项异形体就是知足平均性假定,但不知足各向同性假定;非平均的各向异性体,就是不知足平均性假定,但知足各向同性假定.【解答】平均的各项异形体如:竹材,木材.非平均的各向同性体如:混凝土.【1-2】一般的混凝土构件和钢筋混凝土构件可否作为幻想弹性体?一般的岩质地基和土质地基可否作为幻想弹性体?【剖析】可否作为幻想弹性体,要剖断可否知足四个假定:持续性,完整弹性,平均性,各向同性假定.【解答】一般的混凝土构件和土质地基可以作为幻想弹性体;一般的钢筋混凝土构件和岩质地基不成以作为幻想弹性体.【1-3】五个根本假定在树立弹性力学根本方程时有什么感化?【解答】(1)持续性假定:假定物体是持续的,也就是假定全部物体的体积都被构成这个物体的介质所填满,不留下任何闲暇.引用这一假定后,物体的应力.形变和位移等物理量就可以算作是持续的.是以,树立弹性力学的根本方程时就可以用坐标的持续函数来暗示他们的变更纪律.完整弹性假定:假定物体是完整弹性的,即物体在对应形变的外力被去除后,可以或许完整恢回复复兴型而无任何形变.这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变屈服胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变.平均性假定:假定物体是平均的,即全部物体是由统一材料构成的,引用这一假定后全部物体的所有各部分才具有雷同的弹性,所研讨物体的内部各质点的物理性质都是雷同的,因而物体的弹性常数不随地位坐标而变更.各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个偏向都雷同,引用此假定后,物体的弹性常数不随偏向而变.小变形假定:假定位移和变形是渺小的.亦即,假定物体受力今后全部物体所有各点的位移都远远小于物体本来的尺寸,并且应变和转角都远小于 1.如许在树立物体变形今后的均衡方程时,就可以便利的用变形以前的尺寸来代替变形今后的尺寸.在考核物体的位移与形变的关系时,它们的二次幂或乘积相对于其本身都可以略去不计,使得弹性力学中的微分方程都简化为线性的微分方程.【1-4】应力和面力的符号划定有什么差别?试画出正坐标面和负坐标面上的正的应力和正的面力的偏向.【解答】应力的符号划定是:当感化面的外法线偏向指向坐标轴偏向时(即正面时),这个面上的应力(不管是正应力照样切应力)以沿坐标轴的正偏向为正,沿坐标轴的负偏向为负.当感化面的外法线指向坐标轴的负偏向时(即负面时),该面上的应力以沿坐标轴的负偏向为正,沿坐标轴的正偏向为负.面力的符号划定是:当面力的指向沿坐标轴的正偏向时为正,沿坐标轴的负偏向为负.由下图可以看出,正面上应力分量与面力分量同号,负面上应力分量与面力分量符号相反.正的应力正的面力【1-5】试比较弹性力学和材料力学中关于切应力的符号划定.【解答】材料力学中划定切应力符号以使研讨对象顺时针迁移转变的切应力为正,反之为负.弹性力学中划定,感化于正坐标面上的切应力以沿坐标轴的正偏向为正,感化于负坐标面上的切应力以沿坐标轴负偏向为正,反之为负.【1-6】试举例解释正的应力对应于正的形变.【解答】正的应力包含正的正应力与正的切应力,正的形变包含正的正应变与正的切应变,本题应从两方面解答.正的正应力对应于正的正应变:轴向拉伸情形下,产生轴向拉应力为正的应力,引起轴向伸长变形,为正的应变.正的切应力对应于正的切应变:在如图所示应力状况情形下,切应力均为正的切应力,引起直角减小,故为正的切应变.【1-7】试画出图1-4中矩形薄板的正的体力.面力和应力的偏向.【解答】正的体力.面力正的体力.应力【1-8】试画出图1-5中三角形薄板的正的面力和体力的偏向. 【解答】【1-9】在图1-3的六面体上,y 面上切应力yz τ的合力与z 面上切应力zy τ的合力是否相等?【解答】切应力为单位面上的力,量纲为12L MT --,单位为2/N m .是以,应力的合力应乘以响应的面积,设六面体微元尺寸如dx ×dy ×dz ,则y 面上切应力yz τ的合力为:yz dx dz τ⋅⋅ (a)z 面上切应力zy τ的合力为:zy dx dy τ⋅⋅ (b)由式(a )(b)可见,两个切应力的合力其实不相等.【剖析】感化在两个互相垂直面上并垂直于该两面交线的切应力的合力不相等,但对某点的合力矩相等,才导出切应力互等性.第二章 平面问题的根本理论【2-1】试剖析解释,在不受任何面力感化的空间体概况邻近的薄层中(图2-14)其应力状况接近于平面应力的情形.【解答】在不受任何面力感化的空间概况邻近的薄层中,可以以为在该薄层的高低概况都无面力,且在薄层内所有各点都有0===z xz yz σττ,只消失平面应力分量,,x y xy σστ,且它们不沿z 偏向变更,仅为x,y 的函数.可以以为此问题是平面应力问题.【2-2】试剖析解释,在板面上处处受法向束缚且不受切向面力感化的等厚度薄片中(2-15),当板边上只受x,y 向的面力或束缚,且不沿厚度变更时,其应变状况接近于平面应变的情形.【解答】板上处处受法向束缚时0z ε=,且不受切向面力感化,则0xz yz γγ==(响应0zx zy ττ==)板边上只受x,y 向的面力或束缚,所以仅消失,,x y xy εεγ,且不沿厚度变更,仅为x,y 的函数,故其应变状况接近于平面应变的情形.【2-3】在图2-3的微分体中,若将对形心的力矩平很前提CM0=∑改为对角点的力矩均衡前提,试问将导出什么情势的方程?【解答】将对形心的力矩均衡前提CM0=∑,改为分离对四个角点A.B.D.E 的均衡前提,为盘算便利,在z 偏向的尺寸取为单位1.0AM=∑1()1()11222()1()1110222xy x y x xy y y yx y yx x x dx dy dydx dx dy dx dy dx dy x x dx dy dx dy dx dy dx dy f dxdy f dxdy y y τσσστσστστ∂∂⋅⋅++⋅⋅-+⋅⋅-⋅⋅∂∂∂∂-+⋅⋅++⋅⋅+⋅⋅-⋅⋅=∂∂ (a)0BM=∑()1()1()1221111102222yx y x x yx y xy x y x y dy dxdx dy dy dx dy dy dx x y y dy dx dy dxdy dx dy dx f dxdy f dxdy τσσστστσσ∂∂∂+⋅⋅++⋅⋅++⋅⋅∂∂∂-⋅⋅-⋅⋅-⋅⋅+⋅⋅+⋅⋅= (b)Ozy0DM=∑()1111221()11102222yy xy x yx x x x x y dx dydy dx dy dx dy dx dyy dx dy dy dxdx dx dy f dxdy f dxdy x σστστσσσ∂+⋅⋅-⋅⋅+⋅⋅+⋅⋅∂∂-⋅⋅-+⋅⋅-⋅⋅+⋅⋅=∂ (c)0EM=∑()1111222()1()1110222yy x yx y xy x x xy x y dx dy dxdy dx dy dx dy dx y dy dy dxdx dy dx dy dx f dxdy f dxdy x x σσστστσστ∂-+⋅⋅+⋅⋅+⋅⋅+⋅⋅-∂∂∂+⋅⋅-+⋅⋅-⋅⋅+⋅⋅=∂∂ (d)略去(a).(b).(c).(d)中的三阶小量(亦即令22,d xdy dxd y 都趋于0),并将各式都除今后dxdy 归并同类项,分离得到xy yx ττ=.【剖析】由本题可得出结论:微分体对任一点取力矩均衡得到的成果都是验证了切应力互等定理.【2-4】在图2-3和微分体中,若斟酌每一面上的应力分量不是平均散布的,验证将导出什么情势的均衡微分方程?【解答】微分单元体ABCD 的边长,dx dy 都是微量,是以可以假设在各面上所受的应力如图a 所示,疏忽了二阶以上的高阶微量,而看作是线性散布的,如图(b )所示.为盘算便利,单元体在z 偏向的尺寸取为一个单位.)C)C(a) (b)各点正应力:()=x A x σσ;()=y A y σσ()xx B x dy yσσσ∂=+∂;()y y B y dy yσσσ∂=+∂()∂=+∂xx D x dx xσσσ;()∂=+∂xy D y dx xσσσ ()∂∂=++∂∂∂x xx C x dx y x yσσσσ; ()∂∂=++∂∂∂y y y C y dx y xyσσσσ各点切应力:()xy A xy ττ=;()yx A yx ττ=()∂=+∂xy xy B xy dy yτττ;()∂=+∂yx yx A yx dy yτττ()xy xy D xy dx x τττ∂=+∂;()∂=+∂yx yx D yx dx xτττ()xy xy xy C xy dx dy xyττττ∂∂=++∂∂;()∂∂=++∂∂yx yx yx C yx dx dy xyττττ由微分单元体的均衡前提 0,∑=x F 0,∑=y F 得112211+22x x x x x x x xyx yx yx yx yx yx yx yx dy dy dx dx dy dy y x x y y dx dx dy dx dy x y x y σσσσσσσστττττττ⎧⎧⎫⎫⎡⎤⎡⎤⎛⎫⎛⎫∂∂∂∂⎪⎪⎪⎪⎛⎫-+++++++-⎨⎬⎨⎬⎢⎥⎢⎥ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎪⎪⎣⎦⎣⎦⎪⎪⎭⎭⎩⎩⎧⎫⎡∂⎤⎡∂∂∂⎤⎛⎫⎛⎫⎛⎫⎪⎪++++++⎨⎬⎢⎥⎢⎥ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎪⎣⎦⎣⎦⎪⎭⎩0x dx f dxdy ⎧⎫⎪⎪+=⎨⎬⎪⎪⎭⎩112211+++22y y y y y y y y xy xy xy xy xy xy xy xy dx dx dy dx dy dx x y x y dy dy dx dy dx y x y x σσσσσσσσττττττττ⎧⎧⎫⎫⎡∂⎤⎡∂∂∂⎤⎛⎫⎛⎫⎛⎫⎪⎪⎪⎪-+++++++-⎨⎬⎨⎬⎢⎥⎢⎥ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎪⎪⎣⎦⎣⎦⎪⎪⎭⎭⎩⎩⎧⎫⎡∂⎤⎡∂∂∂⎤⎛⎫⎛⎫⎛⎫⎪⎪++++⎨⎬⎢⎥⎢⎥ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎪⎣⎦⎣⎦⎪⎭⎩0y dy f dxdy ⎧⎫⎪⎪+=⎨⎬⎪⎪⎭⎩以上二式分离睁开并约简,再分离除以dxdy ,就得到平面问题中的均衡微分方程:0;0yxy xy x x y f f x y y xτστσ∂∂∂∂++=++=∂∂∂∂ 【剖析】由本题可以得出结论:弹性力学中的均衡微分方程实用于随意率性的应力散布情势. 【2-5】在导出平面问题的三套根本方程时,分离运用了哪些根本假定?这些方程的实用前提是什么?【解答】(1)在导出平面问题的均衡微分方程和几何方程时运用的根本假设是:物体的持续性和小变形假定,这两个前提同时也是这两套方程的实用前提.(2)在导出平面问题的物理方程时运用的根本假定是:持续性,完整弹性,平均性和各向同性假定,即幻想弹性体假定.同样,幻想弹性体的四个假定也是物理方程的运用前提.【思虑题】平面问题的三套根本方程推导进程中都用到了哪个假定?【2-6】在工地上技巧人员发明,当直径和厚度雷同的情形下,在自重感化下的钢圆环(接近平面应力问题)总比钢圆筒(接近平面应变问题)的变形大.试根据响应的物理方程来解释这种现象.【解答】体力雷同情形下,两类平面问题的均衡微分方程完整雷同,故所求的应力分量雷同.由物理方程可以看出,两类平面问题的物理方程重要的差别在于方程中含弹性常数的系数.因为E 为GPa 级此外量,而泊松比μ取值一般在(0,0.5),故重要掌握参数为含有弹性模量的系数项,比较两类平面问题的系数项,不难看出平面应力问题的系数1/E 要大于平面应变问题的系数()21/-E μ.是以,平面应力问题情形下应变要大,故钢圆环变形大.【2-7】在常体力,全体为应力鸿沟前提和单连体的前提下,对于不合材料的问题和两类平面问题的应力分量x σ,y σ和xy τ均雷同.试问其余的应力,应变和位移是否雷同?【解答】(1)应力分量:两类平面问题的应力分量x σ,y σ和xy τ均雷同,但平面应力问题0z yz xz σττ===,而平面应变问题的()0,xz yz z x y ττσμσσ===+.(2)应变分量:已知应力分量求应变分量须要运用物理方程,而两类平面问题的物理方程不雷同,故应变分量0,xz yz xy γγγ==雷同,而,,x y z εεε不雷同.(3)位移分量:因为位移分量要靠应变分量积分来求解,故位移分量对于两类平面问题也不合. 【2-8】在图2-16中,试导出无面力感化时AB 鸿沟上的xy ,,x y σστ之间的关系式【解答】由题可得:()()()cos ,cos 90sin 0,0x y l m f AB f AB ααα==-===将以上前提代入公式(2-15),得:()()()()()2cos sin 0, sin ()cos 0()tan tan x yx y xy AB AB AB AB x AB yx y ABABσατασαταστασα+=+=⇒=-=x图2-16【2-9】试列出图2-17,图2-18所示问题的全体鸿沟前提.在其端部小鸿沟上,运用圣维南道理列出三个积分的应力鸿沟前提.xM图2-17图2-18【剖析】有束缚的鸿沟上可斟酌采取位移鸿沟前提,若为小鸿沟也可写成圣维南道理的三个积分情势,大鸿沟上应准确知足公式(2-15).【解答】图2-17:上(y =0)左(x =0) 右(x =b )l0 -1 1 m-1() x f s()1g y h ρ+()1g y h ρ-+() yfs1gh ρ代入公式(2-15)得①在重要鸿沟上x=0,x=b 上准确知足应力鸿沟前提:()()100(),0;===-+=x xy x x g y h σρτ ()()1b b (),0;===-+=x xy x x g y h σρτ②在小鸿沟0y =上,能准确知足下列应力鸿沟前提:()(),0yxy y y gh σρτ===-=③在小鸿沟2y h =上,能准确知足下各位移鸿沟前提:()()220,0====y hy h u v这两个位移鸿沟前提可以运用圣维南道理,改用三个积分的应力鸿沟前提来代替,当板厚=1δ时,可求得固定端束缚反力分离为:10,,0s N F F gh b M ρ==-=因为2y h =为正面,故应力分量与面力分量同号,则有:()()()222100000b y y h by y h bxy y h dx gh b xdx dx σρστ===⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩⎰⎰⎰ ⑵图2-18①高低重要鸿沟y=-h/2,y=h/2上,应准确知足公式(2-15)m x y f 2h y =-0 -1 0 q2h y =1-1q-/2()y y h q σ==-,-/2()0yx y h τ==,/2()0y y h σ==,/21()yx y h q τ==-②在x =0的小鸿沟上,运用圣维南道理,列出三个积分的应力鸿沟前提:负面上应力与面力符号相反,有/20/2/20/2/20/2()()()h xy x Sh h x x N h h x x h dx Fdx F ydx M τσσ=-=-=-⎧=-⎪⎪=-⎨⎪⎪=-⎩⎰⎰⎰ ③在x=l 的小鸿沟上,可运用位移鸿沟前提0,0====l x l x v u 这两个位移鸿沟前提也可改用三个积分的应力鸿沟前提来代替.起首,求固定端束缚反力,按面力正偏向假设画反力,如图所示,列均衡方程求反力:110,xN NN N F F F q l F q l F ''=+=⇒=-∑ 0,0yS S S S FF F ql F ql F ''=++=⇒=--∑2211110,'02222A S S q lh ql M M M F l ql q lh M M F l =+++-=⇒=---∑因为x=l 为正面,应力分量与面力分量同号,故/21/22/21/2/2/2()()22()h x x l N Nh h x x l S h h xy x l S Sh dy F q l Fq lh ql ydy M M F l dy F ql Fσστ=-=-=-⎧'==-⎪⎪⎪'==---⎨⎪⎪'==--⎪⎩⎰⎰⎰M '【2-10】试运用圣维南道理,列出图2-19所示的两个问题中OA 边上的三个积分的应力鸿沟前提,并比较两者的面力是否是是静力等效?【解答】因为hl ,OA 为小鸿沟,故其上可用圣维南道理,写出三个积分的应力鸿沟前提:(a)上端面OA 面上面力q bx f f y x ==,0 因为OA 面为负面,故应力主矢.主矩与面力主矢.主矩符号相反,有()()()0000200000022120bb b y y y b b b y y y byx y x qb dx f dx qdx b x b qb xdx f xdx q x dx b dx σστ===⎧=-=-=-⎪⎪⎪⎛⎫=-=-=⎨ ⎪⎝⎭⎪⎪=⎪⎩⎰⎰⎰⎰⎰⎰⎰(对OA 中点取矩) (b)运用圣维南道理,负面上的应力主矢和主矩与面力主矢和主矩符号相反,面力主矢y 向为正,主矩为负,则()()()00200002120by N y by y b xy y qb dx F qb xdx M dx σστ===⎧=-=-⎪⎪⎪=-=⎨⎪⎪=⎪⎩⎰⎰⎰ 综上所述,在小鸿沟OA 上,两个问题的三个积分的应力鸿沟前提雷同,故这两个问题是静力等效的.【2-11】磨练平面问题中的位移分量是否为准确解答的前提是什么? 【解答】(1)在区域内用位移暗示的均衡微分方程式(2-18); (2)在s σ上用位移暗示的应力鸿沟前提式(2-19); (3)在u s 上的位移鸿沟前提式(2-14); 对于平面应变问题,需将E.μ作响应的变换.【剖析】此问题同时也是按位移求解平面应力问题时,位移分量必须知足的前提. 【2-12】磨练平面问题中的应力分量是否为准确解答的前提是什么? 【解答】(1)在区域A 内的均衡微分方程式(2-2);2qb 212qb 图2-19(2)在区域A内用应力暗示的相容方程式(2-21)或(2-22);(3)在鸿沟上的应力鸿沟前提式(2-15),个中假设只求解全体为应力鸿沟前提的问题; (4)对于多连体,还需知足位移单值前提.【剖析】此问题同时也是按应力图解平面问题时,应力分量必须知足的前提.【补题】磨练平面问题中的应变分量是否为准确解答的前提是什么?【解答】用应变暗示的相容方程式(2-20)【2-13】磨练平面问题中的应力函数是否为准确解答的前提是什么?【解答】(1)在区域A内用应力函数暗示的相容方程式(2-25);(2)在鸿沟S上的应力鸿沟前提式(2-15),假设全体为应力鸿沟前提;(3)若为多连体,还需知足位移单值前提.【剖析】此问题同时也是求解应力函数的前提.【2-14】磨练下列应力分量是否是图示问题的解答:图2-20 图2-21(a)图2-20,22xyqb,0==y xyστ.【解答】在单连体中磨练应力分量是否是图示问题的解答,必须知足:(1)均衡微分方程(2-2);(2)用应力暗示的相容方程(2-21);(3)应力鸿沟前提(2-15).(1)将应力分量代入均衡微分方程式,且0==x yf f∂∂+=∂∂yxxx yτσ∂∂+=∂∂y xyy xστ显然知足(2)将应力分量代入用应力暗示的相容方程式(2-21),有等式左=()2222x yx yσσ⎛⎫∂∂++⎪∂∂⎝⎭=22≠qb=右应力分量不知足相容方程.是以,该组应力分量不是图示问题的解答.(b)图2-21,由材料力学公式,=xMyIσ,*=sxyF SbIτ(取梁的厚度b=1),得出所示问题的解答:332=-x x y q lh σ,22233-(4)4=-xy q x h y lh τ.又根据均衡微分方程和鸿沟前提得出:333222=--y q xy xy q xq lh lh lσ.试导出上述公式,并磨练解答的准确性. 【解答】(1)推导公式在散布荷载感化下,梁产生曲折形变,梁横截面是宽度为1,高为h 的矩形,其对中性轴(Z 轴)的惯性矩312=h I ,运用截面法可求出随意率性截面的弯矩方程和剪力方程()23(),62=-=-q qx M x x F x l l.所以截面内随意率性点的正应力和切应力分离为:()332==-x M x x yy q I lhσ()()2222233431.424⎛⎫=-=-- ⎪⎝⎭s xy F x y q x h y bh h lh τ. 根据均衡微分方程第二式(体力不计).0∂∂+=∂∂y xy yxστ得: 333.22=-+y q xy xy q A lh lhσ 根据鸿沟前提()/20==yy h σ得 q .2=-xA l故 333.2.22=--y q xy xy q x q lh lh lσ 将应力分量代入均衡微分方程(2-2) 第一式:22336.60x y x yq q lh lh=-+==左右 知足第二式 天然知足将应力分量代入相容方程(2-23)()22223312.12.0⎛⎫∂∂=++=--≠= ⎪∂∂⎝⎭左右x y xy xyq q x y lh lh σσ应力分量不知足相容方程.故,该分量组分量不是图示问题的解答.【2-15】试证实:在产生最大与最小切应力的面上,正应力的数值都等于两个主应力的平均值. 【解答】(1)肯定最大最小切应力产生地位 随意率性斜面上的切应力为()21nlm τσσ=-,用关系式221l m +=消去m,得)))212121n τσσσσσσ=±-=-=-由上式可见当2102l -=时,即l =,n τ为最大或最小,为 ()12max min 2n σστ-=±.是以,切应力的最大,最小值产生在与x 轴及y 轴(即应力主向)成45°的斜面上.(2)求最大,最小切应力感化面上,正应力n σ的值 任一斜面上的正应力为()2122n l σσσσ=-+最大.最小切应力感化面上2/1±=l ,带入上式,得()()122121122n σσσσσσ=-+=+证毕.【2-16】设已求得一点处的应力分量,试求112,,σσα()100,50,)2000,400;x y xy x y xy a b σστσστ======-,()20001000400; ()1000,1500,500.x y xy x y xy c d σστσστ=-==-=-=-=,,【解答】由公式(2-6)122x y σσσσ+⎫=±⎬⎭及11tan x xy σσατ-=,得11arctan x xy σσατ-= (a)121501005002σσ⎫⎧+=±=⎬⎨⎩⎭13516'α==︒(b)1251220003122σσ⎫⎧+==⎬⎨-⎩⎭ ()1512200arctanarctan 0.783757'400α-==-=-︒-(c) 1210522000100020522σσ⎫⎧-+=±=⎬⎨-⎩⎭ ()110522000arctanarctan 7.388232'400α+==-=-︒-(d) 126911000150018092σσ-⎫⎧--==⎬⎨-⎩⎭ 16911000arctanarctan 0.6183143'500α-+===︒【2-17】设有随意率性外形的等候厚度薄板,体力可以不计,在全体鸿沟上(包含孔口鸿沟上)受有平均压力q .试证-xyq 及0xy τ=能知足均衡微分方程.相容方程和应力鸿沟前提,也能知足位移单值前提,因而就是准确的解答.【解答】(1)将应力分量,0x y xy q σστ==-=,和体力分量0x y f f ==分离带入均衡微分方程.相容方程00xyx x y xy yf xy f yx τσστ∂⎧∂++=⎪∂∂⎪⎨∂∂⎪++=⎪∂∂⎩ (a ) ()20x y σσ∇+= (b )显然知足(a )(b )(2)对于渺小的三角板A,dx,dy 都为正值,斜边上的偏向余弦()()cos ,,cos ,l n x m n y ==,将-,0x y xy q σστ===,代入平面问题的应力鸿沟前提的表达式(2-15),且()()-cos ,,cos ,x y f q n x f q n y ==,则有()()()()cos ,cos ,,cos ,cos ,x y n x q n x n y q n y σσ=-=-所以,x y q q σσ=-=-.对于单连体,上述前提就是肯定应力的全体前提.y(3)对于多连体,应校核位移单值前提是否知足.该题为平面应力情形,起首,将应力分量代入物理方程(2-12),得形变分量,(1)(1),,0x y xy q q E Eμμεεγ---=== (d ) 将(d )式中形变分量代入几何方程(2-8),得=,=,0u v v u q q x y x yμμ∂∂∂∂+=∂∂∂∂(-1)(-1)E E (e ) 前两式积分得到12--=(),=()u qx f y v qy f x μμ++(1)(1)E E(f )个平分()()12,f y f x 离随意率性的待定函数,可以经由过程几何方程的第三式求出,将式(f )代入式(e )的第三式,得12()()df y df x dy dx -=等式左边只是y 的函数,而等式右边只是x 的函数.是以,只可能双方都等于统一个常数ω,于是有12()(),df y df x dy dxωω=-= 积分后得()()1020,f y y u f x x v ωω=-+=+ 代入式(f )得位移分量00(1)(1)u qx y u Ev qy x v Eμωμω-⎧=-+⎪⎪⎨-⎪=++⎪⎩ (g ) 个中00,,u v ω为暗示刚体位移量的常数,需由束缚前提求得从式(g )可见,位移是坐标的单值持续函数,知足位移单值前提.因而,应力分量是准确的解答. 【2-18】设有矩形截面的悬臂梁,在自由端受有分散荷载F (图2-22),体力可以不计.试根据材料力学公式,写出弯应力0y σ=,然后证实这些表达式知足均衡微分方程和相容方程,再解释这些表达式是否就暗示准确的解答.【解答】(1)矩形悬臂梁产生曲折变形,随意率性横截面上的弯矩方程()M x Fx =-,横截面临中性轴的惯性矩为3/12z I h =,根据材料力学公式y弯应力3()12x z M x Fy xy I hσ==-; 该截面上的剪力为()s F x F =-,剪应力为()*2233()/262241/12s xy z F x S F h h y F h y b y y bI h h τ⎛⎫--⎛⎫⎡⎤==⋅-⋅⋅+=-- ⎪ ⎪⎢⎥⨯⎝⎭⎣⎦⎝⎭取挤压应力0y σ=(2)将应力分量代入均衡微分方程磨练 第一式:2312120F Fy y h h=-+==左右 第二式:左=0+0=0=右 该应力分量知足均衡微分方程.(3)将应力分量代入应力暗示的相容方程2()0x y σσ=∇+==左右 知足相容方程(4)考核鸿沟前提①在重要鸿沟/2y h =±上,应准确知足应力鸿沟前提(2-15)lmx fyf2h y =-上0 -1 0 0 2h y =上1代入公式(2-15),得()()()()-/2/2/2/20,0;0,0yxy y yx y h y h y h y h στστ==-======②在次要鸿沟x=0上,列出三个积分的应力鸿沟前提,代入应力分量主矢主矩/20/2/20/22/2/2203/2/2()0()06()()4h x x h h x x h h h xy x h h dy x ydy F h dy y dy F y h σστ=-=-=--⎧⎪==⎪⎪==⎨⎪⎡⎤⎪=--=-=⎢⎥⎪⎣⎦⎩⎰⎰⎰⎰向面力主矢面力主矩向面力主矢知足应力鸿沟前提③在次要鸿沟上,起首求出固定边面力束缚反力,按正偏向假设,即面力的主矢.主矩,0,,N S F F F M Fl ==-=-其次,将应力分量代入应力主矢.主矩表达式,断定是否与面力主矢与主矩等效:/2/23/2/212()0h h x x l Nh h Fdy lydy F h σ=--=-==⎰⎰M/2/223/2/212()h h x x l h h F ydy ly dy Fl Mh σ=--=-=-=⎰⎰2/2/223/2/26()4h h xy x l S h h F h dy y dy F F h τ=--⎛⎫=--=-= ⎪⎝⎭⎰⎰知足应力鸿沟前提,是以,它们是该问题的准确解答.【2-19】试证实,假如体力固然不是常量,但倒是有势的力,即体力分量可以暗示为,x y V Vf f x y∂∂=-=-∂∂,个中V 是势函数,则应力分量亦可用应力函数暗示成为22222=,=,x y xy V V y x x yσστ∂Φ∂Φ∂Φ++=-∂∂∂∂,试导出响应的相容方程.【解答】(1)将,x y f f 带入均衡微分方程(2-2)00 00yx yx x x x y xy y xy yVf x y x y x V f y x yx y ττσσστστ∂∂⎧⎧∂∂∂++=+-=⎪⎪∂∂∂∂∂⎪⎪⇒⎨⎨∂∂∂∂∂⎪⎪++=+-=⎪⎪∂∂∂∂∂⎩⎩ (a ) 将(a )式变换为()0()0yx x xy yV xy V yy τστσ∂⎧∂-+=⎪∂∂⎪⎨∂∂⎪-+=⎪∂∂⎩ (b ) 为了知足式(b ),可以取22222,,x y xy V V y x x yσστ∂Φ∂Φ∂Φ-=-==-∂∂∂∂即22222,,x y xy V V y x x yσστ∂Φ∂Φ∂Φ=+=+=-∂∂∂∂ (2)对体力.应力分量,,,x y x y f f σσ求偏导数,得222222424222222422242422422222, , , y x xx yy f f V Vx x y y V V x x y x y y y V V x x x y x y y σσσσ⎧∂∂∂∂=-=-⎪∂∂∂∂⎪⎪∂∂∂Φ∂∂Φ∂⎪=+=+⎨∂∂∂∂∂∂∂⎪⎪∂∂∂Φ∂∂Φ∂⎪=+=+∂∂∂∂∂∂∂⎪⎩(c ) 将(c )式代入公式(2-21)得平面应力情形下应力函数暗示的相容方程()2(1)y x x y f f x y σσμ∂⎛⎫∂∇+=-++ ⎪∂∂⎝⎭(2-21)4242424222222424222222(1)V V V VV V x y x y y x x x y y x y μ⎛⎫∂Φ∂∂Φ∂∂Φ∂∂Φ∂∂∂+++++++=++ ⎪∂∂∂∂∂∂∂∂∂∂∂∂⎝⎭整顿得:444224224222(1)V V x x y y xy μ⎛⎫∂Φ∂Φ∂Φ∂∂++=--+ ⎪∂∂∂∂∂∂⎝⎭(d ) 即平面应力问题中的相容方程为42(1)V μ∇Φ=--∇将(c )式代入公式(2-22)或将(d )式中的调换为1μμ-,的平面应变情形下的相容方程: 444224224221221V Vx x y y x y μμ⎛⎫∂Φ∂Φ∂Φ-∂∂++=-+ ⎪∂∂∂∂-∂∂⎝⎭(e ) 即 42121V μμ-∇Φ=-∇-. 证毕.第三章 平面问题的直角坐标解答【3-1】为什么在重要鸿沟(大鸿沟)上必须知足准确的应力鸿沟前提式(2-15),而在小鸿沟上可以运用圣维南道理,用三个积分的应力鸿沟前提(即主矢量.主矩的前提)来代替?假如在重要鸿沟上用三个积分的应力鸿沟前提代替式(2-15),将会产生什么问题?【解答】弹性力学问题属于数学物理方程中的边值问题,而要使鸿沟前提完整得到知足,往往比较艰苦.这时,圣维南道理可为简化局部鸿沟上的应力鸿沟前提供给很大的便利.将物体一小部分鸿沟上的面力换成散布不合,但静力等效的面力(主矢.主矩均雷同),只影响近处的应力散布,对远处的应力影响可以疏忽不计.假如在占鸿沟绝大部分的重要鸿沟上用三个积分的应力鸿沟前提来代替准确的应力鸿沟前提(公式2-15),就会影响大部分区域的应力散布,会使问题的解答精度缺少.【3-2】假如在某一应力鸿沟问题中,除了一个小鸿沟前提,均衡微分方程和其它的应力鸿沟前提都已知足,试证:在最后的这个小鸿沟上,三个积分的应力鸿沟前提必定是天然知足的,固而可以不必校核.【解答】区域内的每一渺小单元均知足均衡前提,应力鸿沟前提本质上是鸿沟上微分体的均衡前提,即外力(面力)与内力(应力)的均衡前提.研讨对象整体的外力是知足均衡前提的,其它应力鸿沟前提也都知足,那么在最后的这个次要鸿沟上,三个积分的应力鸿沟前提是天然知足的,因而可以不必校核.【3-3】假如某一应力鸿沟问题中有m 个重要鸿沟和n 个小鸿沟,试问在重要鸿沟和小鸿沟上各应知足什么类型的应力鸿沟前提,各有几个前提?【解答】在m 个重要鸿沟上,每个鸿沟应有2个准确的应力鸿沟前提,公式(2-15),共2m 个;在n 个次要鸿沟上,假如能知足准确应力鸿沟前提,则有2n 个;假如不克不及知足公式(2-15)的准确应力鸿沟前提,则可以用三个静力等效的积分鸿沟前提来代替2个准确应力鸿沟前提,共3n 个.【3-4】试考核应力函数3ay Φ=在图3-8所示的矩形板和坐标系中能解决什么问题(体力不计)?【解答】⑴相容前提:不管系数a 取何值,应力函数3ay Φ=总能知足应力函数暗示的相容方程,式(2-25).⑵求应力分量当体力不计时,将应力函数Φ代入公式(2-24),得6,0,0x y xy yx ay σσττ====⑶考核鸿沟前提高低鸿沟上应力分量均为零,故高低鸿沟上无面力. 阁下鸿沟上;当a>0时,考核x σ散布情形,留意到0xy τ=,故y 向无面力 左端:0()6x x x f ay σ=== ()0y h ≤≤ ()0y xy x f τ===右端:()6x x x l f ay σ=== (0)y h ≤≤ ()0y xy x l f τ=== 应力散布如图所示,当lh 时运用圣维南道理可以将散布的面力,等效为主矢,主矩xf xf主矢的中间在矩下鸿沟地位.即本题情形下,可解决各类偏幸拉伸问题.偏幸距e :因为在A 点的应力为零.设板宽为b,分散荷载p 的偏幸距e :2()0/6/6x A p pee h bh bh σ=-=⇒= 同理可知,当a <0时,可以解决偏幸紧缩问题. 【3-5】取知足相容方程的应力函数为:⑴2,ax y Φ=⑵2,bxy Φ=⑶3,cxy Φ=试求出应力分量(不计体力),画出图3-9所示弹性体鸿沟上的面力散布,并在小鸿沟上暗示出面力的主矢量和主矩.【解答】(1)由应力函数2ax y Φ=,得应力分量表达式0,2,2x y xy yx ay ax σσττ====-考核鸿沟前提,由公式(2-15)()()()()x yx s x y xy s y l m f s m l f s στστ⎧+=⎪⎨+=⎪⎩①重要鸿沟,上鸿沟2hy =-上,面力为()22=-=x hf y ax ()2y h f y ah =-=②重要鸿沟,下鸿沟2hy =,面力为y()2,2x h f y ax ==- ()2y hf y ah ==③次要鸿沟,左鸿沟x=0上,面力的主矢,主矩为 x 向主矢:/20/2()0h x x x h F dy σ=-=-=⎰y 向主矢:/20/2()0h y xy x h F dy τ=-=-=⎰主矩:/20/2()0h x x h M ydy σ=-=-=⎰次要鸿沟,右鸿沟x=l 上,面力的主矢,主矩为 x 向主矢:/2/2()0h x x x l h F dy σ=-'==⎰ y 向主矢:/2/2/2/2()(2)2h h y xy x l h h F dy al dy alh τ=--'==-=-⎰⎰主矩:/2/2()0h x x l h M ydy σ=-==⎰弹性体鸿沟上面力散布及次要鸿沟面上面力的主矢,主矩如图所示 ⑵2bxy Φ=将应力函数代入公式(2-24),得应力分量表达式2x bx σ=,0y σ=,2xy yx by ττ==-考核应力鸿沟前提,重要鸿沟,由公式(2-15)得 在2h y =-重要鸿沟,上鸿沟上,面力为,022x y h h f y bh f y ⎛⎫⎛⎫=-==-= ⎪ ⎪⎝⎭⎝⎭在2h y =,下鸿沟上,面力为,022x y h h f y bh f y ⎛⎫⎛⎫==-== ⎪ ⎪⎝⎭⎝⎭在次要鸿沟上,散布面力可按(2-15)盘算,面里的主矢.主矩可经由过程三个积分鸿沟前提求得:在左鸿沟x=0,面力散布为()()00,02x y f x f x by ==== 面力的主矢.主矩为 x 向主矢:()2020h h x x x F dy σ=-=-=⎰y 向主矢:()()22002220hh h h y xy x x F dy by dy τ==--=-=--=⎰⎰主矩;/20/2()0h x x h M ydy σ=-=-=⎰在右鸿沟x=l 上,面力散布为Oxy()()2,2x y f x l bl f x l by ====-面力的主矢.主矩为 x 向主矢:()/2/2/2/222h h x x x lh h F dy bldy blh σ=--'===⎰⎰y 向主矢:()()/2/2/2/2'20h h y xy x l h h F dy by dy τ=--==-=⎰⎰主矩:()/2/2/2/2'20h h x x l h h M ydy blydy σ=--===⎰⎰弹性体鸿沟上的面力散布及在次要上面力的主矢和主矩如图所示ahxyah(3)3cxy Φ=将应力函数代入公式(2-24),得应力分量表达式26,0,3x y xy yx cxy cy σσττ====-考核应力鸿沟前提,在重要鸿沟上应准确知足式(2-15) ①2h y =-上边界上,面力为23,0242x y h h f y ch f y ⎛⎫⎛⎫=-==-= ⎪ ⎪⎝⎭⎝⎭②hy=2下边界上,面力为 23,0242x y h h f y ch f y ⎛⎫⎛⎫==-== ⎪ ⎪⎝⎭⎝⎭次要鸿沟上,散布面力可按(2-15)盘算,面力的主矢.主矩可经由过程三个积分鸿沟求得:③左鸿沟x=0上,面力散布为。
弹性力学简明教程(第四版)_第三章_课后作业题答案

第三章 平面问题的直角坐标解答【3-4】试考察应力函数ay 3在图3-8所示的矩形板和坐标系中能解决什么问题(体力不计)?【解答】⑴相容条件:不论系数a 取何值,应力函数 a y 3总能满足应 力函数表示的相容方程,式(2-25).⑵求应力分量当体力不计时,将应力函数代入公式(2-24),得⑶考察边界条件上下边界上应力分量均为零,故上下边界上无面力 左右边界上;主矢的中心在矩下边界位置。
即本题情况下,可解决各种偏心拉伸问题 偏心距e :e :P因为在A 点的应力为零。
设板宽为b ,集中荷载p 的偏心距e :同理可知,当a <0时,可以解决偏心压缩问题x6ay, y 0, xyyx应力分布如图所示,当 主矢,主矩l? h 时应用圣维南原理可以将分布的面力,等效为右端:f xx xl6ay (0 y h)h _l当a>0时,考察x 分布情况,注意到 0,故 y 向无面力左端:f x ( x )x 0 6ayxyx 0(x )A P pebh bh 2/6e h/6 图3-■xxyh(xy )x l 0Oyf②在x=0 , x=l的次要边界上,面力分别为:12FIy -3 , f yh因此,各边界上的面力分布如图所示:③在x=0,x=l的次要边界上,面力可写成主矢、主矩形式:x=0上x=l上【3-6】试考察应力函数一xy(3h24y2),能满足相容方程,并求出应2h力分量(不计体力),画出图3-9所示矩形体边界上的面力分布(在小边界上画出面力的主矢量和主矩),指出该应力函数能解决的问题。
h/2h/2| l【解答】(1)将应力函数代入相容方程(2-25)4 4 4石2 2 2 40,显然满足x x y y(2)将代入式(2-24),得应力分量表达式12Fxy 0x 厂3 , y 0, xy yxh3h(i 帶(3)由边界形状及应力分量反推边界上的面力:号,应精确满足应力边界条件式①在主要边界上(上下边界)上,y (2-15),应力y y h/2 0,yxyh/2 0因此,在主要边界yh h2上,无任何面力,即f x y 20, f y y x 0: f x0f y 3Fy2h3Fi2h4y2h2xO(I?h)图3-(a ) (b ) 因此,该应力函数可解决悬臂梁在自由端受集中力F 作用的问题【3-8】设有矩形截面的长竖柱,密度为 p,在一边侧面上受 【解答】采用半逆法求解。
徐芝纶编《弹性力学简明教程》第四版全部章节课后答案详解

徐芝纶编《弹性力学简明教程》第四版全部章节课后答案详解弹性力学简明教程(第四版)课后习题解答徐芝纶第一章绪论【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体?【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。
【解答】均匀的各项异形体如:竹材,木材。
非均匀的各向同性体如:混凝土。
【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体?【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。
【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。
【1-3】五个基本假定在建立弹性力学基本方程时有什么作用?【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。
引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。
因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。
完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。
这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。
均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。
各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。
小变形假定:假定位移和变形是微小的。
亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。
弹性力学简明教程(第四版)第三章课后习题答案

③在 x=0,x=l 的次要边界上,面力可写成主矢、主矩形式: x=0 上 x=l 上
x向主矢:FN1 = y向主矢:FS1 = 主矩:M 1 =
h/2 -h/2
h/2
h / 2 h/2
f x dy 0, f y dy F ,
FN2 FS2
h/2
h / 2 h/2
h / 2
④在次要边界 x l 上,分布面力为
f x x l x x l f y x l xy
主矩: 弹性体边界上的面力分布及在次要上面力的主矢和主矩如图所示
M'
x x l ydy h / 2 2blydy 0 h / 2
(3) cxy
3
将应力函数代入公式(2-24) ,得应力分量表达式
x 6cxy, y 0, xy yx 3cy 2
考察应力边界条件,主要边界,由公式(2-15)得
y
在
h h h f x y bh, f y y 0 2 2 2 主要边界,上边界上,面力为
在
y
h h h f x y bh, f y y 0 2 2 2 ,下边界上,面力为
面力的主矢、主矩为 x 向主矢
Fx
x x l dy h / 2 6clydy 0 h / 2
h/2 h / 2
h/2
h/2
y 向主矢:
Fy
h/2
y x l
dy
h/2
h/2
h / 2
ch 3cy dy 1 4
2
3
主矩:
弹性力学简明教程(第四版)课后习题解答

弹性力学简明教程(第四版)课后习题解答徐芝纶第一章绪论【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体?【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。
【解答】均匀的各项异形体如:竹材,木材。
非均匀的各向同性体如:混凝土。
【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体?【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。
【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。
【1-3】五个基本假定在建立弹性力学基本方程时有什么作用?【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。
引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。
因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。
完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。
这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。
均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。
各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。
小变形假定:假定位移和变形是微小的。
亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 平面问题的直角坐标解答【3-4】试考察应力函数3ay Φ=在图3-8所示的矩形板和坐标系中能解决什么问题(体力不计)?【解答】⑴相容条件:不论系数a 取何值,应力函数3ay Φ=总能满足应力函数表示的相容方程,式(2-25).⑵求应力分量当体力不计时,将应力函数Φ代入公式(2-24),得6,0,0x y xy yx ay σσττ====⑶考察边界条件上下边界上应力分量均为零,故上下边界上无面力. 左右边界上;当a>0时,考察x σ分布情况,注意到0xy τ=,故y 向无面力 左端:0()6x x x f ay σ=== ()0y h ≤≤ ()0y xy x f τ===右端:()6x x x l f ay σ=== (0)y h ≤≤ ()0y xy x l f τ===应力分布如图所示,当l h ?时应用圣维南原理可以将分布的面力,等效为主矢,主矩xf xf主矢的中心在矩下边界位置。
即本题情况下,可解决各种偏心拉伸问题。
偏心距e :因为在A 点的应力为零。
设板宽为b ,集中荷载p 的偏心距e :2()0/6/6x A p pee h bh bh σ=-=⇒=同理可知,当a <0时,可以解决偏心压缩问题。
【3-6】试考察应力函数223(34)2Fxy h y hΦ=-,能满足相容方程,并求出应力分量(不计体力),画出图3-9所示矩形体边界上的面力分布(在小边界上画出面力的主矢量和主矩),指出该应力函数能解决的问题。
【解答】(1)将应力函数代入相容方程(2-25)444422420∂Φ∂Φ∂Φ++=∂∂∂∂x x y y,显然满足 (2)将Φ代入式(2-24),得应力分量表达式312,0,x y Fxyhσσ=-=2234(1)2==--xy yx F y h h ττ (3)由边界形状及应力分量反推边界上的面力: ①在主要边界上(上下边界)上,2hy =±,应精确满足应力边界条件式(2-15),应力()()/2/20,0y yx y h y h στ=±=±==因此,在主要边界2h y =±上,无任何面力,即0,022x y h h f y f y ⎛⎫⎛⎫=±==±= ⎪ ⎪⎝⎭⎝⎭②在x=0,x=l 的次要边界上,面力分别为:22340:0,1-2x y F y x f f h h ⎛⎫=== ⎪⎝⎭3221234:,12x y Fly F y x l f f h h h⎛⎫==-=-- ⎪⎝⎭因此,各边界上的面力分布如图所示:③在x=0,x=l 的次要边界上,面力可写成主矢、主矩形式:xyl/2h /2h (l h ?x=0上 x=l 上1212h/2/2/2/2h/2/2/2/2h/2/212-h/2/2=0, 0=, =0, h N x N x h h h S y S y h h h x x h x F f dy F f dy y F f dy F F f dy F M f ydy M f ydy Fl-----======-===-⎰⎰⎰⎰⎰⎰向主矢:向主矢:主矩:因此,可以画出主要边界上的面力,和次要边界上面力的主矢与主矩,如图:(a) (b)因此,该应力函数可解决悬臂梁在自由端受集中力F 作用的问题。
【3-8】设有矩形截面的长竖柱,密度为ρ,在一边侧面上受均布剪力q (图3-10),试求应力分量。
【解答】采用半逆法求解。
由材料力学解答假设应力分量的函数形式。
(1)假定应力分量的函数形式。
根据材料力学,弯曲应力y σ主要与截面的弯矩有关,剪应力xy τ主要与截面的剪力有关,而挤压应力x σ主要与横向荷载有关,本题横向荷载为零,则0x σ=(2)推求应力函数的形式将0x σ=,体力0,x y f f g ρ==,代入公式(2-24)有220x x f x yσ∂Φ=-=∂对y 积分,得()f x y∂Φ=∂ (a ) ()()1yf x f x Φ=+ (b )其中()()1,f x f x 都是x 的待定函数。
(3)由相容方程求解应力函数。
xybgρh()h b ?q图3-10将(b )式代入相容方程(2-25),得()()441440d f x d f x y dx dx+= (c ) 在区域内应力函数必须满足相容方程,(c )式为y 的一次方程,相容方程要求它有无数多个根(全竖柱内的y 值都应满足它),可见其系数与自由项都必须为零,即()()44140,0d f x d f x dx dx== 两个方程要求()()32321,f x Ax Bx Cx f x Dx Ex =++=+ (d )()f x 中的常数项,()1f x 中的常数项和一次项已被略去,因为这三项在Φ的表达式中成为y 的一次项及常数项,不影响应力分量。
将(d )式代入(b )式,得应力函数()()3232y Ax Bx Cx Dx Ex Φ=++++ (e )(4)由应力函数求应力分量220x x f x yσ∂Φ=-=∂ (f )226262y y f y Axy By Dx E gy xσρ∂Φ=-=+++-∂ (g)2232xyAx Bx C x yτ∂Φ=-=---∂∂ (h)(5)考察边界条件利用边界条件确定待定系数A 、B 、C 、D 、E 。
主要边界0x =上(左):()000,()0x xy x x στ====将(f ),(h )代入()00x x σ==,自然满足0()0xy x C τ==-= (i )主要边界x b =上,()0x x b σ==,自然满足()xy x b q τ==,将(h )式代入,得2()32xy x b Ab Bb C q τ==---= (j )在次要边界0y =上,应用圣维南原理,写出三个积分的应力边界条件:()200()62320bby y dx Dx E dx Db Eb σ==+=+=⎰⎰ (k )()3200()6220bby y xdx Dx E xdx Db Eb σ==+=+=⎰⎰ (l )()23200()320b b yx y dx Ax Bx C dx Ab Bb Cb τ==---=---=⎰⎰ (m )由式(i ),(j),(k ),(l ),(m )联立求得2, , 0q qA B C D E b b=-====代入公式(g ),(h)得应力分量230, 13, 2x y xy qx x q gy x x b b b b σσρτ⎛⎫⎛⎫==--=- ⎪ ⎪⎝⎭⎝⎭【3-11】设图3-13中的三角形悬臂梁只受重力作用,而梁的密度为ρ,试用纯三次式的应力函数求解。
【解答】采用半逆解法求解(1) 检验应力函数是否满足相容方程(2-25)设应力函数3223=Ax Bx y Cxy Dy Φ+++,不论上式中的系数如何取值,纯三次式的应力函数总能满足相容方程(2-25)(2) 由式(2-24)求应力分量由体力分量0,x y f f g ρ==,将应力函数代入公式(2-24)得应力分量:2226x x f x Cx Dy yσ∂Φ=-=+∂ (a )2262y y f y Ax By gy yσρ∂Φ=-=+-∂ (b )222xy Bx Cy x yτ∂Φ=-=--∂∂ (c )(3)考察边界条件:由应力边界条件确定待定系数。
①对于主要边界0y =,其应力边界条件为:0()0y y σ==,0()0yx y τ== (d )将式(d )代入式(b ),(c ),可得0=0A B =, (e )②对于主要边界tan y x α=(斜面上),应力边界条件:在斜面上没有面力作用,即0x y f f ==,该斜面外法线方向余弦为,sin l α=-,cos m α=.由公式(2-15),得应力边界条件 tan tan tan tan sin ()cos ()0sin ()cos ()0x y x yx y x xy y x y y x ααααασατατασ====-⋅+⋅=⎫⎬-⋅+⋅=⎭(f )将式(a )、(b )、(c )、(e )代入式(f ),可解得2cot ,cot 23g g C D ρραα==- (g )将式(e )、(g )代入公式(a )、(b )、(c ),得应力分量表达式:2cot 2cot cot x y xy gx gy gygy σραρασρτρα⎧=-⎪=-⎨⎪=-⎩ 【分析】本题题目已经给定应力函数的函数形式,事实上,也可通过量纲分析法确定应力函数的形式。
按量纲分析法确定应力函数的形式:三角形悬臂梁内任何一点的应力与x y g αρ,,和有关。
由于应力分量的量纲是12L MT --,而,x y 的量纲是L ,g ρ的量纲是12L MT --,又是量纲—的数量,因此,应力分量的表达式只可能是x 和y 的纯一项式,即应力分量的表达式只可能是,A gx B gy ρρ这两种项的结合,其中A ,B 是量纲一的量,只与α有关。
应力函数又比应力分量的长度量纲高二次,即为x 和y 的纯三次式,故可假设应力函数的形式为3223Ax Bx y Cxy Dy Φ=+++。
如有侵权请联系告知删除,感谢你们的配合!。