23.1.1 图形的旋转同步练习(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23.1.1图形的旋转
知识点
在平面内,把一个图形绕着某______沿着某个方向转动______的图形变换叫做旋转.这个点O叫做______,转动的角叫做______.因此,图形的旋转是由______和_____及_ 决定的.
一.选择题
1. 下列物体的运动不是旋转的是()
A.坐在摩天轮里的小朋友B.正在走动的时针
C.骑自行车的人D.正在转动的风车叶片
2.在26个英文大写字母中,通过旋转180°后能与原字母重合的有().
A.6个B.7个C.8个D.9个
3.同学们曾玩过万花筒吗?如图是看到的万花筒的一个图案,图中所有的小三角形均是全等的等边三角形,其中的菱形AEFG可以看成是把菱形ABCD以点A为中心()得到的.
A、顺时针旋转60°
B、顺时针旋转120°
C、逆时针旋转60°
D、逆时针旋转120°
(第3题) (第4题) (第5题)
4. 如图可以看作是一个等腰直角三角形旋转若干次而生成的则每次旋转的度数可以是()
A.900 B.600 C.450 D.300
5.如图,图形旋转一定角度后能与自身重合,则旋转的角度可能是( )
A、300
B、600
C、900
D、1200
二、填空
6.如果图形上的点P经过旋转变为点P′,那么这两点叫做这个旋转的______.
7.如图,△AOB旋转到△A′OB′的位置.若∠AOA′=90°,则旋转中心是点______.旋转角是______.点A的对应点是______.线段AB的对应线段是______.∠B的对应角是______.∠BOB′=______.
A B C
B'
A'
(第7题) (第8题) (第9题) 8.如图,△ABC 绕着点O 旋转到△DEF 的位置,则旋转中心是______.旋转角是
______.AO =______,AB =______,∠ACB =∠______.
9.如图,正三角形ABC 绕其中心O 至少旋转______度,可与其自身重合.
10.一个平行四边形ABCD ,如果绕其对角线的交点O 旋转,至少要旋转______度,才可
与其自身重合.
11.钟表的运动可以看作是一种旋转现象,那么分针匀速旋转时,它的旋转中心是钟表的旋
转轴的轴心,经过45分钟旋转了______度.
12.如图,把△ABC 绕C 顺时针旋转350,得到△A 'B 'C ,若∠BCA '=1000,则∠B /CA =_______。
13.如图7,P 是等边△ABC 内一点,△BMC 是由△BP A 旋转所得,则∠PBM =______°.
(第12题) (第13题) (第14题)
14.一块等边三角形木块,边长为1,如图,•现将木块沿水平线翻滚五个三角形,那么B 点从开始至结束所走过的路径长是
三.解答
15.阅读下面材料:
如图1,把△ABC 沿直线BC 平行移动线段BC 的长度,可以变到△ECD 的位置. 如图2,以BC 为轴把△ABC 翻折180°,可以变到△DBC 的位置.
(1) (2) (3) (4
如图3,以A 点为中心,把△ABC 旋转90°,可以变到△AED 的位置,像这样,•其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不
改变形状和大小的图形变换,叫做三角形的全等变换.回答下列问题
如图4,在正方形ABCD中,E是AD的中点,F是BA延长线上一点,AF=1
2 AB.
(1)在如图4所示,可以通过平行移动、翻折、旋转中的哪一种方法,•使△ABE移到△ADF的位置?
(2)指出如图4所示中的线段BE与DF之间的关系.
16.两个边长为1的正方形,如图所示,•让一个正方形的顶点与另一个正方形中心重合,不
难知道重合部分的面积为1
4
,现把其中一个正方形固定不动,•另一个正方形绕其中心旋
转,问在旋转过程中,两个正方形重叠部分面积是否发生变化?•说明理由.
参考答案
知识点
点O,一个角度,旋转中心,旋转角,旋转中心、旋转角、旋转方向
一.选择题
CBDCC
二、填空
6.对应点;
7.O,90°,A′,A′B′,∠B′,90°;
8.O,∠AOD,DO,ED, ∠DFE; 9.120°10.180°
11.270°12.100°13.60°14.
三.解答
15略
16. 解(1)通过旋转,即以点A为旋转中心,将△ABE逆时针旋转90°.(2)BE=•DF,BE⊥DF
解:面积不变.
理由:设任转一角度,如图所示.
在Rt△ODD′和Rt△OEE′中
∠ODD′=∠OEE′=90°
∠DOD′=∠EOE′=90°-∠BOE
OD=OD
∴△ODD′≌△OEE′
∴S△ODD`=S△OEE`
∴S四边形OE`BD`=S正方形OEBD=1 4