全国高考物理真题分类汇编万有引力和天体运动

合集下载

高考物理试题(解析版)分类汇编:05-万有引力和天体运动

高考物理试题(解析版)分类汇编:05-万有引力和天体运动

高中物理学习材料(马鸣风萧萧**整理制作)2015年高考物理真题分类汇编:万有引力和天体运动(2015新课标I-21). 我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4m 高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落,已知探测器的质量约为1.3×103kg ,地球质量约为月球质量的81倍,地球半径约为月球半径的3.7倍,地球表面的重力加速度约为9.8m/s 2,则此探测器A. 着落前的瞬间,速度大小约为8.9m/sB. 悬停时受到的反冲作用力约为2×103NC. 从离开近月圆轨道这段时间内,机械能守恒D. 在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度【答案】 B 、D【考点】万有引力定律及共应用;环绕速度【解析】在中心天体表面上万有引力提供重力:GMm R 2 = mg , 则可得月球表面的重力加速度 g 月 = G M 81(R 3.7)2 ≈ 0.17g 地 = 1.66m/s 2 .根据平衡条件,探测器悬停时受到的反作用力F = G 探 = m 探g 月 ≈ 2×103N ,选项B 正确;探测器自由下落,由V 2=2g 月h ,得出着落前瞬间的速度v ≈3.6m/s ,选项A 错误;从离开近月圆轨道,关闭发动机后,仅在月球引力作用下机械能守恒,而离开近月轨道后还有制动悬停,发动机做了功,机械能不守恒,故选项C 错误;在近月圆轨道万有引力提供向心力:GMm R 2 = m v 2R ,解得运行的线速度V 月 = √GM 月R 月 = √3.7GM 地81R 地 < √GM 地R 地 ,小于近地卫星线速度,选项D 正确。

【2015新课标II-16】16. 由于卫星的发射场不在赤道上,同步卫星发射后需要从转移轨道经过调整再进入地球同步轨道。

当卫星在转移轨道上飞经赤道上空时,发动机点火,给卫星一附加速度,使卫星沿同步轨道运行。

2021年高考物理真题分类汇编:万有引力和天体运动

2021年高考物理真题分类汇编:万有引力和天体运动

高考物理真题分类汇编:万有引力和天体运动(2015新课标I-21). 我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4m高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落,已知探测器的质量约为1.3×103kg,地球质量约为月球质量的81倍,地球半径约为月球半径的3.7倍,地球表面的重力加速度约为9.8m/s2,则此探测器A. 着落前的瞬间,速度大小约为8.9m/sB. 悬停时受到的反冲作用力约为2×103NC. 从离开近月圆轨道这段时间内,机械能守恒D. 在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度【答案】B、D【考点】万有引力定律及共应用;环绕速度【解析】在中心天体表面上万有引力提供重力:GMmR2= mg , 则可得月球表面的重力加速度g月=G M81(R3.7)2≈ 0.17g地= 1.66m/s2 .根据平衡条件,探测器悬停时受到的反作用力F = G探= m探g月≈ 2×103N,选项B正确;探测器自由下落,由V2=2g月h ,得出着落前瞬间的速度v ≈3.6m/s ,选项A错误;从离开近月圆轨道,关闭发动机后,仅在月球引力作用下机械能守恒,而离开近月轨道后还有制动悬停,发动机做了功,机械能不守恒,故选项C错误;在近月圆轨道万有引力提供向心力:GMmR2= m v2R,解得运行的线速度V月= √GM月R月= √3.7GM地81R地< √GM地R地,小于近地卫星线速度,选项D正确。

【2015新课标II-16】16. 由于卫星的发射场不在赤道上,同步卫星发射后需要从转移轨道经过调整再进入地球同步轨道。

当卫星在转移轨道上飞经赤道上空时,发动机点火,给卫星一附加速度,使卫星沿同步轨道运行。

已知同步卫星的环绕速度约为3.1x103/s,某次发射卫星飞经赤道上空时的速度为1.55x103/s,此时卫星的高度与同步轨道的高度相同,转移轨道和同步轨道的夹角为30°,如图所示,发动机给卫星的附加速度的方向和大小约为A. 西偏北方向,1.9x103m/s B.东偏南方向,1.9x103m/sC. 西偏北方向,2.7x103m/sD.东偏南方向,2.7x103m/s【答案】B考点:速度的合成与分解【2015重庆-2】. 宇航员王亚平在“天宫1号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象。

高考物理万有引力与航天真题汇编(含答案)含解析

高考物理万有引力与航天真题汇编(含答案)含解析

高考物理万有引力与航天真题汇编(含答案)含解析一、高中物理精讲专题测试万有引力与航天1.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度; (2)该星球的密度;(3)该星球的“第一宇宙速度”. 【答案】(1)02v g t = (2) 032πv RGt ρ=(3)02v Rv t= 【解析】(1) 根据竖直上抛运动规律可知,小球上抛运动时间02v t g= 可得星球表面重力加速度:02v g t=. (2)星球表面的小球所受重力等于星球对小球的吸引力,则有:2GMmmg R =得:2202v R gR M G Gt ==因为343R V π=则有:032πv M V RGtρ== (3)重力提供向心力,故2v mg m R=该星球的第一宇宙速度02v Rv gR t==【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.2.某双星系统中两个星体 A 、B 的质量都是 m ,且 A 、B 相距 L ,它们正围绕两者连线上的某一点做匀速圆周运动.实际观测该系统的周期 T 要小于按照力学理论计算出的周期理论值 T 0,且= k () ,于是有人猜测这可能是受到了一颗未发现的星体 C 的影响,并认为 C 位于双星 A 、B 的连线中点.求: (1)两个星体 A 、B 组成的双星系统周期理论值; (2)星体C 的质量.【答案】(1);(2)【解析】 【详解】(1)两星的角速度相同,根据万有引力充当向心力知:可得:两星绕连线的中点转动,则解得:(2)因为C 的存在,双星的向心力由两个力的合力提供,则再结合:= k可解得:故本题答案是:(1);(2)【点睛】本题是双星问题,要抓住双星系统的条件:角速度与周期相同,再由万有引力充当向心力进行列式计算即可.3.假设在月球上的“玉兔号”探测器,以初速度v 0竖直向上抛出一个小球,经过时间t 小球落回抛出点,已知月球半径为R ,引力常数为G . (1)求月球的密度.(2)若将该小球水平抛出后,小球永不落回月面,则抛出的初速度至少为多大? 【答案】(1)032v GRt π (202Rv t【解析】 【详解】(1)由匀变速直线运动规律:02gtv = 所以月球表面的重力加速度02v g t=由月球表面,万有引力等于重力得2GMmmg R =GgR M 2= 月球的密度03=2v M V GRtρπ= (2)由月球表面,万有引力等于重力提供向心力:2v mg m R=可得:02Rv v t=4.利用万有引力定律可以测量天体的质量. (1)测地球的质量英国物理学家卡文迪许,在实验室里巧妙地利用扭秤装置,比较精确地测量出了引力常量的数值,他把自己的实验说成是“称量地球的质量”.已知地球表面重力加速度为g ,地球半径为R ,引力常量为G .若忽略地球自转的影响,求地球的质量. (2)测“双星系统”的总质量所谓“双星系统”,是指在相互间引力的作用下,绕连线上某点O 做匀速圆周运动的两个星球A 和B ,如图所示.已知A 、B 间距离为L ,A 、B 绕O 点运动的周期均为T ,引力常量为G ,求A 、B 的总质量.(3)测月球的质量若忽略其它星球的影响,可以将月球和地球看成“双星系统”.已知月球的公转周期为T 1,月球、地球球心间的距离为L 1.你还可以利用(1)、(2)中提供的信息,求月球的质量.【答案】(1)2gR G ;(2)2324L GT π;(3)2321214L gR GT G π-. 【解析】 【详解】(1)设地球的质量为M ,地球表面某物体质量为m ,忽略地球自转的影响,则有2Mm G mg R =解得:M =2gR G; (2)设A 的质量为M 1,A 到O 的距离为r 1,设B 的质量为M 2,B 到O 的距离为r 2, 根据万有引力提供向心力公式得:2121122()M M G M r L Tπ=, 2122222()M M GM r L T π=, 又因为L =r 1+r 2解得:231224L M M GTπ+=; (3)设月球质量为M 3,由(2)可知,2313214L M M GT π+=由(1)可知,M =2gR G解得:23213214L gR M GT Gπ=-5.我国预计于2022年建成自己的空间站。

2024全国高考真题物理汇编:万有引力与宇宙航行章节综合

2024全国高考真题物理汇编:万有引力与宇宙航行章节综合

2024全国高考真题物理汇编万有引力与宇宙航行章节综合一、单选题1.(2024广西高考真题)潮汐现象出现的原因之一是在地球的不同位置海水受到月球的引力不相同。

图中a 、b 和c 处单位质量的海水受月球引力大小在()A .a 处最大B .b 处最大C .c 处最大D .a 、c 处相等,b 处最小2.(2024全国高考真题)2024年5月,嫦娥六号探测器发射成功,开启了人类首次从月球背面采样返回之旅。

将采得的样品带回地球,飞行器需经过月面起飞、环月飞行、月地转移等过程。

月球表面自由落体加速度约为地球表面自由落体加速度的16。

下列说法正确的是()A .在环月飞行时,样品所受合力为零B .若将样品放置在月球正面,它对月球表面压力等于零C .样品在不同过程中受到的引力不同,所以质量也不同D .样品放置在月球背面时对月球的压力,比放置在地球表面时对地球的压力小3.(2024安徽高考真题)2024年3月20日,我国探月工程四期鹊桥二号中继星成功发射升空。

当抵达距离月球表面某高度时,鹊桥二号开始进行近月制动,并顺利进入捕获轨道运行,如图所示,轨道的半长轴约为51900km 。

后经多次轨道调整,进入冻结轨道运行,轨道的半长轴约为9900km ,周期约为24h 。

则鹊桥二号在捕获轨道运行时()A .周期约为144hB .近月点的速度大于远月点的速度C .近月点的速度小于在冻结轨道运行时近月点的速度D .近月点的加速度大于在冻结轨道运行时近月点的加速度4.(2024全国高考真题)天文学家发现,在太阳系外的一颗红矮星有两颗行星绕其运行,其中行星GJ1002c 的轨道近似为圆,轨道半径约为日地距离的0.07倍,周期约为0.06年,则这颗红矮星的质量约为太阳质量的()A .0.001倍B .0.1倍C .10倍D .1000倍5.(2024浙江高考真题)与地球公转轨道“外切”的小行星甲和“内切”的小行星乙的公转轨道如图所示,假设这些小行星与地球的公转轨道都在同一平面内,地球的公转半径为R ,小行星甲的远日点到太阳的距离为R 1,小行星乙的近日点到太阳的距离为R 2,则()A .小行星甲在远日点的速度大于近日点的速度B .小行星乙在远日点的加速度小于地球公转加速度C.小行星甲与乙的运行周期之比12T T =D .甲乙两星从远日点到近日点的时间之比12t t6.(2024湖北高考真题)太空碎片会对航天器带来危害。

万有引力与航天(解析版)--五年(2019-2023)高考物理真题分项汇编(全国通用)

万有引力与航天(解析版)--五年(2019-2023)高考物理真题分项汇编(全国通用)

专题05万有引力与航天一、单选题1(2023·山东·统考高考真题)牛顿认为物体落地是由于地球对物体的吸引,这种吸引力可能与天体间(如地球与月球)的引力具有相同的性质、且都满足F∝Mmr2。

已知地月之间的距离r大约是地球半径的60倍,地球表面的重力加速度为g,根据牛顿的猜想,月球绕地球公转的周期为()A.30πr gB.30πgr C.120πrg D.120πgr【答案】C【详解】设地球半径为R,由题知,地球表面的重力加速度为g,则有mg=G M地m R2月球绕地球公转有G M地m月r2=m月4π2T2r r=60R联立有T=120πr g故选C。

2(2023·北京·统考高考真题)2022年10月9日,我国综合性太阳探测卫星“夸父一号”成功发射,实现了对太阳探测的跨越式突破。

“夸父一号”卫星绕地球做匀速圆周运动,距地面高度约为720km,运行一圈所用时间约为100分钟。

如图所示,为了随时跟踪和观测太阳的活动,“夸父一号”在随地球绕太阳公转的过程中,需要其轨道平面始终与太阳保持固定的取向,使太阳光能照射到“夸父一号”,下列说法正确的是()A.“夸父一号”的运行轨道平面平均每天转动的角度约为1°B.“夸父一号”绕地球做圆周运动的速度大于7.9km/sC.“夸父一号”绕地球做圆周运动的向心加速度大于地球表面的重力加速度D.由题干信息,根据开普勒第三定律,可求出日地间平均距离【答案】A【详解】A.因为“夸父一号”轨道要始终保持要太阳光照射到,则在一年之内转动360°角,即轨道平面平均每天约转动1°,故A正确;B.第一宇宙速度是所有绕地球做圆周运动的卫星的最大环绕速度,则“夸父一号”的速度小于7.9km/s,故B错误;C.根据=maG Mmr2可知“夸父一号”绕地球做圆周运动的向心加速度小于地球表面的重力加速度,故C错误;D.“夸父一号”绕地球转动,地球绕太阳转动,中心天体不同,则根据题中信息不能求解地球与太阳的距离,故D错误。

高考物理试题分类汇编及答案解析万有引力与航天

高考物理试题分类汇编及答案解析万有引力与航天

3. (北京卷, 18)如图所示,一颗人造卫星原来在椭圆轨道
进入轨道 2 做匀速圆周运动下列说法正确的是(
)。
1 绕地球 E 运行,在 P 变轨后
A. 不论在轨道 1 还是在轨道 2 运行,卫星在 P 点的速度都 相同
B.不论在轨道 1 还是在轨道 2 运行, 卫星在 P 点的加速度 都相同
C.卫星在轨道 1 的任何位置都具有相同加速度
卫星运行在赤道上空 35786km的地球同步轨道上。设东方红一号在远地点的加速度为 a1,
东方红二号的加速度为 a2,固定在地球赤道上的物体随地球自转的加速度为 a3,则 a1、a2、
a3 的大小关系为
A . a2>a1>a3
B . a3>a2>a1
C. a3>a1>a2 D. a1>a2>a3
【答案】 D
A. TA>TB
B. EkA>EK b
C. SA= SB 【答案】 AD
D.
RA3 TA2
RB3 TB2
【解析】根据
Mm G r2
4 π2 m T 2 r 知,轨道半径越大,周期越大,所以
TA>TB,故 A 正确;由
Mm
v2
G r2
m 知, v r
GM ,所以 vB>vA,又因为质量相等,所以 r
A. 1h C. 8h 【答案】 B
B. 4h D. 16h
【解析】地球自转周期变小,卫星要与地球保持同步,则卫星的公转周期也应随之变小,由
Mm
4π2
G r 2 mr T 2 可得 T
4π2r 3 ,则卫星离地球的高度应变小,要
GM
卫星
实现三颗卫星覆盖全球的目的,则卫星周期最小时,由数学几何关

近六年2024-2025年新课标全国卷高考物理试题分类汇总-专题5:万有引力与航天

近六年2024-2025年新课标全国卷高考物理试题分类汇总-专题5:万有引力与航天

2024-2025年新课标全国卷专题分类汇总专题5:万有引力与航天1.(2024课标Ⅱ卷·19题·6分· 中)如图,海王星绕太阳沿椭圆轨道运动,P 为近日点,Q 为远日点,M 、N 为轨道短轴的两个端点,运行的周期为T 0.若只考虑海王星和太阳之间的相互作用,则海王星在从P 经M 、Q 到N 的运动过程中( )A .从P 到M所用的时间等于T 04B .从Q 到N 阶段,机械能渐渐变大C .从P 到Q 阶段,速率渐渐变小D .从M 到N 阶段,万有引力对它先做负功后做正功1.(2024年新课标全国卷III)关于行星运动的规律,下列说法符合史实的是A .开普勒在牛顿定律的基础上,导出了行星运动的规律B .开普勒在天文观测数据的基础上,总结出了行星运动的规律C .开普勒总结出了行星运动的规律,找出了行星根据这些规律运动的缘由D .开普勒总结出了行星运动的规律,发觉了万有引力定律2.(2024年新课标全国卷II)由于卫星的放射场不在赤道上,同步卫星放射后须要从转移轨道经过调整再进入地球同步轨道。

当卫星在转移轨道上飞经赤道上空时,发动机点火,给卫星一附加速度,使卫星沿同步轨道运行。

已知同步卫星的环绕速度约为3.1×103m/s ,某次放射卫星飞经赤道上空时的速度为 1.55×103m/s ,此时卫星的高度与同步轨道的高度相同,转移轨道和同步轨道的夹角为30°,如图所示,发动机给卫星的附加速度的方向和大小约为 A .西偏北方向,1.9×103m/s B .东偏南方向,1.9×103m/s C .西偏北方向,2.7×103m/s D .东偏南方向,2.7×103m/s 3.(2024年新课标全国卷)假设地球是一半径为R 、质量分布匀称的球体。

一矿井深度为d 。

已知质量分布匀称的球壳对壳内物体的引力为零。

矿井底部和地面处的重力加速度大小之比为 A .1- B .1+ C .D .4.(2024年新课标全国卷II)假设地球可视为质量匀称分布的球体。

高考物理万有引力与航天真题汇编(含答案)含解析

高考物理万有引力与航天真题汇编(含答案)含解析

高考物理万有引力与航天真题汇编( 含答案 ) 含分析一、高中物理精讲专题测试万有引力与航天1.“天宫一号”是我国自主研发的目标飞翔器,是中国空间实验室的雏形.2013 年 6 月,“神舟十号”与“天宫一号”成功对接, 6 月 20 日 3 位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞翔器运转周期T,地球半径为R,地球表面的重力加快度为g,“天宫一号”围绕地球做匀速圆周运动,万有引力常量为G.求:(1)地球的密度;(2)地球的第一宇宙速度v;(3)天“宫一号”距离地球表面的高度.【答案】 (1)3g(2)v gR (3)h3gT2 R2R 4 GR42【分析】(1)在地球表面重力与万有引力相等:Mmmg ,GR2M M地球密度:V 4 R33解得:3g4 GR(2)第一宇宙速度是近地卫星运转的速度,mg m v2R v gR(3)天宫一号的轨道半径 r R h,Mm h 42据万有引力供给圆周运动向心力有:G2 m R2,R h T解得:h3gT 2 R2R242.一宇航员站在某质量散布平均的星球表面上沿竖直方向以初速度v0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为R,引力常量为G,求:(1)该星球表面的重力加快度;(2)该星球的密度;(3)该星球的“第一宇宙速度”.【答案】 (1) g 2v0(2)3v0(3)2v0 R t2πRGtvt【分析】(1) 依据竖直上抛运动规律可知,小球上抛运动时间2v 0 tg可得星球表面重力加快度 : g2v 0 .tGMm(2)星球表面的小球所受重力等于星球对小球的吸引力,则有:mgR 2gR 22v 0 R 2 得: MGtG 4 R 3由于 V3M 3v 0 则有:2πRGtV(3)重力供给向心力,故该星球的第一宇宙速度mg m v 2RvgR2v 0Rt【点睛 】此题主要抓住在星球表面重力与万有引力相等和万有引力供给圆周运动向心力,掌握竖直上抛运动规律是正确解题的重点.3. 人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同 一个高度由静止同时开释,两者几乎同时落地.若羽毛和铁锤 是从高度为 h 处着落,经时间 t 落到月球表面.已知引力常量为G ,月球的半径为 R .(1)求月球表面的自由落体加快度大小g 月;(2)若不考虑月球自转的影响,求月球的质量 M 和月球的 “第一宇宙速度 ”大小 v .【答案】( 1) g 月2h 2hR 2 2hRt 2 (2)MGt 2; vt【分析】 【剖析】( 1)依据自由落体的位移时间规律能够直接求出月球表面的重力加快度;( 2)依据月球表面重力和万有引力相等,利用求出的重力加快度和月球半径能够求出月球的质量 M ; 飞翔器近月飞翔时,飞翔器所受月球万有引力供给月球的向心力,进而求出“第一宇宙速度”大小.【详解】(1)月球表面邻近的物体做自由落体运动h =1g 月 t 22月球表面的自由落体加快度大小g 月=2ht 2(2)若不考虑月球自转的影响GMm2 =mg 月R月球的质量 M =2hR 22Gt质量为 m' 的飞翔器在月球表面邻近绕月球做匀速圆周运动m ′g v 2月= m ′R2hR 月球的 “第一宇宙速度 ”大小 v = g 月R =t【点睛】联合自由落体运动规律求月球表面的重力加快度,依据万有引力与重力相等和万有引力提 供圆周运动向心力争解中心天体质量和近月飞翔的速度v .4. 宇航员在某星球表面以初速度 v 0 竖直向上抛出一个物体,物体上涨的最大高度为h.已知该星球的半径为R ,且物体只受该星球的引力作用.求:(1)该星球表面的重力加快度;(2)从这个星球上发射卫星的第一宇宙速度 .【答案】 (1)v 02(2) v 0R2h2h【分析】此题考察竖直上抛运动和星球第一宇宙速度的计算.(1) 设该星球表面的重力加快度为 g ′,物体做竖直上抛运动,则 v 02 2g h 解得,该星球表面的重力加快度 gv 022h(2) 卫星切近星球表面运转,则 mg mv 2R解得:星球上发射卫星的第一宇宙速度Rvg R v2h5. 宇航员站在一星球表面上的某高处,沿水平方向抛出一小球.经过时间 t ,小球落到星 球表面,测得抛出点与落地址之间的距离为L .若抛出时的初速度增大到 2 倍,则抛出点与落地址之间的距离为3L .已知两落地址在同一水平面上,该星球的半径为R ,万有引力常量为 G ,求该星球的质量 M .2 3LR 2【答案】 M23Gt【分析】 【详解】两次平抛运动,竖直方向h1 gt2 ,水平方向 x v 0t ,依据勾股定理可得:2L 2h 2 ( v 0 t)2 ,抛出速度变成2 倍: (3L)2 h 2 (2v 0t )2 ,联立解得:h1 L ,3g2L,在星球表面:Mm,解得: M2LR 2 3t 2G R2mg 3t 2G6.2016 年 2 月 11 日,美国 “激光干预引力波天文台 ”(LIGO )团队向全球宣告发现了引力波,这个引力波来自于距离地球13 亿光年以外一个双黑洞系统的归并.已知光在真空中流传的速度为 c ,太阳的质量为 M 0 ,万有引力常量为G .(1)两个黑洞的质量分别为太阳质量的26 倍和 39 倍,归并后为太阳质量的 62 倍.利用所学知识,求此次归并所开释的能量.( 2)黑洞密度极大,质量极大,半径很小,以最迅速度流传的光都不可以逃离它的引力,所以我们没法经过光学观察直接确立黑洞的存在.假设黑洞为一个质量散布平均的球形天体.a .由于黑洞对其余天体拥有强盛的引力影响,我们能够经过其余天体的运动来推断黑洞的存在.天文学家观察到,有一质量很小的恒星单独在宇宙中做周期为T ,半径为 r 0 的匀速圆周运动.由此推断,圆周轨道的中心可能有个黑洞.利用所学知识求此黑洞的质量 M ;b .严格解决黑洞问题需要利用广义相对论的知识,但早在相对论提出以前就有人利用牛顿 力学系统预知过黑洞的存在.我们知道,在牛顿系统中,当两个质量分别为 m 1 、 m 2 的质点相距为 r 时也会拥有势能,称之为引力势能,其大小为E pGm 1m2(规定无量远处r势能为零).请你利用所学知识,推断质量为 M ′的黑洞,之所以能够成为 “黑 ”洞,其半径R 最大不可以超出多少?24 2r 0 32GM13M 02=【答案】() c2 ; R2( ) McGT【分析】【剖析】【详解】(1)归并后的质量损失m (2639)M 0 62M 0 3M 0依据爱因斯坦质能方程E mc 2得归并所开释的能量E 3M 0c 2(2) a .小恒星绕黑洞做匀速圆周运动,设小恒星质量为m依据万有引力定律和牛顿第二定律G Mmm22r 0r 02T解得M4 2 r 03GT 2b .设质量为 m 的物体,从黑洞表面至无量远处;依据能量守恒定律1 mv 2G Mm2R解得2GMRv 2由于连光都不可以逃离,有 v =c 所以黑洞的半径最大不可以超出2GM Rc 27. 木星在太阳系的八大行星中质量最大, “木卫 1”是木星的一颗卫星,若已知“木卫 1”绕木星公转半径为 r ,公转周期为 T ,万有引力常量为 G ,木星的半径为 R ,求(1)木星的质量 M ;(2)木星表面的重力加快度 g 0 . 【答案】( 1) 4 2r 3(2)4 2r 3 GT 2T 2R 2【分析】(1)由万有引力供给向心力G Mmm( 2 )2 rr 2T42r3可得木星质量为 M2GT(2)由木星表面万有引力等于重力: GMmm g 0R 2木星的表面的重力加快度g 042 r3T 2 R 2【点睛 】万有引力问题的运动,一般经过万有引力做向心力获得半径和周期、速度、角速度的关系,而后经过比较半径来求解.8.2003 年 10 月 15 日,我国神舟五号载人飞船成功发射.标记着我国的航天事业发展到 了一个很高的水平.飞船在绕地球飞翔的第 5 圈进行变轨,由本来的椭圆轨道变成距地面高度为 h 的圆形轨道.已知地球半径为R ,地面处的重力加快度为g ,引力常量为 G ,求:(1)地球的质量;(2)飞船在上述圆形轨道上运转的周期T .gR 2(R h)3 【答案】 (1) M(2)T 2GgR 2【分析】【详解】(1)依据在地面重力和万有引力相等,则有GMmmgR 2gR 2解得: MG(2)设神舟五号飞船圆轨道的半径为r ,则据题意有:rR hMm2 飞船在轨道上飞翔时,万有引力供给向心力有:Gm 4πr2T 2r( R h)3解得:T2πgR 29. 在某一星球上,宇航员在距离地面 h 高度处以初速度v 0 沿水平方向抛出一个小球,小球落到星球表面时与抛出点的水平距离为 x ,已知该星球的半径为 R ,引力常量为 G ,求:(1)该星球表面的重力加快度 g ;(2)该星球的质量 M ;(3)该星球的第一宇宙速度 v 。

高考物理十年试题分类解析 专题05 万有引力与天体运动

高考物理十年试题分类解析 专题05 万有引力与天体运动

十年高考试题分类解析-物理一.2012年高考题1. (2012·新课标理综)假设地球是一半径为R 、质量分布均匀的球体。

一矿井深度为d 。

已知质量分布均匀的球壳对壳内物体的引力为零。

矿井底部和地面处的重力加速度大小之比为 A.R d -1 B. R d +1 C. 2)(R d R - D. 2)(dR R - 1.【答案】:A【解析】:在地球表面,g=GM/R 2,M=34πR 3ρ.在矿井底部,g’=GM’/(R-d )2, M’=34π(R-d )3ρ.。

联立解得g’/ g=Rd -1,选项A 正确。

【考点定位】此题考查万有引力定律及其相关知识。

2.(2012·福建理综)一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为v 。

假设宇航员在该行星表面上用弹簧测力计测量一质量为m 的物体重力,物体静止时,弹簧测力计的示数为N ,已知引力常量为G,,则这颗行星的质量为 A .mv 2/GN B .mv 4/GN . C . Nv 2/Gm . D .Nv 4/Gm .2.【答案】:B【解析】:该行星表面的在连接速度重力加速度g=N/m ;由万有引力等于绕某一行星表面附近做匀速圆周运动的向心力,GMm/R 2=mv 2/R 。

行星表面附近万有引力等于卫星重力,有mg=GMm/R 2,,联立解得:行星的质量M= mv 4/GN .选项B 正确。

3. (2012·北京理综)关于环绕地球运动的卫星,下列说法正确的是 A.分别沿圆轨道和椭圆轨道运行的两颗卫星,不可能具有相同的周期 B.沿椭圆轨道运行的一颗卫星,在轨道不同位置可能具有相同的速率 C.在赤道上空运行的两颗地球同步卫星,.它们的轨道半径有可能不同 D.沿不同轨道经过北京上空的两颗卫星,它们的轨道平面一定会重合 3【答案】:B【解析】:分别沿圆轨道和椭圆轨道运行的两颖卫星,可能具有相同的周期,选4.(2012·重庆理综)冥王星与其附近的另一星体卡戎可视为双星系统,质量比约为7∶1,同时绕它们连线上某点O做匀速圆周运动,由此可知,冥王星绕O点运动的A.轨道半径约为卡戎的17B.角速度大小约为卡戎的17C.线速度大小约为卡戎的7倍 D.向心力大小约为卡戎的7倍5.(2012·浙江理综)如图所示,在火星与木星轨道之间有一小行星带。

最新高考真题汇编:万有引力与天体运动(附带答案解析)

最新高考真题汇编:万有引力与天体运动(附带答案解析)

选择题:(2010全国一卷)19.我国“嫦娥一号”探月卫星发射后,先在“24小时轨道”上绕地球运行(即绕地球一圈需要24小时);然后,经过两次变轨依次到达“48小时轨道”和“72小时轨道”;最后奔向月球。

如果按圆形轨道计算,并忽略卫星质量的变化,则在每次变轨完成后与变轨前相比A .卫星动能增大,引力势能减小 C .卫星动能减小,引力势能减小B .卫星动能增大,引力势能增大 D .卫星动能减小,引力势能增大 【答案】D【命题立意】本题通过“嫦娥一号”变轨问题考查万有引力定律及其应用,定性加半定量分析即可得到答案,属于常规题,难度较小(2011新课标)19.卫星电话信号需要通过地球同步卫星传送。

如果你与同学在地面用卫星电话通话,则从你发出信号至对方接收到信号所需最短时间最接近于(可能用到的数据:月球绕地球运动的轨道半径约为3.8×105km ,运行周期约为27天,地球半径约为6400km ,无线电信号的传输速度为3×108m/s )A .0.1sB .0.25sC .0.5sD .1s(2011广东卷)20.已知地球质量为M ,半径为R ,自转周期为T ,地球同步卫星质量为m ,引力常量为G 。

有关同步卫星,下列表述正确的是A.卫星距离地面的高度为3B.卫星的运行速度小于第一宇宙速度C.卫星运行时受到的向心力大小为2M mGRD.卫星运行的向心加速度小于地球表面的重力加速度解析:根据)()2()(22H R Tm H R Mm G +=+π,A错,由HR vmH R Mm G+=+22)(,B 正确,由mgH R Mm G=+2)(,C 错D 对。

选BD(2011四川卷)17.据报道,天文学家近日发现了一颗距地球40光年的“超级地球”,名为“55Cancri e”该行星绕母星(中心天体)运行的周期约为地球绕太阳运行周期的1480,母星的体积约为太阳的60倍。

假设母星与太阳密度相同,“55 Cancri e”与地球做匀速圆周运动,则“55 Cancri e”与地球的A.轨道半径之比约为B.(2011山东卷)17.甲、乙为两颗地球卫星,其中甲为地球同步卫星,乙的运行高度低于甲的运行高度,两卫星轨道均可视为圆轨道。

高考物理万有引力与航天真题汇编(含答案)及解析

高考物理万有引力与航天真题汇编(含答案)及解析

高考物理万有引力与航天真题汇编(含答案)及解析一、高中物理精讲专题测试万有引力与航天1.如图所示,质量分别为m 和M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间距离为L .已知A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧,引力常量为G .求:(1)A 星球做圆周运动的半径R 和B 星球做圆周运动的半径r ; (2)两星球做圆周运动的周期.【答案】(1) R=m M M +L, r=m Mm+L,(2)()3L G M m +【解析】(1)令A 星的轨道半径为R ,B 星的轨道半径为r ,则由题意有L r R =+两星做圆周运动时的向心力由万有引力提供,则有:2222244mM G mR Mr L T Tππ==可得 RMr m=,又因为L R r =+ 所以可以解得:M R L M m =+,mr L M m=+; (2)根据(1)可以得到:2222244mM MG m R m L L T T M m ππ==⋅+则:()()23342L L T M m GG m M π==++ 点睛:该题属于双星问题,要注意的是它们两颗星的轨道半径的和等于它们之间的距离,不能把它们的距离当成轨道半径.2.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求:(1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度. 【答案】(1)126F F g m -=(212()6F F Rm-(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】(1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l在最高点:222mv F mg l += ① 在最低点:211mv F mg l-= ② 由机械能守恒定律,得221211222mv mg l mv =⋅+ ③ 由①②③,解得126F F g m-= (2)2GMmmg R = 2GMm R =2mv R两式联立得:12()6F F Rm -(3)在星球表面:2GMmmg R = ④ 星球密度:MV ρ=⑤ 由④⑤,解得128F F GmRρπ-=点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度.3.据报道,一法国摄影师拍到“天宫一号”空间站飞过太阳的瞬间.照片中,“天宫一号”的太阳帆板轮廓清晰可见.如图所示,假设“天宫一号”正以速度v =7.7km/s 绕地球做匀速圆周运动,运动方向与太阳帆板两端M 、N 的连线垂直,M 、N 间的距离L =20m ,地磁场的磁感应强度垂直于v ,MN 所在平面的分量B =1.0×10﹣5 T ,将太阳帆板视为导体.(1)求M 、N 间感应电动势的大小E ;(2)在太阳帆板上将一只“1.5V 、0.3W”的小灯泡与M 、N 相连构成闭合电路,不计太阳帆板和导线的电阻.试判断小灯泡能否发光,并说明理由;(3)取地球半径R =6.4×103 km ,地球表面的重力加速度g = 9.8 m/s 2,试估算“天宫一号”距离地球表面的高度h (计算结果保留一位有效数字). 【答案】(1)1.54V (2)不能(3)5410m ⨯ 【解析】 【分析】 【详解】(1)法拉第电磁感应定律E=BLv代入数据得E =1.54V(2)不能,因为穿过闭合回路的磁通量不变,不产生感应电流. (3)在地球表面有2MmGmg R = 匀速圆周运动22()Mm v G m R h R h=++ 解得22gR h R v=-代入数据得h ≈4×105m【方法技巧】本题旨在考查对电磁感应现象的理解,第一问很简单,问题在第二问,学生在第一问的基础上很容易答不能发光,殊不知闭合电路的磁通量不变,没有感应电流产生.本题难度不大,但第二问很容易出错,要求考生心细,考虑问题全面.4.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量.(引力常量为G)【答案】【解析】设两颗恒星的质量分别为m1、m2,做圆周运动的半径分别为r1、r2,角速度分别为w1,w2.根据题意有w1=w2 ① (1分)r1+r2=r ② (1分)根据万有引力定律和牛顿定律,有G③ (3分)G④ (3分)联立以上各式解得⑤ (2分)根据解速度与周期的关系知⑥ (2分)联立③⑤⑥式解得(3分)本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相同,由万有引力提供向心力列式求解5.设地球质量为M,自转周期为T,万有引力常量为G.将地球视为半径为R、质量分布均匀的球体,不考虑空气的影响.若把一质量为m的物体放在地球表面的不同位置,由于地球自转,它对地面的压力会有所不同.(1)若把物体放在北极的地表,求该物体对地表压力的大小F1;(2)若把物体放在赤道的地表,求该物体对地表压力的大小F2;(3)假设要发射一颗卫星,要求卫星定位于第(2)问所述物体的上方,且与物体间距离始终不变,请说明该卫星的轨道特点并求出卫星距地面的高度h .【答案】(1)2GMm R (2)22224Mm F G m R R T π=-(3)h R = 【解析】 【详解】(1) 物体放在北极的地表,根据万有引力等于重力可得:2MmG mg R = 物体相对地心是静止的则有:1F mg =,因此有:12MmF GR = (2)放在赤道表面的物体相对地心做圆周运动,根据牛顿第二定律:22224Mm GF mR RTπ-=解得: 22224Mm F G m R R Tπ=-(3)为满足题目要求,该卫星的轨道平面必须在赤道平面内,且做圆周运动的周期等于地球自转周期T以卫星为研究对象,根据牛顿第二定律:2224()()Mm GmR h R h Tπ=++解得卫星距地面的高度为:h R =6.经过逾6 个月的飞行,质量为40kg 的洞察号火星探测器终于在北京时间2018 年11 月27 日03:56在火星安全着陆。

高考物理万有引力定律的应用真题汇编(含答案)精选全文完整版

高考物理万有引力定律的应用真题汇编(含答案)精选全文完整版

可编辑修改精选全文完整版高考物理万有引力定律的应用真题汇编(含答案)一、高中物理精讲专题测试万有引力定律的应用1.假设在半径为R 的某天体上发射一颗该天体的卫星,若这颗卫星在距该天体表面高度为h 的轨道做匀速圆周运动,周期为T ,已知万有引力常量为G ,求: (1)该天体的质量是多少? (2)该天体的密度是多少?(3)该天体表面的重力加速度是多少? (4)该天体的第一宇宙速度是多少?【答案】(1)2324()R h GT π+; (2)3233()R h GT R π+;(3)23224()R h R T π+;【解析】 【分析】(1)卫星做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律列式求解; (2)根据密度的定义求解天体密度;(3)在天体表面,重力等于万有引力,列式求解; (4)该天体的第一宇宙速度是近地卫星的环绕速度. 【详解】(1)卫星做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律有:G 2()Mm R h +=m 22T π⎛⎫ ⎪⎝⎭(R+h) 解得:M=2324()R h GTπ+ ① (2)天体的密度:ρ=M V =23234()43R h GT R ππ+=3233()R h GT R π+. (3)在天体表面,重力等于万有引力,故: mg=G2MmR ② 联立①②解得:g=23224()R h R Tπ+ ③ (4)该天体的第一宇宙速度是近地卫星的环绕速度,根据牛顿第二定律,有:mg=m 2v R④联立③④解得:【点睛】本题关键是明确卫星做圆周运动时,万有引力提供向心力,而地面附近重力又等于万有引力,基础问题.2.某航天飞机在地球赤道上空飞行,轨道半径为r ,飞行方向与地球的自转方向相同,设地球的自转角速度为ω0,地球半径为R ,地球表面重力加速度为g ,在某时刻航天飞机通过赤道上某建筑物的上方,求它下次通过该建筑物上方所需的时间.【答案】t =或者t =【解析】 【分析】 【详解】试题分析:根据人造卫星的万有引力等于向心力,列式求出角速度的表达式,卫星再次经过某建筑物的上空,比地球多转动一圈.解:用ω表示航天飞机的角速度,用m 、M 分别表示航天飞机及地球的质量,则有22MmGmr rω= 航天飞机在地面上,有2mMG Rmg =联立解得ω=若ω>ω0,即飞机高度低于同步卫星高度,用t 表示所需时间,则ωt -ω0t =2π所以t =若ω<ω0,即飞机高度高于同步卫星高度,用t 表示所需时间,则ω0t -ωt =2π所以t =. 点晴:本题关键:(1)根据万有引力提供向心力求解出角速度;(2)根据地球表面重力等于万有引力得到重力加速度表达式;(3)根据多转动一圈后再次到达某建筑物上空列式.3.在地球上将一轻弹簧竖直固定在水平桌面上,把质量为m 的物体P 置于弹簧上端,用力压到弹簧形变量为3x 0处后由静止释放,从释放点上升的最大高度为4.5x 0,上升过程中物体P 的加速度a 与弹簧的压缩量x 间的关系如图中实线所示。

高考物理真题分类汇编万有引力

高考物理真题分类汇编万有引力

高考物理真题分类汇编-万有引力、航天一、选择题1. (2013·福建高考)设太阳质量为M,某行星绕太阳公转周期为T,轨道可视作半径为r 的圆。

已知万有引力常量为G,则描述该行星运动的上述物理量满足 ( )A.GM=2324r T πB.GM=2224r T π C.GM=2234r T π D.GM=324r T π【解题指南】解答本题时应理解以下两点: (1)建立行星绕太阳做匀速圆周运动模型。

(2)太阳对行星的万有引力提供行星绕太阳做匀速圆周运动的向心力。

【解析】选A 。

设行星质量为m,据2224Mm G m r r T π=得GM=2324r T π,故选A 。

2. (2013·广东高考)如图,甲、乙两颗卫星以相同的轨道半径分别绕质量为M 和2M 的行星做匀速圆周运动,下列说法正确的是 ( ) A.甲的向心加速度比乙的小 B.甲的运行周期比乙的小 C.甲的角速度比乙的大 D.甲的线速度比乙的大【解题指南】甲、乙两卫星分别绕两个不同的中心天体做匀速圆周运动,万有引力提供向心力,根据F 万=F向,得出卫星的向心加速度、周期、角速度、线速度与中心天体质量的关系,从而得出甲、乙两卫星各个物理量的大小关系。

【解析】选A 。

甲、乙两卫星分别绕质量为M 和2M 的行星做匀速圆周运动,万有引力提供各自做匀速圆周运动的向心力。

由牛顿第二定律G 2mM r =ma=m 224T πr=m ω2r=m 2v r ,可得a=2GM r ,T=2π3r GM,ω=3GM r ,v=GMr。

由已知条件可得a 甲<a 乙,T 甲>T 乙,ω甲<ω乙,v 甲<v 乙,故正确选项为A 。

3. (2013·山东高考)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动。

研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化。

万有引力与重力的关系及有中心天体的匀速圆周运动(原卷版)—2025年高考物理真题(新高考通用)

万有引力与重力的关系及有中心天体的匀速圆周运动(原卷版)—2025年高考物理真题(新高考通用)

考情概览:解读近年命题思路和内容要求,统计真题考查情况。

2024年真题研析:分析命题特点,探寻常考要点,真题分类精讲。

近年真题精选:分类精选近年真题,把握命题趋势。

必备知识速记:归纳串联解题必备知识,总结易错易混点。

名校模拟探源:精选适量名校模拟题,发掘高考命题之源。

2024年高考各卷区物理试题均考查了万有引力。

预测2025年高考会继续进行考查,一般以选择题形式出现。

考向一 重力与万有引力的关系1. (2024年全国甲卷第3题)2024年5月,嫦娥六号探测器发射成功,开启了人类首次从月球背面采样返回之旅。

将采得的样品带回地球,飞行器需经过月面起飞、环月飞行、月地转移等过程。

月球表面自由落体加速度约为地球表面自由落体加速度的16。

下列说法正确的是( )A. 在环月飞行时,样品所受合力为零B. 若将样品放置在月球正面,它对月球表面压力等于零C. 样品在不同过程中受到的引力不同,所以质量也不同D. 样品放置在月球背面时对月球的压力,比放置在地球表面时对地球的压力小考向二 对比问题2 (2024年江西卷第4题)两个质量相同的卫星绕月球做匀速圆周运动,半径分别为1r 、2r ,则动能和周期的比值为(A.k121k212,E r T E r T == B.k111k222,E r T E r T ==C.k121k212,E r T E r T == D.k111k222E r T E r T =,考向三 估算问题3. (2024年新课标卷第3题)天文学家发现,在太阳系外的一颗红矮星有两颗行星绕其运行,其中行星GJ1002c 的轨道近似为圆,轨道半径约为日地距离的0.07倍,周期约为0.06年,则这颗红矮星的质量约为太阳质量的( )A. 0.001倍B. 0.1倍C. 10倍D. 1000倍考向一 重力与万有引力的关系1. (2023年山东卷第3题)牛顿认为物体落地是由于地球对物体的吸引,这种吸引力可能与天体间(如地球与月球)的引力具有相同的性质、且都满足2MmF r ∝。

高考物理十年高考分类-万有引力与宇宙航行

高考物理十年高考分类-万有引力与宇宙航行

第1页共39页专题五 万有引力与宇宙航行23年真题1.(2023江苏,4,4分) 设想将来发射一颗人造卫星,能在月球绕地球运动的轨道上稳定运行,该轨道可视为圆轨道。

该卫星与月球相比,一定相等的是( ) A.质量 B.向心力大小 C.向心加速度大小 D.受到地球的万有引力大小答案:C 由题可知,该卫星与月球在同轨道绕地球做匀速圆周运动,均由地球对其的万有引力充当向心力,有F 卫=GM 地m卫r 2=m 卫a 卫,F 月=GM 地m月r 2=m 月a 月,则该卫星与月球质量不一定相等,该卫星与月球所受地球的万有引力以及向心力大小不一定相等,向心加速度大小与地球质量M 地及轨道半径r 有关,故二者向心加速度大小一定相等,故A 、B 、D 错误,C 正确。

2.(2023新课标,17,6分)2023年5月,世界现役运输能力最大的货运飞船天舟六号,携带约5 800 kg 的物资进入距离地面约400 km(小于地球同步卫星与地面的距离)的轨道,顺利对接中国空间站后近似做匀速圆周运动。

对接后,这批物资( ) A.质量比静止在地面上时小 B.所受合力比静止在地面上时小 C.所受地球引力比静止在地面上时大D.做圆周运动的角速度大小比地球自转角速度大答案D 质量是物体本身的属性,不随状态变化而改变,所以A 错误。

根据F=GMmR 2可知这批物资在距离地面约400 km 的轨道处所受引力比静止在地面上时小,故C 错误。

物资在轨道上做匀速圆周运动时,万有引力提供向心力,有GMm r 2=mrω2,ω=√GM r3,则轨道半径越大,角速度越小,所以物资做圆周运动的角速度大小比地球同步卫星的角速度大,即比地球自转角速度大,所以D 正确。

对接后,物资所受合力为万有引力F 1=mω2r,在地面上静止时所受合力提供其随地球自转的向心力F1'=mω'2r',r>r',ω>ω',则F1'<F1,故B 错误。

全国高考物理试题汇编(第四期)D5万有引力与天体运动(含解析)

全国高考物理试题汇编(第四期)D5万有引力与天体运动(含解析)

D5 万有引力与天体运动【题文】(理综卷·2015届广东省广州市海珠区高三摸底考试(2014.08))20.如图所示,A 是静止在赤道上的物体,B、C是同一平面内两颗人造卫星.B位于离地高度等于地球半径的圆形轨道上,C是地球同步卫星. 关于以下判断正确的是A.卫星B的速度大小等于地球的第一宇宙速度B.A、B的线速度大小关系为v A>v BC.周期大小关系为T A=T C>T BD.若卫星B要靠近C所在轨道,需要先加速【知识点】人造卫星的加速度、周期和轨道的关系;万有引力定律及其应用.D5【答案解析】 CD解析:A、第一宇宙速度为近地卫星的速度,为最大环绕速度,所以B的速度小于第一宇宙速度,故A错误;B、a、c相比较,角速度相等,由v=ωr,可知a cv v<,根据卫星的速度公式v c<v b,则v a<v c<v b,故B错误;C、卫星c为同步地球卫星,所以T a=T c根据卫星的周期可知T c>T b,所以T a=T c >T b,故C正确;D、卫星要想从低轨道到达高轨道,需要加速做离心运动,故D正确;故选:CD.【思路点拨】本题中涉及到三个做圆周运动物体,a、c转动的周期相等,b、c都为卫星,故比较他们的周期、角速度、线速度、向心加速度的关系时,涉及到两种物理模型,要两两比较,最后再统一比较.【题文】(物理卷·2015届安徽省六校教育研究会高三第一次联考试卷(2014.08))9.宇航员乘飞船绕月球做匀速圆周运动,最后飞船降落在月球上。

在月球上,宇航员以初速度v 竖直向上抛出一个小球。

已知万有引力常量为G,由下列已知条件能求出小球上升最大高度的是()A.飞船绕月球匀速圆周运动的周期T和半径rB.飞船绕月球匀速圆周运动的周期T、线速度v以及月球的半径RC.飞船绕月球匀速圆周运动的周期T、角速度ω以及月球的半径RABCD.飞船绕月球匀速圆周运动的线速度v、角速度ω和半径r 【知识点】万有引力定律及其应用.D5【答案解析】 B解析:AB,得月球的质量为mg加速度hA错误、B正确.C、根据v=ωr可知,不知道飞船的轨道半径,不知道飞船的线速度,由上面的分析可知,不能计算出月球表面的重力加速度,故不能求出小球上升的高度,故C错误.D、由于不知道月球的半径,故不能计算出月球表面重力加速度,故不能求出小球上升的高度,故D错误.故选:B.【思路点拨】小球做竖直上抛运动的高度为h=表面的重力加速度,根据万有引力提供向心力和重力等于万有引力计算月球的表面重力加速度.本题要掌握万有引力提供向心力和重力等于万有引力这两个关系,要知道小球做竖直上抛运动,要计算上升的高度,需要知道月球表面的重力加速度.【题文】(物理卷·2015届河北省石家庄二中高三开学考试(2014.08))8. 如图所示,三颗质量均为m的地球同步卫星等间隔分布在半径为r的圆轨道上,设地球质量为M、半径为R.下列说法正确的是( )A.地球对一颗卫星的引力大小为B.一颗卫星对地球的引力大小为r2C .两颗卫星之间的引力大小为G m 23r2D .三颗卫星对地球引力的合力大小为3GMmr2【知识点】万有引力定律及其应用;向心力. D4 D5【思路点拨】根据万有引力定律公式,求出地球与卫星、卫星与卫星间的引力,结合力的合成求出卫星对地球的引力.本题考查万有引力定律的基本运用,难度不大,知道互成120度三个大小相等的力合成,合力为零.【题文】(物理卷·2015届江西省师大附中等五校高三第一次联考(2014.08))1.下列叙述正确的是( )A .力、长度和时间是力学中三个基本物理量,它们的单位牛顿、米和秒就是基本单位B .法拉第最先提出电荷周围存在电场的观点C .伽利略用“月—地检验”证实了万有引力定律的正确性D .牛顿在给出万有引力定律的同时给出了引力常量【知识点】力学单位制;万有引力定律的发现和万有引力恒量的测定.C2 D5【答案解析】 B 解析:A 、“力”不是基本物理量,“牛顿”也不是力学中的基本单位,故A 错误;B 、法拉第最先提出电荷周围存在电场的观点,故B 正确;C 、牛顿用“月-地“检验法验证了牛顿定律的正确性,故C 错误;D 、牛顿定律不是普适规律,具有局限性,故D 错误.故选:B【思路点拨】力学中的基本物理量有三个,它们分别是长度、质量、时间,它们的单位分别为m 、kg 、s ,牛顿用“月-地“检验法验证了牛顿定律的正确性,牛顿定律不是普适规律,具有局限性.国际单位制规定了七个基本物理量,这七个基本物理量分别是谁,它们在国际单位制分别是谁,这都是需要学生自己记住的.【题文】(物理卷·2015届江西省师大附中等五校高三第一次联考(2014.08))2. 土星的卫星很多,现已发现达数十颗,下表是有关土卫五和土卫六两颗卫星的一些参数,则两颗卫星相比较,下列判断正确的是( )A .土卫五的公转速度大B .土星对土卫六的万有引力小C .土卫六表面的重力加速度小D .土卫五的公转周期大 【知识点】万有引力定律及其应用.D5【答案解析】 A 解析:A 、D 得:T=2期大,线速度小,故A 正确,D 错误;B 、万有引力:5,有:66的万有引力大,故B 错误;C 、在卫星表面,万有引力等于重力,有: 对土卫5,6,故土卫5表面的重力加速度大,故C 错误;故选:A .【思路点拨】根据万有引力提供向心力求出卫星周期、线速度与轨道半径的关系,从而比较出大小.根据万有引力等于重力得出卫星表面重力加速度与卫星质量和半径的关系,从而比较出重力加速度的大小.解决本题的关键掌握万有引力提供向心力和万有引力等于重力两个理论,并能灵活运用比例法求解.【题文】(物理卷·2015届内蒙古赤峰二中(赤峰市)高三9月质量检测试题(2014.09))4. 卫星电话信号需要通过地球卫星传送.如果你与同学在地面上用卫星电话通话,则从你发出信号至对方接收到信号所需要最短时间最接近于(可能用到的数据:月球绕地球运动的轨道半径为3.8×105km ,运动周期约为27天,地球半径约为6400km ,无线电信号的传播速度为3×108m/s )( ) A .0.1sB .0.25sC .0.5sD .1s【知识点】人造卫星的加速度、周期和轨道的关系;万有引力定律及其应用.D5【答案解析】B 解析:知月球和同步卫星的周期比为27:1,则月球和同步卫星的轨道半径比为9:1.同步卫星的轨道半径4km .所以接收到信号的最短时间故选B .【思路点拨】同步卫星和月球都是绕地球做匀速圆周运动,根据万有引力提供向心力求出轨道半径比,从而得出同步卫星的轨道半径以及高度,根据速度公式【题文】(物理卷·2015届天津一中高三上学期零月月考(2014.09))5. 假设地球同步卫星的轨道半径是地球半径的n 倍,则( )A .同步卫星运行速度是第一宇宙速度的n 倍B .同步卫星的运行速度是第一宇宙速的C .同步卫星的运行速度是地球赤道上物体随地球自转速度的n+1倍 D倍 【知识点】同步卫星.D5【答案解析】 B 解析: A 、研究同步卫星绕地球做匀速圆周运动,根据万有引力提供向心r 为同步卫星的轨道半径.地球同步卫星的轨道半径是地球半径的n 倍,即r=nRA 错误,B 正确.C 、同步卫星的周期与地球自转周期相同,即同步卫星和地球赤道上物体随地球自转具有相等的角速度.根据圆周运动公式得:v=ωr,因为r=nR 所以同步卫星的运行速度是地球赤道上物体随地球自转速度的n 倍,故C 错误.D、研究同步卫星绕地球做匀速圆周运动,根据万有引力提供向心力,列出等式:根据地球表面万有引力等于重力得:D错误.故选C.【思路点拨】研究同步卫星绕地球做匀速圆周运动,根据万有引力提供向心力,列出等式表示出所要比较的物理量.根据已知量结合关系式求出未知量.了解同步卫星的含义,即同步卫星的周期必须与地球自转周期相同.求一个物理量之比,我们应该把这个物理量先用已知的物理量表示出来,再根据表达式进行比较.向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用.【题文】(物理卷·2015届吉林省长春市高三上学期第一次模拟考试(2014.09))7. 某行星的质量约是地球质量的5倍,直径约是地球直径的2倍.现假设有一艘宇宙飞船飞临该星球表面附近做匀速圆周运动,则()A.该行星的平均密度比地球平均密度大B.该行星表面处的重力加速度小于9.8m/s2C.飞船在该行星表面附近运行时的速度大于7.9km/sD.飞船在运行时的周期要比绕地球表面运行的卫星周期小【知识点】万有引力定律及其应用;人造卫星的加速度、周期和轨道的关系.D5 D6【答案解析】C解析:A、行星的平均密度ρcA错误;B、物体受到的万有引力等于重力.所以有=mg′忽略地球自转,物体受到的万有引力等于重力.所以有1,所以行星表面处的重力加速度大于9.8m/s2.故B错误.C、由万有引力提供向心力得:在行星表面做圆周运动时的速度大于7.9km/s,故C正确.D、飞船绕行星运动时由万有引力提供向心力.则有:行的卫星周期大.故D错误.故选C.【思路点拨】根据万有引力提供向心力,列出等式表示出所要求解的物理量.根据已知条件进行对比.求一个物理量之比,我们应该把这个物理量先用已知的物理量表示出来,再根据表达式进行比较.向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用.。

高考物理万有引力与航天真题汇编(含答案)及解析

高考物理万有引力与航天真题汇编(含答案)及解析

高考物理万有引力与航天真题汇编(含答案)及解析一、高中物理精讲专题测试万有引力与航天1.如图所示,返回式月球软着陆器在完成了对月球表面的考察任务后,由月球表面回到绕月球做圆周运动的轨道舱.已知月球表面的重力加速度为g ,月球的半径为R ,轨道舱到月球中心的距离为r ,引力常量为G ,不考虑月球的自转.求:(1)月球的质量M ;(2)轨道舱绕月飞行的周期T .【答案】(1)GgR M 2=(2)2r rT R gπ=【解析】 【分析】月球表面上质量为m 1的物体,根据万有引力等于重力可得月球的质量;轨道舱绕月球做圆周运动,由万有引力等于向心力可得轨道舱绕月飞行的周期; 【详解】解:(1)设月球表面上质量为m 1的物体,其在月球表面有:112Mm Gm g R = 112Mm G m g R = 月球质量:GgR M 2=(2)轨道舱绕月球做圆周运动,设轨道舱的质量为m由牛顿运动定律得: 22Mm 2πG m r r T ⎛⎫= ⎪⎝⎭222()Mm G m rr T π= 解得:2rr T R gπ=2.载人登月计划是我国的“探月工程”计划中实质性的目标.假设宇航员登上月球后,以初速度v 0竖直向上抛出一小球,测出小球从抛出到落回原处所需的时间为t.已知引力常量为G ,月球的半径为R ,不考虑月球自转的影响,求: (1)月球表面的重力加速度大小g 月; (2)月球的质量M ;(3)飞船贴近月球表面绕月球做匀速圆周运动的周期T .【答案】(1)02v t ;(2)202R v Gt ;(3)022Rt v π【解析】 【详解】(1)小球在月球表面上做竖直上抛运动,有02v t g =月月球表面的重力加速度大小02v g t=月 (2)假设月球表面一物体质量为m ,有 2=MmG mg R月 月球的质量202R v M Gt=(3)飞船贴近月球表面做匀速圆周运动,有222Mm G m R R T π⎛⎫= ⎪⎝⎭飞船贴近月球表面绕月球做匀速圆周运动的周期22RtT v π=3.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞行轨道近似为圆形,距月球表面高度为H ,飞行周期为T ,月球的半径为R ,引力常量为G .求:(1) “嫦娥一号”绕月飞行时的线速度大小; (2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运行的线速度应为多大. 【答案】(1)()2R H Tπ+(2)()3224R H GT π+(3)()2R H R HTRπ++ 【解析】(1)“嫦娥一号”绕月飞行时的线速度大小12π()R H v T+=.(2)设月球质量为M .“嫦娥一号”的质量为m . 根据牛二定律得2224π()()R H MmG m R H T +=+解得2324π()R H M GT +=. (3)设绕月飞船运行的线速度为V ,飞船质量为0m ,则2002Mm V G m RR =又2324π()R H M GT +=. 联立得()2πR H R HV TR++=4.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r ,周期为T ,引力常量为G ,行星半径为求: (1)行星的质量M ;(2)行星表面的重力加速度g ; (3)行星的第一宇宙速度v . 【答案】(1) (2)(3)【解析】 【详解】(1)设宇宙飞船的质量为m ,根据万有引力定律求出行星质量 (2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.5.某星球半径为6610R m =⨯,假设该星球表面上有一倾角为30θ=︒的固定斜面体,一质量为1m kg =的小物块在力F 作用下从静止开始沿斜面向上运动,力F 始终与斜面平行,如图甲所示.已知小物块和斜面间的动摩擦因数33μ=,力F 随位移x 变化的规律如图乙所示(取沿斜面向上为正方向).已知小物块运动12m 时速度恰好为零,万有引力常量11226.6710N?m /kg G -=⨯,求(计算结果均保留一位有效数字)(1)该星球表面上的重力加速度g 的大小; (2)该星球的平均密度. 【答案】26/g m s =,【解析】 【分析】 【详解】(1)对物块受力分析如图所示;假设该星球表面的重力加速度为g ,根据动能定理,小物块在力F 1作用过程中有:211111sin 02F s fs mgs mv θ--=- N mgcos θ= f N μ=小物块在力F 2作用过程中有:222221sin 02F s fs mgs mv θ---=-由题图可知:1122156?3?6?F N s m F N s m ====,;, 整理可以得到: (2)根据万有引力等于重力:,则:,,代入数据得6.从在某星球表面一倾角为θ的山坡上以初速度v 0平抛一物体,经时间t 该物体落到山坡上.已知该星球的半径为R ,一切阻力不计,引力常量为G ,求: (1)该星球表面的重力加速度的大小g (2)该星球的质量M .【答案】(1) 02tan v t θ (2) 202tan v R Gtθ【解析】 【分析】(1)物体做平抛运动,应用平抛运动规律可以求出重力加速度.(2)物体在小球的表面受到的万有引力等于物体的重力,由此即可求出. 【详解】(1)物体做平抛运动,水平方向:0x v t =,竖直方向:212y gt = 由几何关系可知:02y gt tan x v θ== 解得:02v g tan tθ=(2)星球表面的物体受到的重力等于万有引力,即:2MmGmg R = 可得:2202v R tan gR M G Gtθ==【点睛】本题是一道万有引力定律应用与运动学相结合的综合题,考查了求重力加速度、星球自转的周期,应用平抛运动规律与万有引力公式、牛顿第二定律可以解题;解题时要注意“黄金代换”的应用.7.在物理学中,常常用等效替代、类比、微小量放大等方法来研究问题.如在牛顿发现万有引力定律一百多年后,卡文迪许利用微小量放大法由实验测出了万有引力常量G 的数值,如图所示是卡文迪许扭秤实验示意图.卡文迪许的实验常被称为是“称量地球质量”的实验,因为由G 的数值及其它已知量,就可计算出地球的质量,卡文迪许也因此被誉为第一个称量地球的人.(1)若在某次实验中,卡文迪许测出质量分别为m 1、m 2相距为r 的两个小球之间引力的大小为F ,求万有引力常量G ;(2)若已知地球半径为R ,地球表面重力加速度为g ,万有引力常量为G ,忽略地球自转的影响,请推导出地球质量及地球平均密度的表达式.【答案】(1)万有引力常量为212Fr G m m =.(2)地球质量为2R gG,地球平均密度的表达式为34g RG ρπ=【解析】 【分析】根据万有引力定律122m m F Gr=,化简可得万有引力常量G ; 在地球表面附近的物体受到重力等于万有引力2MmG mg R =,可以解得地球的质量M ,地球的体积为343V R π=,根据密度的定义M Vρ=,代入数据可以计算出地球平均密度. 【详解】(1)根据万有引力定律有:122m m F Gr = 解得:212Fr G m m =(2)设地球质量为M ,在地球表面任一物体质量为m ,在地球表面附近满足:2MmGmg R = 得地球的质量为: 2R gM G =地球的体积为:343V R π=解得地球的密度为:34gRGρπ=答:(1)万有引力常量为212Fr G m m =.(2)地球质量2R gM G=,地球平均密度的表达式为34gRGρπ=.8.根据我国航天规划,未来某个时候将会在月球上建立基地,若从该基地发射一颗绕月卫星,该卫星绕月球做匀速圆周运动时距月球表面的高度为h ,绕月球做圆周运动的周期为T ,月球半径为R ,引力常量为G .求:(1)月球的密度ρ;(2)在月球上发射绕月卫星所需的最小速度v .【答案】(1)3233()R h GT R π+(2 【解析】 【详解】(1)万有引力提供向心力,由牛顿第二定律得:G 2()Mm R h =+m 224Tπ(R +h ), 解得月球的质量为:2324()R h M GTπ+=; 则月球的密度为:3233()M R h V GT R πρ+==; (2)万有引力提供向心力,由牛顿第二定律得:G 2Mm R =m 2v R,解得:v =9.已知地球的半径为R ,地面的重力加速度为g ,万有引力常量为G 。

高考物理专项复习《万有引力定律与航天》十年高考真题汇总

高考物理专项复习《万有引力定律与航天》十年高考真题汇总

高考物理专项复习《万有引力定律与航天》十年高考真题汇总选择题:1.(2019•海南卷•T4)2019年5月,我国第45颗北斗卫星发射成功。

已知该卫星轨道距地面的高度约为36000km,是“天宫二号”空间实验室轨道高度的90倍左右,则A.该卫星的速率比“天宫二号”的大B.该卫星的周期比“天宫二号”的大C.该卫星的角速度比“天宫二号”的大D.该卫星的向心加速度比“天宫二号”的大2.(2019•全国Ⅰ卷•T8)在星球M上将一轻弹簧竖直固定在水平桌面上,把物体P轻放在弹簧上端,P由静止向下运动,物体的加速度a与弹簧的压缩量x间的关系如图中实线所示。

在另一星球N上用完全相同的弹簧,改用物体Q完成同样的过程,其a–x关系如图中虚线所示,假设两星球均为质量均匀分布的球体。

已知星球M的半径是星球N的3倍,则A. M与N的密度相等B. Q的质量是P的3倍C. Q下落过程中的最大动能是P的4倍D. Q下落过程中弹簧的最大压缩量是P的4倍3.(2019•北京卷•T6)2019年5月17日,我国成功发射第45颗北斗导航卫星,该卫星属于地球静止轨道卫星(同步卫星)。

该卫星A. 入轨后可以位于北京正上方B. 入轨后的速度大于第一宇宙速度C. 发射速度大于第二宇宙速度D. 若发射到近地圆轨道所需能量较少4.(2019•江苏卷•T4)1970年成功发射的“东方红一号”是我国第一颗人造地球卫星,该卫星至今仍沿椭圆轨道绕地球运动.如图所示,设卫星在近地点、远地点的速度分别为v 1、v 2,近地点到地心的距离为r ,地球质量为M ,引力常量为G .则A.121,GM v v v r >=B.121,GM v v v r >>C.121,GM v v v r <=D.121,GM v v v r<> 5.(2019•全国Ⅱ卷•T1)2019年1月,我国嫦娥四号探测器成功在月球背面软着陆,在探测器“奔向”月球的过程中,用h 表示探测器与地球表面的距离,F 表示它所受的地球引力,能够描F 随h 变化关系的图像是A. B. C. D.6.(2019•天津卷•T1)2018年12月8日,肩负着亿万中华儿女探月飞天梦想的嫦娥四号探测器成功发射,“实现人类航天器首次在月球背面巡视探测,率先在月背刻上了中国足迹”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年高考物理真题分类汇编:万有引力和天体运动19.[2014·新课标全国卷Ⅰ] 太阳系各行星几乎在同一平面内沿同一方向绕太阳做圆周运动.当地球恰好运行到某地外行星和太阳之间,且三者几乎排成一条直线的现象,天文学称为“行星冲日”.据报道,2014年各行星冲日时间分别是:1月6日木星冲日;4月9日火星冲日;5月11日土星冲日;8月29日海王星冲日;10月8日天王星冲日.已知地球及各地外行星绕太阳运动的轨道B .在2015年内一定会出现木星冲日C .天王星相邻两次冲日的时间间隔为土星的一半D .地外行星中,海王星相邻两次冲日的时间间隔最短19.BD [解析] 本题考查万有引力知识,开普勒行星第三定律,天体追及问题.因为冲日现象实质上是角速度大的天体转过的弧度恰好比角速度小的天体多出2π,所以不可能每年都出现(A 选项).由开普勒行星第三定律有T 2木T 2地=r 3木r 3地=140.608,周期的近似比值为12,故木星的周期为12年,由曲线运动追及公式2πT 1t -2πT 2t =2n π,将n =1代入可得t =1211年,为木星两次冲日的时间间隔,所以2015年能看到木星冲日现象,B 正确.同理可算出天王星相邻两次冲日的时间间隔为1.01年.土星两次冲日的时间间隔为1.03年.海王星两次冲日的时间间隔为1.006年,由此可知C 错误,D 正确.18.[2014·新课标Ⅱ卷] 假设地球可视为质量均匀分布的球体.已知地球表面重力加速度在两极的大小为g 0,在赤道的大小为g ;地球自转的周期为T ,引力常量为G .地球的密度为( )A.3πGT 2g 0-g g 0B.3πGT 2g 0g 0-gC.3πGT 2D.3πGT 2g 0g18.B [解析] 在两极物体所受的重力等于万有引力,即 GMm R 2=mg 0,在赤道处的物体做圆周运动的周期等于地球的自转周期T ,则GMm R 2-mg =m 4π2T 2R ,则密度 ρ=3M4πR 3=34πR 3g 0R 2G =3πg 0GT 2(g 0-g ).B 正确. 3. [2014·天津卷] 研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时.假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比( )A .距地面的高度变大B .向心加速度变大C .线速度变大D .角速度变大3.A [解析] 本题考查万有引力和同步卫星的有关知识点,根据卫星运行的特点“高轨、低速、长周期”可知周期延长时,轨道高度变大,线速度、角速度、向心加速度变小,A 正确,B 、C 、D 错误.16. [2014·浙江卷] 长期以来“卡戎星(Charon)”被认为是冥王星唯一的卫星,它的公转轨道半径r 1=19 600 km ,公转周期T 1=6.39天.2006年3月,天文学家新发现两颗冥王星的小卫星,其中一颗的公转轨道半径r 2=48 000 km ,则它的公转周期T 2最接近于( )A .15天B .25天C .35天D .45天16.B [解析] 本题考查开普勒第三定律、万有引力定律等知识.根据开普勒第三定律r 31T 21=r 32T 22,代入数据计算可得T 2约等于25天.选项B 正确.14.[2014·安徽卷] 在科学研究中,科学家常将未知现象同已知现象进行比较,找出其共同点,进一步推测未知现象的特性和规律.法国物理学家库仑在研究异种电荷的吸引力问题时,曾将扭秤的振动周期与电荷间距离的关系类比单摆的振动周期与摆球到地心距离的关系.已知单摆摆长为l ,引力常量为G ,地球质量为M ,摆球到地心的距离为r ,则单摆振动周期T 与距离r 的关系式为( )A .T =2πr GM lB .T =2πr l GMC .T =2πr GM lD .T =2πl r GM14.B [解析] 本题考查单摆周期公式、万有引力定律与类比的方法,考查推理能力.在地球表面有G Mm r 2=mg ,解得g =G Mm r 2.单摆的周期T =2π·l g=2πr l GM ,选项B 正确. 14. [2014·福建卷Ⅰ] 若有一颗“宜居”行星,其质量为地球的p 倍,半径为地球的q 倍,则该行星卫星的环绕速度是地球卫星环绕速度的( )A.pq 倍B.q p 倍C.p q 倍D.pq 3倍14.C [解析] 由G Mm R 2=m v 2R 可知,卫星的环绕速度v =GM R ,由于“宜居”行星的质量为地球的p 倍,半径为地球的q 倍,则有v 宜v 地=M 宜M 地·R 地R 宜=p 1·1q =pq ,故C 项正确. 22B (2014上海)、动能相等的两人造地球卫星A 、B 的轨道半径之比:1:2A B R R =,它们的角速度之比:A B ωω= ,质量之比:A B m m = 。

22B ; 1:2 [解析] 根据G Mm R 2=m ω2R 得出ω=3R GM ,则ωA : ωB =3A R GM :3BR GM =22:1 ;又因动能E K =12m v 2相等 以及v=ωR ,得出m A : m B =2222AA B B R R ωω=1 :2 21. [2014·广东卷] 如图13所示,飞行器P 绕某星球做匀速圆周运动,星球相对飞行器的张角为θ,下列说法正确的是( )A .轨道半径越大,周期越长B .轨道半径越大,速度越大C .若测得周期和张角,可得到星球的平均密度D .若测得周期和轨道半径,可得到星球的平均密度 21.AC [解析] 根据G Mm R 2=mR 4π2T 2,可知半径越大则周期越大,故选项A 正确;根据G Mm R 2=m v 2R ,可知轨道半径越大则环绕速度越小,故选项B 错误;若测得周期T ,则有M =4π2R 3GT 2,如果知道张角θ,则该星球半径为r =R sin θ2,所以M =4π2R 3GT 2=43π(R sin θ2)3ρ,可得到星球的平均密度,故选项C 正确,而选项D 无法计算星球半径,则无法求出星球的平均密度,选项D 错误.2.[2014·江苏卷] 已知地球的质量约为火星质量的10倍,地球的半径约为火星半径的2倍,则航天器在火星表面附近绕火星做匀速圆周运动的速率约为( )A .3.5 km/sB .5.0 km/sC .17.7 km/sD .35.2 km/s2.A [解析] 航天器在火星表面附近做圆周运动所需的向心力是由万有引力提供的,由G Mm R 2=m v 2R 知v =GMR ,当航天器在地球表面附近绕地球做圆周运动时有v 地=7.9 km/s ,v 火v 地=GM 火R 火GM 地R 地=M 火M 地·R 地R 火=55,故v 火=55v 地=55×7.9 km/s ≈3.5 km/s ,则A 正确.20.[2014·山东卷] 2013年我国相继完成“神十”与“天宫”对接、“嫦娥”携“玉兔”落月两大航天工程.某航天爱好者提出“玉兔”回家的设想:如图所示,将携带“玉兔”的返回系统由月球表面发射到h 高度的轨道上,与在该轨道绕月球做圆周运动的飞船对接,然后由飞船送“玉兔”返回地球.设“玉兔”质量为m ,月球半径为R ,月面的重力加速度为g 月.以月面为零势能面,“玉兔”在h 高度的引力势能可表示为E p =GMmh R (R +h ),其中G 为引力常量,M 为月球质量.若忽略月球的自转,从开始发射到对接完成需要对“玉兔”做的功为()A.mg 月R R +h (h +2R )B.mg 月R R +h(h +2R ) C.mg 月R R +h ⎝ ⎛⎭⎪⎫h +22R D.mg 月R R +h ⎝⎛⎭⎪⎫h +12R 20.D [解析] 本题以月面为零势面,开始发射时,“玉兔”的机械能为零,对接完成时,“玉兔”的动能和重力势能都不为零,该过程对“玉兔”做的功等于“玉兔”机械能的增加.忽略月球的自转,月球表面上,“玉兔”所受重力等于地球对“玉兔”的引力,即G Mm R 2=mg月,对于在h 高处的“玉兔”,月球对其的万有引力提供向心力,即G Mm(R +h )2=m v 2R +h,“玉兔”的动能E k =12m v 2,由以上可得,E k =g 月R 2m 2(R +h ).对“玉兔”做的功W =E k +E p =mg 月R R +h ⎝⎛⎭⎪⎫h +12R .选项D 正确. 23.[2014·北京卷]万有引力定律揭示了天体运行规律与地上物体运动规律具有内在的一致性.(1)用弹簧秤称量一个相对于地球静止的小物体的重量,随称量位置的变化可能会有不同的结果.已知地球质量为M ,自转周期为T ,万有引力常量为G .将地球视为半径为R 、质量均匀分布的球体,不考虑空气的影响.设在地球北极地面称量时,弹簧秤的读数是F 0.a. 若在北极上空高出地面h 处称量,弹簧秤读数为F 1,求比值F 1F 0的表达式,并就h =1.0%R 的情形算出具体数值(计算结果保留两位有效数字);b. 若在赤道地面称量,弹簧秤读数为F 2,求比值F 2F 0的表达式. (2)设想地球绕太阳公转的圆周轨道半径r 、太阳的半径R s 和地球的半径R 三者均减小为现在的 1.0%,而太阳和地球的密度均匀且不变.仅考虑太阳和地球之间的相互作用,以现实地球的1年为标准,计算“设想地球”的1年将变为多长.23.[答案] (1)a. F 1F 0=R 2(R +h )20.98 b . F 2F 0=1-4π2R 3GMT 2 (2)1年[解析] (1)设小物体质量为m .a .在北极地面G Mm R 2=F 0在北极上空高出地面h 处G Mm (R +h )2=F 1 F 1F 0=R 2(R +h )2当h =1.0%R 时F 1F 0=11.012≈0.98.b .在赤道地面,小物体随地球自转做匀速圆周运动,受到万有引力和弹簧秤的作用力,有G Mm R 2-F 2=m 4π2T 2R得F 2F 0=1-4π2R 3GMT 2.(2)地球绕太阳做匀速圆周运动,受到太阳的万有引力,设太阳质量为M S ,地球质量为M ,地球公转周期为T E ,有G M S M r 2=Mr 4π2T 2E得T E =4π2r 3GM S =3πr 3G ρR 3S .其中ρ为太阳的密度.由上式可知,地球公转周期T E 仅与太阳的密度、地球公转轨道半径与太阳半径之比有关.因此“设想地球”的1年与现实地球的1年时间相同.9.[2014·四川卷] 石墨烯是近些年发现的一种新材料,其超高强度及超强导电、导热等非凡的物理化学性质有望使21世纪的世界发生革命性的变化,其发现者由此获得2010年诺贝尔物理学奖.用石墨烯制作超级缆绳,人类搭建“太空电梯”的梦想有望在本世纪实现.科学家们设想,通过地球同步轨道站向地面垂下一条缆绳至赤道基站,电梯仓沿着这条缆绳运行,实现外太空和地球之间便捷的物资交换.(1)若“太空电梯”将货物从赤道基站运到距地面高度为h 1的同步轨道站,求轨道站内质量为m 1的货物相对地心运动的动能.设地球自转角速度为ω,地球半径为R .(2)当电梯仓停在距地面高度h 2=4R 的站点时,求仓内质量m 2=50 kg 的人对水平地板的压力大小.取地面附近重力加速度g 取10 m/s 2,地球自转角速度ω=7.3×10-5rad/s ,地球半径R =6.4×103 km.9.(1)12m 1ω2(R +h 1)2 (2)11.5 N[解析] (1)设货物相对地心的距离为r 1,线速度为v 1,则r 1=R +h 1①v 1=r 1ω②货物相对地心的动能为 E k =12m 1v 21③联立①②③得 E k =12m 1ω2(R +h 1)2④(2)设地球质量为M ,人相对地心的距离为r 2,向心加速度为a n ,受地球的万有引力为F ,则r 2=R +h 2⑤a n =ω2r 2⑥F =Gm 2M r 22⑦ g =GM R 2⑧设水平地板对人的支持力大小为N ,人对水平地板的压力大小为N ′,则F -N =m 2a n ⑨N ′=N ⑩联立⑤~⑩式并代入数据得 N ′=11.5 N ⑪7. (15分)[2014·重庆卷] 题7图为“嫦娥三号”探测器在月球上着陆最后阶段的示意图,首先在发动机作用下,探测器受到推力在距月球表面高度为h 1处悬停(速度为0,h 1远小于月球半径);接着推力改变,探测器开始竖直下降,到达距月面高度为h 2处的速度为v ;此后发动机关闭,探测器仅受重力下落到月面,已知探测器总质量为m (不包括燃料),地球和月球的半径比为k 1,质量比为k 2,地球表面附近的重力加速度为g ,求:题7图(1)月球表面附近的重力加速度大小及探测器刚接触月面时的速度大小;(2)从开始竖直下降到刚接触月面时,探测器机械能的变化.7.[答案] (1)k 21k 2g v 2+2k 21gh 2k 2 (2)12m v 2-k 21k 2mg (h 1-h 2) 本题利用探测器的落地过程将万有引力定律,重力加速度概念,匀变速直线运动,机械能等的概念融合在一起考查.设计概念比较多,需要认真审题.[解析] (1)设地球质量和半径分别为M 和R ,月球的质量、半径和表面附近的重力加速度分别为M ′、R ′和g ′,探测器刚接触月面时的速度大小为v t . 由mg ′=G M ′m R ′2和mg =G Mm R 2得g ′=k 21k 2g 由v 2t -v 2=2g ′h 2 得v t =v 2+2k 21gh 2k 2(2)设机械能变化量为ΔE ,动能变化量为ΔE k ,重力势能变化量为ΔE p . 由ΔE =ΔE k +ΔE p有ΔE =12m (v 2+2k 21gh 2k 2)-m k 21k 2gh 1 得ΔE =12m v 2-k 21k 2mg (h 1-h 2) 26. [2014·全国卷] 已知地球的自转周期和半径分别为T 和R ,地球同步卫星A 的圆轨道半径为h ,卫星B 沿半径为r (r <h )的圆轨道在地球赤道的正上方运行,其运行方向与地球自转方向相同.求:(1)卫星B 做圆周运动的周期;(2)卫星A 和B 连续地不能直接通讯的最长时间间隔(信号传输时间可忽略).26.[答案] (1)⎝ ⎛⎭⎪⎫r h 32T (2)r 32π(h 32-r 32)(arcsin R h +arcsin R r )T[解析] (1)设卫星B 绕地心转动的周期为T ′,根据万有引力定律和圆周运动的规律有G Mm h 2=m ⎝ ⎛⎭⎪⎫2πT 2h ① G Mm ′r 2=m ′⎝ ⎛⎭⎪⎪⎫2πT ′2r ② 式中,G 为引力常量,M 为地球质量,m 、m ′分别为卫星A 、B 的质量.由①②式得T ′=⎝ ⎛⎭⎪⎫r h 32T ③ (2)设卫星A 和B 连续地不能直接通讯的最长时间间隔为τ;在此时间间隔τ内,卫星A 和B 绕地心转动的角度分别为α和α′,则α=τT 2π④α′=τT ′2π⑤若不考虑卫星A 的公转,两卫星不能直接通讯时,卫星B 的位置应在图中B 点和B ′点之间,图中内圆表示地球的赤道.由几何关系得∠BOB ′=2⎝ ⎛⎭⎪⎫arcsin R h +arcsin R r ⑥ 由③式知,当r <h 时,卫星B 比卫星A 转得快,考虑卫星A 的公转后应有α′-α=∠BOB ′⑦由③④⑤⑥⑦式得τ=r32π(h32-r32)⎝⎛⎭⎪⎫arcsinRh+arcsinRr T⑧。

相关文档
最新文档