(精品)数字图像处理实验报告--直方图规定化
数字图像处理实验报告直方图均衡化
数字图像处理实验报告直⽅图均衡化课程设计课程名称数字图像处理题⽬名称直⽅图均衡化学⽣学院信息⼯程学院专业班级 08级电信2班学号 3208002664 学⽣姓名陈慕仪指导教师曹江中2011年7 ⽉ 1 ⽇设计题⽬:直⽅图均衡化1、直⽅图的理论基础:(1)直⽅图概念:灰度直⽅图表⽰图像中每种灰度出现的频率。
(2)直⽅图的作⽤:反映⼀幅图像的灰度分布特性(3)直⽅图的计算:式中:n k 为图像中出现r k 级灰度的像素数,n 是图像像素总数,⽽n k /n 即为频数。
2、设计⽬的:产⽣⼀幅灰度级分布具有均匀概率密度的图像,扩展像素取值的动态范围,达到了图象增强的⽬的。
3、直⽅图均衡化的效果:1)变换后直⽅图趋向平坦,灰级减少,灰度合并。
2)原始象含有象素数多的⼏个灰级间隔被拉⼤了,压缩的只是象素数少的⼏个灰度级,实际视觉能够接收的信息量⼤⼤地增强了,增加了图象的反差。
同时,也增加了图象的可视粒度。
4、离散情况下的直⽅图均衡化的算法:A 、列出原始图像的灰度级B 、统计各灰度级的像素数⽬C 、计算原始图像直⽅图各灰度级的频数D 、计算累积分布函数F 、应⽤以下公式计算映射后的输出图像的灰度级,P为输出图像灰度级的个数,其中INT 为取整符号:G 、⽤的映射关系修改原始图像的灰度级,从⽽获得直⽅图近似为均匀分布的输出图像。
3、源程序代码// cqxhistView.cpp : implementation of the CCqxhistView class #include "stdafx.h" #include "cqxhist.h"#include "cqxhistDoc.h" #include "cqxhistView.h"#ifdef _DEBUG#define new DEBUG_NEW#undef THIS_FILEstatic char THIS_FILE[] = __FILE__; #endif///////////////////////////////////////////////////////////////////////////// // CCqxhistViewIMPLEMENT_DYNCREATE(CCqxhistView, CView)BEGIN_MESSAGE_MAP(CCqxhistView, CView)1,,1,0,-=L j f j 1,,1,0,-=L j n j 1,,1,0,/)(-==L j n n f P j j f 1,,,1,0,)()(0-==∑=L k j f P f C k j jf]5.0)()[(min min max ++-=g f C g g INT g i nn r p kk =)(1,,2,1,010-=≤≤l k r k//{{AFX_MSG_MAP(CCqxhistView)ON_COMMAND(ID_OPEN_IMAGE, OnOpenImage)ON_COMMAND(ID_HIST_IMAGE, OnHistImage)//}}AFX_MSG_MAP// Standard printing commandsON_COMMAND(ID_FILE_PRINT, CView::OnFilePrint)ON_COMMAND(ID_FILE_PRINT_DIRECT, CView::OnFilePrint)ON_COMMAND(ID_FILE_PRINT_PREVIEW, CView::OnFilePrintPreview)END_MESSAGE_MAP()///////////////////////////////////////////////////////////////////////////// // CCqxhistView construction/destruction CCqxhistView::CCqxhistView(){// TODO: add construction code here}CCqxhistView::~CCqxhistView(){}BOOL CCqxhistView::PreCreateWindow(CREATESTRUCT& cs){// TODO: Modify the Window class or styles here by modifying// the CREATESTRUCT csreturn CView::PreCreateWindow(cs);}///////////////////////////////////////////////////////////////////////////// // CCqxhistView drawingvoid CCqxhistView::OnDraw(CDC* pDC){CCqxhistDoc* pDoc = GetDocument();ASSERT_VALID(pDoc);// TODO: add draw code for native data hereif(m_dib.m_bLoaded==true) //判断是否加载图像{//获取图像宽和⾼int nw=m_dib.GetDIBWidth();int nh=m_dib.GetDIBHeight();// 显⽰图像(具体的参数见CDIB类的该函数说明)m_dib.ShowDIB(pDC,10,10,nw,nh,m_dib.m_pDIBData,m_dib.m_pBMI);m_dib.ShowDIB(pDC,400,10,nw,nh,m_dib.m_pDumpDIBData,m_dib.m_pBMI); } if(m_bHist==true){//绘制原图像的直⽅图CString str;int nh=m_dib.GetDIBHeight();int i;// 画坐标轴// 绘制坐标轴pDC->MoveTo(410,nh+20); //(410,nh+20 )是直⽅图的左上⾓坐标// 垂直轴pDC->LineTo(410,nh+200);//(410,nh+200 )是直⽅图的左下⾓坐标// ⽔平轴pDC->LineTo(710,nh+200);//(710,nh+200 )是直⽅图的右下⾓坐标// 写X轴刻度值str.Format("0");pDC->TextOut(410, nh+200+10, str);str.Format("50");pDC->TextOut(460, nh+200+10, str); str.Format("100");pDC->TextOut(510, nh+200+10, str); str.Format("150");pDC->TextOut(560, nh+200+10, str); str.Format("200");pDC->TextOut(610, nh+200+10, str); str.Format("255");pDC->TextOut(665, nh+200+10, str); // 绘制X轴刻度for ( i = 0; i < 256; i += 25){if ((i & 1) == 0){// 10的倍数pDC->MoveTo(i + 10, nh+200-2); pDC->LineTo(i + 10, nh+200+2);}else{// 10的倍数pDC->MoveTo(i + 10, nh+200-2); pDC->LineTo(i + 10, nh+200+2);}}// 绘制X轴箭头pDC->MoveTo(705,nh+200-5); pDC->LineTo(710,nh+200);pDC->LineTo(705,nh+200+5);// 绘制y轴箭头pDC->MoveTo(410,nh+20);pDC->LineTo(405,nh+20+5);pDC->MoveTo(410,nh+20);pDC->LineTo(415,nh+20+5);int max=0;for(i=0;i<256;i++)if(m_yuan[i]>max)max=m_yuan[i];for(i=0;i<256;i++){pDC->MoveTo(410+i,nh+200);pDC->LineTo(410+i,nh+200-(m_yuan[i]*160/max));}}if(m_bHist==true){//绘画直⽅图CString str;int nh=m_dib.GetDIBHeight();int i;// 画坐标轴// 绘制坐标轴pDC->MoveTo(10,nh+20); //(10,nh+20 )是直⽅图的左上⾓坐标// 垂直轴pDC->LineTo(10,nh+200);//(10,nh+200 )是直⽅图的左下⾓坐标// ⽔平轴pDC->LineTo(310,nh+200);//(310,nh+200 )是直⽅图的右下⾓坐标// 写X轴刻度值str.Format("0");pDC->TextOut(10, nh+200+10, str);str.Format("50");pDC->TextOut(60, nh+200+10, str);str.Format("100");pDC->TextOut(110, nh+200+10, str);str.Format("150");pDC->TextOut(160, nh+200+10, str);str.Format("200");pDC->TextOut(210, nh+200+10, str);str.Format("255");pDC->TextOut(265, nh+200+10, str);// 绘制X轴刻度for ( i = 0; i < 256; i += 25){if ((i & 1) == 0){// 10的倍数pDC->MoveTo(i + 10, nh+200-2);pDC->LineTo(i + 10, nh+200+2);}else{// 10的倍数pDC->MoveTo(i + 10, nh+200-2);pDC->LineTo(i + 10, nh+200+2);}}// 绘制X轴箭头pDC->MoveTo(305,nh+200-5);pDC->LineTo(310,nh+200);pDC->LineTo(305,nh+200+5);// 绘制y轴箭头pDC->MoveTo(10,nh+20);pDC->LineTo(5,nh+20+5);pDC->MoveTo(10,nh+20);pDC->LineTo(15,nh+20+5);int max=0;for(i=0;i<256;i++)if(m_hist[i]>max)max=m_hist[i];for(i=0;i<256;i++){pDC->MoveTo(10+i,nh+200);pDC->LineTo(10+i,nh+200-(m_hist[i]*160/max));}}}///////////////////////////////////////////////////////////////////////////// // CCqxhistView printing BOOL CCqxhistView::OnPreparePrinting(CPrintInfo* pInfo){// default preparationreturn DoPreparePrinting(pInfo);}void CCqxhistView::OnBeginPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/){// TODO: add extra initialization before printing}void CCqxhistView::OnEndPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/){// TODO: add cleanup after printing}///////////////////////////////////////////////////////////////////////////// // CCqxhistView diagnostics#ifdef _DEBUGvoid CCqxhistView::AssertValid() const{CView::AssertValid();}void CCqxhistView::Dump(CDumpContext& dc) const{CView::Dump(dc);}CCqxhistDoc* CCqxhistView::GetDocument() // non-debug version is inline{ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CCqxhistDoc)));return (CCqxhistDoc*)m_pDocument;}#endif //_DEBUG///////////////////////////////////////////////////////////////////////////// // CCqxhistView message handlersvoid CCqxhistView::OnOpenImage(){// TODO: Add your command handler code here// TODO: Add your command handler code herestatic char szFilter[]="BMP⽂件(*.bmp)|*.bmp||"; //定义过滤⽂件的类型 CFileDialog dlg(TRUE,"bmp",NULL, OFN_HIDEREADONLY|OFN_OVERWRITEPROMPT,szFilter);//定义⽂件对话框对象 CString filename;int ret=dlg.DoModal(); //运⾏打开⽂件对⽅框if(ret==IDOK){filename=dlg.GetFileName(); //获取所选择图像的路径 m_dib.LoadFromFile(filename); //加载图像if(!m_dib.m_bLoaded) //判断是否加载图像成功{AfxMessageBox("图像打不开");return;}for(int i=0;i<256;i++) //初始化直⽅图数组{ m_hist[i]=0;m_yuan[i]=0;}m_bHist=false;}{int nw=m_dib.GetDIBWidth();int nh=m_dib.GetDIBHeight();for(int j=0;jfor(int i=0;i{BYTE temp=m_dib.m_pdata[j*nw+i];m_yuan[temp]++;}}Invalidate(1); //刷新屏幕}void CCqxhistView::OnHistImage(){// TODO: Add your command handler code here//功能:实现直⽅图均衡化////////////////////////////判断图像是否打开,没打开,则弹出提⽰框并退出函数if(!m_dib.m_bLoaded){AfxMessageBox("图像还打开,请先打开图像!");return;}//获取图像宽和⾼int nw=m_dib.GetDIBWidth();int nh=m_dib.GetDIBHeight();int i,j,k;int count[256]={0};//定义⼀个数组,⽤于存放灰度级个数float p[256];//定义⼀个数组,⽤于存放灰度级出现频率//对图像进⾏直⽅图均衡化处理for(i=0;ifor(j=0;j{k=m_dib.m_pdata[i*nw+j];//计算灰度级个数count[k]++;}for(k=0;k<256;k++)p[k]=count[k]/(nw*nh*1.0f);float c[256]={0};float sum=0.0;int ngray[256];//新的灰度级for(k=0;k<256;k++)//计算累积频率{sum+=p[k];c[k]=sum;ngray[k]=(int)(255.0*c[k]+0.5);}for(i=0;ifor(j=0;j{k=m_dib.m_pdata[i*nw+j];m_dib.m_pdata[i*nw+j]=ngray[k];}{int nw=m_dib.GetDIBWidth();int nh=m_dib.GetDIBHeight();for(int j=0;jfor(int i=0;i{BYTE temp=m_dib.m_pdata[j*nw+i];m_hist[temp]++;}}//将修改的m_pdata的数据赋值给m_pDIBData,以显⽰修改的结果m_dib.UpdateData();m_bHist=true;//将修改的m_pdata的数据赋值给m_pDIBData,以显⽰修改的结果 m_dib.UpdateData(); //刷新屏幕Invalidate();}4、实验结果C++编程结果:。
遥感数字图像处理 直方图规定化
直方图规定化int H[256]; //原始图象直方图memset(H,0,sizeof(H));int S[256]; //变换映射-均衡直方图S ////////////////////////////////////for(i=0;i<iCol*iRow;i++)H[*(lpbmpData+i)]++;/////////////////////////////////for(i=0;i<iRow;i++)for(j=0;j<iCol;j++H[*(lpbmpData+i*iWidth+j)]++;S[0]=H[0];for(i=1;i<256;i++)S[i]=S[i-1]+H[i];for(i=0;i<256;i++)S[i]=S[i]*255/(iCo*iRow);直方图均衡化for(i=0;i<iRow;i++)for(j=0;j<iCol;j++)*(lpbmpData+i*iWidth+j)=S[*(lpbmpData+i*iWidth+j)]直方图规定化int H[256]; //原始图象直方图memset(H,0,sizeof(H));int S[256]; //变换映射-均衡直方图S /////////////////////////////for(i=0;i<iCol*iRow;i++)H[*(lpbmpData+i)]++;/////////////////////////for(i=0;i<iRow;i++)for(j=0;j<iCol;j++H[*(lpbmpData+i*iWidth+j)]++;S[0]=H[0];for(i=1;i<256;i++)S[i]=S[i-1]+H[i];for(i=0;i<256;i++)S[i]=S[i]*255/(iCo*iRow);直方图规定化int G[256]; //目标图象直方图memset(H,0,sizeof(H));int GS[256]; //变换映射-均衡直方图GS //////////////////////for(i=0;i<iCol*iRow;i++)G[*(lpbmpData+i)]++;//////////////////////////for(i=0;i<iRow;i++)for(j=0;j<iCol;j++G[*(lpbmpData+i*iWidth+j)]++;GS[0]=G[0];for(i=1;i<256;i++)GS[i]=GS[i-1]+G[i];for(i=0;i<256;i++)GS[i]=GS[i]*255/(iCo*iRow);直方图规定化int i2;int minNumber;int SG[256]; //从原图象的均衡图象到最终增强图象的映射memset(SG,0,sizeof(SG));for(i=0;i<256;i++){//i原图灰度值minNumber=255;for(i2=0;i2<256;i2++)//i2目标图灰度值if(abs(S[i]-GS[i2])<minNumber){//找最接近的整数minNumber=abs(S[i]-GS[i2]);SG[i]=i2;}}A->B->D->C直方图规定化for(i=0;i<iRow;i++)for(j=0;j<iCol;j++)*(lpbmpData+i*iWidth+j)=SG[*(lpbmpData+i*iWidth+j)]。
数字图像处理实验报告直方图均衡化
数字图像处理实验报告实验名称:直方图均衡化姓名:班级:学号:专业:电子信息工程(2+2)指导教师:陈华华实验日期:2012年5月24日直方图均衡化图像对比度增强的方法可以分成两类:一类是直接对比度增强方法;另一类是间接对比度增强方法。
直方图均衡化是最常见的间接对比度增强方法。
直方图均衡化则通过使用累积函数对灰度值进行“调整”以实现对比度的增强。
直方图均衡化处理的“中心思想”是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。
直方图均衡化就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。
直方图均衡化就是把给定图像的直方图分布改变成“均匀”分布直方图分布。
缺点:1)变换后图像的灰度级减少,某些细节消失;2)某些图像,如直方图有高峰,经处理后对比度不自然的过分增强。
直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。
这种方法通常用来增加许多图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候。
通过这种方法,亮度可以更好地在直方图上分布。
这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能。
直方图均衡化的基本思想是把原始图的直方图变换为均匀分布的形式,这样就增加了象素灰度值的动态范围从而可达到增强图像整体对比度的效果。
设原始图像在(x,y)处的灰度为f,而改变后的图像为g,则对图像增强的方法可表述为将在(x,y)处的灰度f映射为g。
在灰度直方图均衡化处理中对图像的映射函数可定义为:g = EQ (f),这个映射函数EQ(f)必须满足两个条件(其中L为图像的灰度级数):(1)EQ(f)在0≤f≤L-1范围内是一个单值单增函数。
这是为了保证增强处理没有打乱原始图像的灰度排列次序,原图各灰度级在变换后仍保持从黑到白(或从白到黑)的排列。
(2)对于0≤f≤L-1有0≤g≤L-1,这个条件保证了变换前后灰度值动态范围的一致性。
4.图像增强—直方图变换 - 数字图像处理实验报告
计算机与信息工程学院验证性实验报告一、实验目的1.掌握灰度直方图的概念及其计算方法;2.熟练掌握直力图均衡化和直方图规定化的计算过程;3.熟练掌握空域滤波中常用的平滑和锐化滤波器;4.掌握色彩直方图的概念和计算方法5.利用MATLAB程序进行图像增强。
二、实验原理图像增强是指按特定的需要突出一幅图像中的某些信息,同时,消弱或去除某些不需要的信息的处理方法。
其主要目的是处理后的图像对某些特定的应用比原来的图像更加有效。
图像增强技术主要有直方图修改处理、图像平滑化处理、图像尖锐化处理和彩色处理技术等。
本实验以直方图均衡化增强图像对比度的方法为主要内容,其他方法同学们可以在课后自行联系。
直方图是多种空间城处理技术的基础。
直方图操作能有效地用于图像增强。
除了提供有用的图像统计资料外,直方图固有的信息在其他图像处理应用中也是非常有用的,如图像压缩与分割。
直方图在软件中易于计算,也适用于商用硬件设备,因此,它们成为了实时图像处理的一个流行工具。
直方图是图像的最基本的统计特征,它反映的是图像的灰度值的分布情况。
直方图均衡化的目的是使图像在整个灰度值动态变化范围内的分布均匀化,改善图像的亮度分布状态,增强图像的视觉效果。
灰度直方图是图像预处理中涉及最广泛的基本概念之一。
图像的直方图事实上就是图像的亮度分布的概率密度函数,是一幅图像的所有象素集合的最基本的统计规律。
直方图反映了图像的明暗分布规律,可以通过图像变换进行直方图调整,获得较好的视觉效果。
直方图均衡化是通过灰度变换将一幅图像转换为另一幅具有均衡直方图,即在每个灰度级上都具有相同的象素点数的过程。
下面给出直方图均衡化增强图像对比度的MATLAB程序:clc;clear allI=imread('Fig0308(a)(pollen).tif'); %读入原图像J=histeq(I); %对原图像进行直方图均衡化处理imshow(I); %显示原图像title('原图像'); %给原图像加标题名%对原图像进行屏幕控制;显示直方图均衡化后的图像figure;imshow(J);%给直方图均衡化后的图像加标题名title('直方图均衡化后的图像') ;%对直方图均衡化后图像进行屏幕控制;作一幅子图,并排两幅图的第1幅figure; subplot(1,2,1) ;imhist(I,64); %将原图像直方图显示为64级灰度title('原图像直方图') ; %给原图像直方图加标题名subplot(1,2,2); %作第2幅子图imhist(J,64) ; %将均衡化后图像的直方图显示为64级灰度title('均衡变换后的直方图') ; %给均衡化后图像直方图加标题名处理后的图像直方图分布更均匀了,图像在每个灰度级上都有像素点。
数字图像处理实验实验报告 实验二
数字图像处理实验实验报告(实验一)一、实验目的:1、直方图显示2、计算并绘制图像直方图3、直方图均衡化二.程序脚本clear all;RGB=imread('me.jpg');figure;imshow(RGB);title('图1 彩色图');%========================================================== I=rgb2gray(RGB);figure;imshow(I);title('图2 灰度图');%========================================================= figure;imhist(I);title('灰度直方图');%========================================================= hi=imhist(I);j=1;%为使画出的直方图更好看,在此进行了抽样for(i=1:256)if(mod(i,10)==1)h(j)=hi(i);j=j+1;endendn=0:10:255;figure;stem(n,h);axis([0 255 0 2500]);title('图3.1 stem显示直方图');figure;bar(n,h);axis([0 255 0 2500]);title('图3.2 bar显示直方图');figure;plot(n,h);axis([0 255 0 2500]);title('图3.3 plot显示直方图');%========================================================= I=rgb2gray(RGB);figure;subplot(3,2,1);imshow(I);title('图4.1 原始灰度图');subplot(3,2,2);imhist(I);title('图4.2 原始灰度直方图');%=============================J1=imadjust(I);subplot(3,2,3);imshow(J1);title('调整对比度以后的图');subplot(3,2,4);imhist(J1);title('调整对比度以后的灰度直方图');%=================================J2=histeq(I);subplot(3,2,5);imshow(J2);title('均衡化以后的的图');subplot(3,2,6);imhist(J2);title('均衡化以后的灰度直方图');三.实验结果图1 彩色图图2 灰度图010002000灰度直方图10020010020005001000150020002500图3.1 stem 显示直方图10020005001000150020002500图3.2 bar 显示直方图10020005001000150020002500图3.3 plot 显示直方图图4.1 原始灰度图10002000图4.2 原始灰度直方图0100200调整对比度以后的图010002000调整对比度以后的灰度直方图0100200均衡化以后的的图02000均衡化以后的灰度直方图100200。
《数字图像处理》实验报告
《数字图像处理》实验报告数字图像处理是一门将图像进行数字化处理的学科,它通过计算机算法和技术手段对图像进行分析、增强、压缩和重建等操作。
在本次实验中,我们学习了数字图像处理的基本概念和常用算法,并通过实验来探索其应用和效果。
首先,我们进行了图像的读取和显示实验。
通过使用Python中的OpenCV库,我们能够轻松地读取图像文件,并将其显示在屏幕上。
这为我们后续的实验奠定了基础。
同时,我们还学习了图像的像素表示方法,了解了图像由像素点组成的原理。
这使我们能够更好地理解后续实验中的算法和操作。
接下来,我们进行了图像的灰度化实验。
灰度化是将彩色图像转换为灰度图像的过程。
在实验中,我们使用了不同的算法来实现灰度化操作,包括平均值法、最大值法和加权平均法等。
通过比较不同算法得到的灰度图像,我们发现不同算法对图像的处理效果有所差异,这使我们深入理解了灰度化的原理和应用。
随后,我们进行了图像的直方图均衡化实验。
直方图均衡化是一种用于增强图像对比度的方法。
在实验中,我们使用了直方图均衡化算法来对图像进行处理,并观察了处理前后的效果变化。
通过实验,我们发现直方图均衡化能够显著提高图像的对比度,使图像更加清晰和鲜明。
在进一步探索图像处理技术的过程中,我们进行了图像的滤波实验。
滤波是一种常用的图像处理操作,它通过对图像进行卷积操作来实现。
在实验中,我们学习了不同类型的滤波器,包括均值滤波器、高斯滤波器和中值滤波器等。
通过比较不同滤波器对图像的处理效果,我们发现每种滤波器都有其适用的场景和效果。
此外,我们还进行了图像的边缘检测实验。
边缘检测是一种用于提取图像边缘信息的方法。
在实验中,我们学习了不同的边缘检测算法,包括Sobel算子、Canny算子和Laplacian算子等。
通过比较不同算法对图像的处理效果,我们发现每种算法都有其独特的特点和应用。
最后,我们进行了图像的压缩实验。
图像压缩是一种将图像数据进行压缩以减小文件大小的方法。
数字图像处理 实验 直方图均衡化实现图像增强
XXXXXXXX大学(数字图形处理)实验报告实验名称直方图均衡化实现图像增强实验时间年月日专业姓名学号预习操作座位号教师签名总评一、实验目的:掌握直方图均衡化的原理。
掌握直方图均衡化实现图像增强的实现方法。
二、实验原理:直方图是统计像数统计图,如设一张灰度图或一个通道,值0~255。
直方图如果按。
255个区分的话。
统计出来的就是,值为。
0的有几个像数,值为1的有机个像数,这样的一张表。
那么均衡化的意思就是。
这样表要均衡。
不直不于。
0有上万个像数,1只有1 个。
正常,直方图本身可以用小于255个区。
比如10个,那么这样相对图中的点就有一个映射,这时值0-9统计落在第一个区,值为10-19落第二个区。
这样的结果就会出来,10个区,10个统计数区。
这时。
你均衡就是让10区的统计数据都不会差很多。
表现出来的就是一张图上的颜色分布相对均衡。
总的来说直方图均衡化是通过灰度变换将一幅图像转换为另一幅具有均衡直方图,即在每个灰度级上都具有相同的象素点数的过程。
三、实验内容:利用直方图均衡化实现图像增强。
在资源编辑器中,在主菜单下添加一名为“直方图均衡化”的菜单步骤如前面实验。
实验代码如下:if(m_DibHead->biBitCount!=8){MessageBox("当前版本仅支持256色位图的操作!","系统提示!",MB_ICONINFORMA TION|MB_OK);return;}zftjh(m_Image,m_DibHead->biWidth,m_DibHead->biHeight);Invalidate();其中函数zftjh的实现代码如下:zftjh(unsigned char *lpDib,long lWidth,long lHeight){unsigned char *lpsrc;long lresult(0);long i,j;unsigned char bMap[256];long lCount[256];for(i=0;i<256;i++)lCount[i]=0;for(i=0;i<lHeight;i++)for(j=0;j<lWidth;j++){lpsrc=lpDib+i*lWidth+j;lCount[*lpsrc]++;}for(i=0;i<256;i++){lresult=0;for(j=0;j<=i;j++)lresult+=lCount[j];bMap[i]=(lresult*255)/lHeight/lWidth;}for(i=0;i<lHeight;i++)for(j=0;j<lWidth;j++){lpsrc=lpDib+i*lWidth+j;*lpsrc=bMap[*lpsrc];}}原图为下图的左边部分,均值化以后的图为右边的部分:。
数字图像的直方图规定化处理实验
XX 大学实验报告
(一) 掌握数字图像的直方图规定化处理的算法和方法。
(二) 熟悉数字图像的直方图规定化处理的算法原理。
按照实验内容及参考程序,独立完成此次实验,记下不懂的知识点,查阅资料或者向老 师咨询。
直方图规定化是用于产生处理后有特殊直方图的图像方法。
学院:
专业: 班级: 姓名 实验时间 实验项目名称
实验二:数字图像的直方图规定化处理
令
p r (r )和Pz (z )分别为原始图像和期望图像的灰度概率密度函数。
和期望图像均作直方图均衡化处理,应有:
r
s T (r ) 0 p r (r )dr ,V G (Z )
对原始图像
z 0
P z
(z )dz ,z
G
1
(V)
由于都是作直方图均衡化处理,所以处理后的原图像的灰度概率密度函数
p S (s )及理
想图像的灰度概率密度函数 P V (V )是相等的。
因此,可以用变换后的原始图像灰度级
S
代替上式中的V, 即Z G 1[T (r )]。
利用此式可以从原始图像得到希望的图像灰度级。
对离散图像,有
P Z (ZJ
虹,V i G (乙)^P z (Z i ), Z i
G 1(S i ) G 1[T(r i )]
n
i 0
综上所述,数字图像的直方图规定化就是将直方图均衡化后的结果映射到期望的理想直 方图上,使图像按人的意愿去变换。
数字图像的直方图规定的算法如下:
(一)将原始图像作直方图均衡化处理, 求出原图像中每一个灰度级 r i 所对应的变
学号 指导教师
实验组 成绩。
数字图像处理实验二(直方图均衡化)
数字图像处理实验二直方图均衡化(直方图均衡化实质上是减少图象的灰度级以换取对比度的加大)例如:假设原图的灰度分布级为126(最大为256,也就是从0到255的级上的灰度都有或多或少的出现),经过直方图均衡化后,灰度分布级别将会小于126。
编程的时候请按照直方图均衡化公式进行。
下面给出大致的编程思路和源代码:其中黑框部分需要自己编写源代码1)利用第一次实验课提供的dhc.h 和dhc.c文件以获取位图的高宽以及从文件头到实际的位图数据的偏移字节数,从而实现对位图实际数据的操作。
利用include命令#include <stdio.h>#include <stdlib.h>#include <memory.h>#include "hdr.h"思考问题:#include <*.h> 和#include "*.h"在程序运行中有什么差别?2)定义结构指针struct bmphdr *hdr;定义用于直方图变量unsigned char *bitmap, new_color[256];定义计算灰度分布,灰度累计分布的数组int count[256], acum[256];3)main()函数编写//定义整数i,j 用于函数循环时的,nr_pixels为图像中像素的个数int i, j, nr_pixels;//定义两个文件指针分别用于提取原图像的数据和生成直方图均衡化后的图像FILE *fp, *fpnew;//定义主函数的参数包括:输入的位图文件名和输出的位图文件名,此处内容可以不要,在DOS下执行命令的时候再临时输入也可,为了方便演示,我这里直接把函数的参数确定了。
argc=3;argv[1]="test.bmp";argv[2]="testzf.bmp";//参数输入出错显示if (argc != 3) {printf("please input the name of input and out bitmap files\n");exit(1);}// 获取位图文件相关信息hdr = get_header(argv[1]);if (!hdr) exit(1);//以二进制可读方式打开输入位图文件fp = fopen(argv[1], "rb");if (!fp) {printf("File open error!\n");exit(1);}// 文件指针指向数据区域fseek(fp, hdr->offset, SEEK_SET);//计算位图像素的个数nr_pixels = hdr->width * hdr->height;bitmap = malloc(nr_pixels);//读取位图数据到bitmap中fread(bitmap, nr_pixels, 1, fp);fclose(fp);memset(count, 0, sizeof(count));//计算每个灰度级上像素的个数结果存入count[]数组中memcpy(acum, count, sizeof(acum));//计算灰度的累计分布for (i = 1; i < 256; i++)acum[i] += acum[i-1];//灰度直方图的均衡化(核心程序部分,请仔细分析)为了方便大家编程实现,这里直接给出了源代码,本实验最核心的部分就在这里//}//对所有的像素灰度值按照均衡化得到的灰度对应规则进行转换,结果存入bitmap[]中//fpnew = fopen(argv[2], "wb+");//由于位图文件的头部信息并没有因直方图均衡化而改变,因此输出图像的头部信息从原位图文件中拷贝即可:fwrite(hdr->signature, 2, 1, fpnew);fwrite(&hdr->size, 4, 1, fpnew);fwrite(hdr->reserved, 4, 1, fpnew);fwrite(&hdr->offset, 4, 1, fpnew);fwrite(&hdr->hdr_size, 4, 1, fpnew);fwrite(&hdr->width, 4, 1, fpnew);fwrite(&hdr->height, 4, 1, fpnew);fwrite(&hdr->nr_planes, 2, 1, fpnew);fwrite(&hdr->bits_per_pixel, 2, 1, fpnew);fwrite(&hdr->compress_type, 4, 1, fpnew);fwrite(&hdr->data_size, 4, 1, fpnew);fwrite(&hdr->resol_hori, 4, 1, fpnew);fwrite(&hdr->resol_vert, 4, 1, fpnew);fwrite(&hdr->nr_colors, 4, 1, fpnew);fwrite(&hdr->important_color, 4, 1, fpnew);if (hdr->offset > 54)fwrite(hdr->info, (hdr->offset - 54), 1, fpnew);////关闭fclose(fpnew);//释放内存(优化程序必需)free(hdr);free(bitmap);return 0;}。
数字图像处理-直方图-实验报告
实验三直方图一、实验目的掌握基本的图象增强方法,观察图象增强的效果,加深对灰度直方图及直方图均衡化的理解,掌握直方图均衡化方法。
二、实验内容将一张彩色图片转换成灰色图片,画灰度直方图和均衡化后的直方图,并将灰度图和均衡化后的图片对比。
三、实验原理灰度直方图是将数字图像中的所有像素,按照灰度值的大小,统计其所出现的频度。
通常,灰度直方图的横坐标表示灰度值,纵坐标为像素个数,也可以采用某一灰度值的像素数占全图像素数的百分比作为纵坐标。
直方图均衡方法的基本原理是:对在图像中像素个数多的灰度值(即对画面起主要作用的灰度值)进行展宽,而对像素个数少的灰度值(即对画面不起主要作用的灰度值)进行归并。
从而达到清晰图像的目的。
四、实验程序1.函数功能,画出图像的直方图,并对图像进行直方图均衡2.直接读图像football.jpg,读到I中3.graydis是原始直方图各灰度级像素个数4.原始直方图graydispro,利用原始直方图计算原始累计直方图graydispro5.t[]计算和原始灰度对应的新的灰度t[],建立映射关系,t坐标代表原始的灰度,t[]代表对应原始坐标的新坐标6.new_graydis是统计新直方图各灰度级像素个数7.计算新的灰度直方图new_graydispro,利用新的直方图计算新的累计直方图new_graydispro8.计算直方图均衡后的新图new_J程序如下:I=imread('football.jpg'); %读入图片J=rgb2gray(I); %将彩色图片转换为灰度图Imshow(J);graydis=zeros(1,256); %设置矩阵大小graydispro=zeros(1,256);new_graydis=zeros(1,256);new_graydispro=zeros(1,256);[h w]=size(J);new_J=zeros(h,w);%计算原始直方图各灰度级像素个数graydisfor x=1:hfor y=1:wgraydis(1,J(x,y))=graydis(1,J(x,y))+1;endend%计算原始直方图graydisprograydispro=graydis./sum(graydis);subplot(1,2,1);plot(graydispro);title('灰度直方图');xlabel('灰度值');ylabel('像素的概率密度');%计算原始累计直方图for i=2:256graydispro(1,i)=graydispro(1,i)+graydispro(1,i-1);end%计算和原始灰度对应的新的灰度t[],建立映射关系for i=1:256t(1,i)=floor(254*graydispro(1,i)+0.5);end%统计新直方图各灰度级像素个数new_graydisfor i=1:256new_graydis(1,t(1,i)+1)=new_graydis(1,t(1,i)+1)+graydis(1,i); end%计算新的灰度直方图new_graydispronew_graydispro=new_graydis./sum(new_graydis);subplot(1,2,2);plot(new_graydispro);title('均衡化后的灰度直方图');xlabel('灰度值');ylabel('像素的概率密度');%计算直方图均衡后的新图new_J for x=1:hfor y=1:wnew_J(x,y)=t(1,J(x,y));endendfigure,imshow(J,[]);title('原图');figure,imshow(new_J,[]);title('直方图均衡化后的图');。
数字图像处理实验报告(matlab)
学院:自动化学院班级:电081班姓名:***学号:********2011年10月实验一直方图均衡化一、实验目的:1. 熟悉图像数据在计算机中的存储方式;2. 掌握图像直方图均衡化这一基本处理过程。
二、实验条件:PC微机一台和MATLAB软件。
三、实验内容:1.读入图像数据到内存中,并显示读入的图像;2.实现直方图均衡化处理,显示处理前后图像的直方图。
3.显示并保存处理结果。
四、实验步骤:1.打开Matlab编程环境;2.获取实验用图像。
用’imread’函数将图像读入Matlab;用’imshow’函数显示读入的图像。
3.获取输入图像的直方图:用’imhist’函数处理图像。
4.均衡化处理:用’histeq’函数处理图像即可。
5.获取均衡化后的直方图并显示图像:用’imhist’和’imshow’函数。
6.保存实验结果:用’imwrite’函数处理。
五、实验程序及结果:1、实验程序subplot(6,2,1);i=imread('test1-1.jpg');imhist(i);title('test1-1 hist');subplot(6,2,2);i=im2double(i);imshow(i);title('test1-1 Ô-ͼÏñ');subplot(6,2,3);s=histeq(i);imhist(s);title('test1-1 balancedhist');subplot(6,2,4);imshow(s);title('test1-1 ¾ùºâ»¯ºóµÄͼÏñ');subplot(6,2,5);i=imread('test1-2.jpg');imhist(i);title('test1-2 hist');subplot(6,2,6);i=im2double(i);imshow(i);title('test1-2 Ô-ͼÏñ');subplot(6,2,7);s=histeq(i);imhist(s);title('test1-2 balancedhist'); subplot(6,2,8);imshow(s);title('test1-2 ¾ùºâ»¯ºóµÄͼÏñ');subplot(6,2,9);i=imread('test1-3.jpg');imhist(i);title('test1-3 hist');subplot(6,2,10);i=im2double(i);imshow(i);title('test1-3 Ô-ͼÏñ');subplot(6,2,11);s=histeq(i);imhist(s);title('test1-3 balancedhist'); subplot(6,2,12);imshow(s);title('test1-3 ¾ùºâ»¯ºóµÄͼÏñ');2、实验结果test1-1 hist050100150200250test1-1 原图像test1-1 balancedhist00.10.20.30.40.50.60.70.80.91test1-1 均衡化后的图像test1-2 hist050100150200250test1-2 原图像test1-2 balancedhist00.10.20.30.40.50.60.70.80.91test1-2 均衡化后的图像0test1-3 hist050100150200250test1-3 原图像test1-3 balancedhist00.10.20.30.40.50.60.70.80.91test1-3 均衡化后的图像六、实验思考1.数字图像直方图均衡化之后直方图为什么不是绝对平坦的?答:直方图均衡化是将一已知灰度概率密度分布的图像,经过某种变换,变成一幅具有均匀灰度概率密度分布的新图像。
数字图像处理实验一-直方图均衡化
实验一数字图像处理编程实习(设计性实验)一、实验名称:数字图像处理编程实验一之灰度直方图统计与均衡化。
二、实验目的和要求:本设计性实验专为印刷工程专业的《数字图像处理》课程设计。
熟悉Matlab与Visual C++编程环境,实现对输入图像进行灰度直方图均衡化处理。
通过本实验教学环节,可以使学生对图像文件格式、图像文件的读写、图像处理程序的基本结构、处理方式和编程基本方法有进一步的认识,获得对图像处理原理和编程方法的进一步认识。
实验的基本要求是:利用Matlab或Visual C++编程环境编制图像处理程序,对一幅灰度图像进行灰度直方图统计与均衡化处理。
三、实验基本内容:1.图像处理程序用户界面设计;2.灰度直方图统计与均衡化;四、实验设备及环境:1.计算机;2.Matlab与Visual C++编程环境。
五、实验原理:1、数字图像直方图均衡化处理原理:A)图像直方图统计:根据图像的灰度等级统计该灰度等级的象素个数;B)图像直方图均衡化:直方图均衡化是将原图像通过某种变换,得到一幅灰度直方图为均匀分布的新图像的方法。
具体为:1)统计图像直方图;2)计算归一化的累计直方图;3)计算均衡后的直方图sk=int[(N-1)tk+0.5];4)根据均衡后的直方图将图像的每一个像素都映射到新的直方图上;六、实验具体要求:1.用户界面设计:用户界面可以自由设计,但应包括如下物件:窗体、菜单或命令按钮、图像显示框。
程序功能:图像像素行列数输入、打开图像、图像灰度直方图统计、图像灰度直方图均衡化、图像存储、退出。
七、对程序和实验报告的要求:1.将编制完成的Matlab或Visual C++程序作为附件交给实习老师;2.实验报告:所要求具有下列内容:图像处理程序编制的总体方案;程序用户界面的设计思路;图像处理算法;遇到的问题和解决过程;结果分析。
八、附件:附:实习示例程序:%《数字图像处理》课程实习%图像文件直方图统计显示实验程序by 武汉大学印刷与包装系易尧华I=imread('C:\Documents and Settings\hapxqpy\桌面\test-yy.bmp'); %将图像文件testimage.bmp的数据读入并赋值给变量I;figure(1); %新建用于图像显示的窗口;imshow(I); %在窗口中显示图像;figure(2); %新建用于图像直方图的窗口;imhist(I); %在窗口中显示图像直方图;J=histeq(I); %图像直方图均衡化处理;figure(3); %新建用于图像直方图的窗口;imshow(J); %在窗口中显示均衡化后的图像;figure(4); %新建用于显示均衡化后的图像直方图;imhist(J); %在窗口中显示均衡化后图像直方图;。
数字图像处理实验报告
实验报告课程名称数字图像处理实验项目点运算和直方图处理实验仪器 PC机 MATLAB软件系别专业班级/学号学生姓名实验日期成绩指导老师实验1 点运算和直方图处理一、实验目的1. 掌握利用Matlab图像工具箱显示直方图的方法2. 掌握运用点操作进行图像处理的基本原理。
3. 进一步理解利用点操作这一方法进行图像处理的特点。
4. 掌握利用Matlab图像工具箱进行直方图均衡化的基本方法。
二、实验的硬件、软件平台硬件:计算机软件:MATLAB三、实验内容及步骤1. 了解Matlab图像工具箱的使用。
2. 利用Matlab图像工具箱对图像进行点操作,要求完成下列3个题目中的至少2个。
⑴图1灰度范围偏小,且灰度偏低,改正之。
⑵图2暗处细节分辨不清,使其能看清楚。
⑶图3亮处细节分辨不清,使其能看清楚。
图1 图2 图33. 给出处理前后图像的直方图。
4. 利用MatLab图像处理工具箱中函数对以上图像进行直方图均衡化操作,观察结果。
四、思考题1. 点操作能完成哪些图像增强功能?2. 直方图均衡化后直方图为何并不平坦?为何灰度级会减少?五、实验报告要求1.对点操作的原理进行说明。
2.给出程序清单和注释。
3.对处理过程和结果进行分析(包括对处理前后图像的直方图的分析)。
题目1%图1灰度范围偏小,且灰度偏低,改正之。
方法:像素点操作clcclear allclose allI=imread('Image1.png'); %读取标题为“Point2”的位图,并用“I”表示该图j=rgb2gray(I); %转为灰度图像,并用j表示[l,r]=size(j); %将j的行数返回到第一个输出变量l,将列数返回到第二个输出变量rfigure(1); %创建一个空的窗口subplot(221); %将窗口分成2行2列,并在第一个位置进行操作imshow(j); %显示图片jtitle('原图像'); %标题for m=1:l %循环语句,行数m的值从1到l,下同for n=1:rp(m,n)=j(m,n)*1.8; %将j图中的每一个点的像素值乘以一个常数,得到的新像素以原来的位置构成图pendendsubplot(222);imshow(p);title('处理后图像') ;subplot(2,2,3) ;imhist(j); %显示图像j的直方图title('原图像直方图');subplot(2,2,4);imhist(p);title('处理后图像直方图');输出的图像:图4对比图像处理前后的直方图可知,原图的灰度范围较小。
数字图像处理直方图均衡实验报告
数字图像报告班级:姓名:学号:一、直方图均衡:直方图均衡化也叫做直方图平坦化,是一种常用的灰度增强算法。
目的:曾强对比度目标:均匀分度原理:假设灰度级为归一化至范围[0,1]内的连续量,并令Pr (r)表示某给定图像中的灰度级的概率密度函数(PDF),其下标用来区分输入图像和输出图像的PDF。
假设我们对输入灰度级执行如下变换,得到(处理后的)输出灰度级s:S=T(r)=∫0r Pr(w)dw式中w 是积分的哑变量。
可以看出,输出灰度级的概率密度函数是均匀的,即a.当0≤s≤1 时,Ps(s)=1b.当s 为其他时,Ps(s)=0换言之,前述变换生成一幅图像,该图像的灰度级较为均衡化,且覆盖了整个范围[0,1]。
灰度级均衡化处理的最终结果是一幅扩展了动态范围的图像,它具有较高的对比度。
该变换函数只不过是一个累积分布函数(CDF)。
二、直方图均衡程序:clc主程序:picture=input('please input the filename:','s');fid=fopen(picture);dat=fread(fid);d=dat';B=reshape(d,256,256);h=length(d);newname=input('输入新的文件名:','s');zhi(h,newname,B,d);子程序:function y=zhi(h,newname,B,d)figure(1);imshow(uint8(B'));N=zeros(1,256);for i=0:255for j=1:hif i==d(j)N(i+1)=N(i+1)+1;endendendi=0:255;p=N/h;figure(2)stem(i,p,'.')title('原始直方图')m=zeros(1,256);for k=1:256if k==1m(k)=p(k);elsem(k)=m(k-1)+p(k);endendfor k=1:256r=round(m*255);ends=zeros(1,256);for a=1:256for b=1:256if r(a)==r(b)s(a)=N(a)+N(b);endendendq=s/h;for j=1:256k(j)=r(j);endfigure(3);stem(k,q,'.');title('均衡直方图');M=zeros(1,h);for i=1:hk=d(i);M(i)=r(k+1);endR=reshape(M,256,256);figure(4);imshow(uint8(R'));jht=fopen(newname,'wb');g=fwrite(jht,M);fclose('all');原图像原始直方图均衡直方图均衡后的图像:三、体会:通过本次设计,让我学会了从问题的高度来考虑设计的方方面面,对程序的设计和研究有了更深刻的体会;让我了解到程序的设计是建立在对理论知识了解的基础上的,特别是对直方图均衡化的原理要有较为详细的了解,此外对直方图均衡化算法也要进行了解;在编写程序时,进行模块化设计,以严谨的态度进行编程,避免出现低级错误。
数字图像处理实验报告(直方图均衡化、直方图匹配)
实验二报告一.实验内容:⑴直方图均衡化(Histogram equalization),⑵直方图匹配(Histogram matching),二.实验结果:1.将mountain.jpg图像文件读入Matlab,对其作直方图均衡化,结果如下:2、对mountain.jpg图像做直方图匹配运算3、利用mountain.jpg图像的直方图(imhist函数可生成),编写直方图均衡化函数。
function [ imeq ] = Fhisteq( space,h )%FHISTEQ 此处显示有关此函数的摘要% 此处显示详细说明% 原始图像space 必须是[0 1]之间的%直方图均衡化函数L=length(h);pdf=h/numel(space);cdf=cumsum(pdf);f=zeros(1,L);for i=1:Lf(i)=cdf(i)*255;end[dimx,dimy]=size(space);imeq=zeros(dimx,dimy);for i=1:dimxfor j=1:dimyimeq(i,j)=f(round(space(i,j)*255)+1);endendend结果如下:4、直方图均衡化分析:直方图均衡化就是一种能仅靠输入图像直方图信息自动达到这种效果的变换函数。
它的主要思想是扩展图像原有灰度级分布,使图像能够在更大的灰度级范围内分布,从而提高了对比度和灰度色调的变化,使图像更加清晰。
从上面的图像可以清楚的看到原有的mountain图像整体偏暗,直方图集中在灰度级偏小的一侧。
但是直方图均衡化后每个灰度级上的图像点数量有了明显提高,直方图中间部分的数值也有了明显的增强,图像的视觉效果也明显变好了。
而使用直方图匹配的算法则能够更好的让原有图像朝着我们预期的直方图分布去变换,这对于有特定的显示要求来说是一种比较好的选择。
数字图像直方图规定化处理实验(matlab)
.XX 大学实验报告学院:专业: 班级:~~~ 学号 ~~~~ 实验组 ~~~实验时间 ~~~~~指导教师~~~成绩实验项目名称实验二:数字图像的直方图规定化办理实验(一)掌握数字图像的直方图规定化办理的算法和方法。
目(二)熟习数字图像的直方图规定化办理的算法原理。
的 实验 依据实验内容及参照程序, 独立达成此次实验,记下不懂的知识点,查阅资料或许向老 要 师咨询。
求直方图规定化是用于产生办理后有特别直方图的图像方法。
令p r (r)和p z (z)分别为原始图像和希望图像的灰度概率密度函数。
对原始图像和希望图像均作直方图均衡化办理,应有:rz1p r (r)dr ,VG(Z)ST(r)p z (z)dz ,Z G (V)因为都是作直方图均衡化办理,所以办理后的原图像的灰度概率密度函数P S (S)及理实验 想图像的灰度概率密度函数P V (V)是相等的。
所以,能够用变换后的原始图像灰度级S原取代上式中的V ,即ZG1[T(r)]。
利用此式能够从原始图像获取希望的图像灰度级。
理 对失散图像,有n i,V ik1G 1(S i )G 1[T(r i )]P Z (Z i )G(Z i )P Z (Z i ),Z ini0综上所述,数字图像的直方图规定化就是将直方图均衡化后的结果映照到希望的理想直方图上,使图像按人的意向去变换。
数字图像的直方图规定的算法以下:(一)将原始图像作直方图均衡化办理,求出原图像中每一个灰度级r i 所对应的变.换函数S i。
(二)对给定直方图作近似计算,获取理想图像中每一个灰度级Z i所对应的变换函数V i。
(三)找出V i S i的点对,并映照到Z i。
(四)求出P i(Z i)。
实1.准备好的图片,并保留好或许选好MATLAB的工作路径验2.将参照程序稍做改正,并运转。
步3.结果分析。
骤程序以下:1.文件名:fc.mA=imread('123.jpg');I=rgb2gray(A);J=histeq(I);figure,imshow(A)figure,imshow(I);title('原灰色图像');figure,imhist(I);title('原图像的灰度直方图');实figure,imhist(J);title('均衡化图像的直方图');验figure,imshow(J);内title('均衡化图像');容2.文件名:ff.mI=imread('tire.tif');J=histeq(I,32);[counts,x]=imhist(J);Q=imread('123.jpg');figure;imshow(Q);title('原图像');A=rgb2gray(Q);figure;imhist(A);title('原图像直方图');M=histeq(A,counts);.figure;imshow(M);title('直方图规定化后的图像');figure;imhist(M);title('规定直方图');实验数据将上程序稍做变动后所得结果加:Figure;subplot(1,2,1);imhist(I,64);subplot(1,2,2);imhist(J,64);得图:.2...实验1.对程序要充分的认识,合适变动程序,比较程序和直方图之间的关系。
数字图像处理实验报告图像增强处理与几何变换
实验图像增强处理与几何变换一、实验目的利用Matlab图像处理工具箱中的函数实现图像点处理、空间域平滑和锐化处理、彩色图像处理、几何处理,巩固其原理与计算方法学习,深化课程理论认知。
二、实验内容1、图像点处理:灰度变换、直方图均衡化和直方图规定处理;2、图像均值滤波和中值滤波、图像锐化处理;3、图像几何变换处理;4、图像彩色合成和彩色变换处理;三、实验步骤1、图像点处理:灰度变换、直方图均衡化和直方图规定处理;1.1图像的灰度变换启用MATLAB,输入以下代码运行I= imread('cameraman-8.bmp','bmp');figure; subplot(2,2,1), imshow(I);%获取图像直方图subplot(2,2,2),imhist(I);[counts1,x1] = imhist(I);%观察Counts,x的值subplot(2,2,3),stem(x1,counts1);%图像灰度变换J=imadjust(I,[0.1 0.7],[0.0 0.9]);subplot(2,2,4), imshow (J);%对比灰度变换前后的图像及其直方图figure;subplot(2,3,1),imshow(I);subplot(2,3,2),imshow(J);subplot(2,3,4),imhist(I);subplot(2,3,5),imhist(J);[counts2,x2] = imhist(J);subplot(2,3,6), stem(x2,counts2);图 1.1.1图 1.1.21.2图像直方图均衡化启用MATLAB,输入以下代码运行I=imread('cameraman-8.bmp','bmp') ;%直方图均衡化处理J=histeq(I) ;%对比均衡化处理前后的图像及其直方图figure(1),subplot(2,2,1),imshow(I),subplot(2,2,2),imshow(J); figure(1),subplot(2,2,3),imhist(I),subplot(2,2,4),imhist(J);图 1.2 1.3直方图规定化启用MATLAB,输入以下代码运行I1=imread('TM5.bmp','bmp');I2=imread('TM3.bmp','bmp');%直方图规定化处理K1=histeq(I1,imhist(I2));%对比规定化处理前后的图像及其直方图figure;subplot(3,2,1),imshow(I1);subplot(3,2,2), imhist(I1);subplot(3,2,3),imshow(I2);subplot(3,2,4), imhist(I2);subplot(3,2,5),imshow(K1);subplot(3,2,6), imhist(K1);图 1.32、图像空间域平滑2.1 用均值滤波器实现图像空间域的平滑启用MATLAB,输入以下代码运行I=imread('cameraman-8.bmp','bmp');J=imnoise(I,'gaussian'); %添加高斯噪声K=imnoise(I,'salt & pepper'); %添加椒盐噪声M=imnoise(I,'speckle'); %添加乘性噪声H=ones(3,3)/9; %3*3的均值去噪模板%滤波去噪处理I1=imfilter(I,H);J1=imfilter(J,H);K1=imfilter(K,H);M1=imfilter(M,H) ;%对比线性滤波去噪处理前后的图像figure;subplot(2,4,1),imshow(I);title('原图');subplot(2,4,2),imshow(J); title('高斯噪声图像'); subplot(2,4,3),imshow(K); title('椒盐噪声图像'); subplot(2,4,4),imshow(M); title('乘性噪声图像'); subplot(2,4,6),imshow(J1); title('高斯噪声滤波图像'); subplot(2,4,7),imshow(K1); title('椒盐噪声滤波图像'); subplot(2,4,8),imshow(M1) ; title('乘性噪声滤波图像') ; 输出图像如下图 2.12.2 用中值滤波器实现图像空间域的平滑启用MATLAB,输入以下代码运行I=imread('cameraman-8.bmp');I1=imnoise(I,'gaussian');I2=imnoise(I,'salt & pepper',0.02);I3=imnoise(I,'speckle');%3×3中值滤波模板J=medfilt2(I,[3,3]);J1=medfilt2(I1,[3,3]);J2=medfilt2(I2,[3,3]);J3=medfilt2(I3,[3,3]);figure,subplot(2,4,1),imshow(I) ; title('原图') ;subplot(2,4,2),imshow(I1) ; title('添加高斯噪声') ;subplot(2,4,3),imshow(I2) ; title('添加椒盐噪声') ;subplot(2,4,4),imshow(I3) ; title('添加乘性噪声') ;subplot(2,4,6),imshow(J1) ;title('高斯噪声3*3中值滤波') ; subplot(2,4,7),imshow(J2) ;title('椒盐噪声3*3中值滤波') ; subplot(2,4,8),imshow(J3) ;title('乘性噪声3*3中值滤波') ;K=medfilt2(I, [5,5]); %5×5中值滤波模板K1=medfilt2(I1,[5,5]);K2=medfilt2(I2,[5,5]);K3=medfilt2(I3,[5,5]);figure;subplot(2,2,1),imshow(K); title('原图5*5中值滤波'); subplot(2,2,2),imshow(K1) ; title('高斯噪声5*5中值滤波') ; subplot(2,2,3),imshow(K2); title('椒盐噪声5*5中值滤波'); subplot(2,2,4),imshow(K3) ; title('乘性噪声5*5中值滤波'); 输出结果如下图 2.2.1图 2.2.22.3 图像空间域锐化启用MATLAB,输入以下代码运行I=imread('cameraman-8.bmp','bmp')H=fspecial('sobel')%用sobel算子做模板%锐化处理J=imfilter(I,H)%锐化处理前后图像对比figure,subplot(1,2,1),imshow(I),subplot(1,2,2),imshow(J); 输出图像如下图 2.33、图像几何变换3.1 缩放启用MATLAB,输入以下代码运行I=imread('cameraman-8.bmp', 'bmp') ;%放大图像J=imresize(I,2) ;%缩小图像K=imresize(I,0.5) ;%图像对比figure(1),subplot(),imshow(I),title('原图'),figure(2),subplot(),imshow(J),title('放大两倍的图'),figure(3),subplot(),imshow(K),title('缩小0.5倍的图') ;输出图像如下图 3.1.1 图3.1.2图 3.1.33.2旋转启用MATLAB,输入以下代码运行I=imread('cameraman-8.bmp', 'bmp') ;%旋转图像M=imrotate(I,45) ;%图像对比figure;subplot(1,2,1),imshow(I),subplot(1,2,2),imshow(M) ;输出图像如下图 3.24、彩色图像处理4.1彩色合成启用MATLAB,输入以下代码运行I=imread('peppers.bmp','bmp');J1=I; J2=I;J3=I; J4=I;J5=I;%改变J1、J2、J3、J4、J5中的波段次序,组合成新的波段合成J1(:,:,1)=I(:,:,2); J1(:,:,2)=I(:,:,3); J1(:,:,3)=I(:,:,1) ;J2(:,:,1)=I(:,:,1); J2(:,:,2)=I(:,:,3); J2(:,:,3)=I(:,:,2) ;J3(:,:,1)=I(:,:,2); J3(:,:,2)=I(:,:,1); J3(:,:,3)=I(:,:,3) ;J4(:,:,1)=I(:,:,3); J4(:,:,2)=I(:,:,2); J4(:,:,3)=I(:,:,1) ;J5(:,:,1)=I(:,:,3); J5(:,:,2)=I(:,:,1); J5(:,:,3)=I(:,:,2) ;%对比原图像I与新图像J1、J2、J3、J4、J5的彩色差异,理解假彩色合成figure,subplot(2,3,1),imshow(I),title('原图');subplot(2,3,2),imshow(J1),title('变换一') ;subplot(2,3,3),imshow(J2),title('变换二') ;subplot(2,3,4),imshow(J3),title('变换三') ;subplot(2,3,5),imshow(J4),title('变换四') ;subplot(2,3,6),imshow(J5),title('变换五');输出图像如下图4.1 4.2彩色变换启用MATLAB,输入以下代码运行I=imread('peppers.bmp','bmp');HSV=rgb2hsv(I) ;RGB=hsv2rgb(HSV) ;%对比彩色变换前后的图像figure;subplot(1,3,1),imshow(I),title('原图'),subplot(1,3,2),imshow(HSV),title('HSV图像'); subplot(1,3,3),imshow(RGB),title('RGB图像') ;输出结果如下图 4.2四、实验算法要点总结1、图像点处理直方图修正法通常分为直方图均衡化和直方图规定化两类2、图像均值滤波和中值滤波、图像锐化处理3、图像几何变换处理4、图像彩色合成和彩色变换处理通过映射函数将彩色图像或多光谱图像变换成新的三基色分量线性假彩色映射表示为:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字图像处理实验报告直方图匹配规定化
直方图均衡化能够自动增强整个图像的对比度,但它的具体增强效果不容易控制,处理的结果总是得到全局均匀化的直方图。
实际上有时需要变换直方图,使之成为某个特定的形状,从而有选择地增强某个灰度值范围内的对比度。
这时可以采用比较灵活的直方图规定化。
一般来说正确地选择规定化的函数可以获得比直方图均衡化更好的效果。
所谓直方图规定化,就是通过一个灰度映像函数,将原灰度直方图改造成所希望的直方图。
所以,直方图修正的关键就是灰度映像函数。
直方图匹配方法主要有3个步骤(这里设M和N分别为原始图和规定图中的灰度级数,且只考虑N≤M的情况):
(1) 如同均衡化方法中,对原始图的直方图进行灰度均衡化:
(2) 规定需要的直方图,并计算能使规定的直方图均衡化的变换:
(3) 将第1个步骤得到的变换反转过来,即将原始直方图对应映射到规定的直方图,也就是将所有pf(fi)对应到pu(uj)去。
一、A图直方图规定B图
Matlab程序:
%直方图规定化
clear all
A=imread('C:\Users\hp\Desktop\A.tif'); %读入A图像
imshow(A) %显示出来
title('输入的A图像')
%绘制直方图
[m,n]=size(A); %测量图像尺寸
B=zeros(1,256); %预创建存放灰度出现概率的向量
for k=0:255
B(k+1)=length(find(A==k))/(m*n); %计算每级灰度出现的概率,将其存入
B中相应位置
end
figure,bar(0:255,B,'g'); %绘制直方图
title('A图像直方图')
xlabel('灰度值')
ylabel('出现概率')
axis([0,260,0,0.015])
C=imread('C:\Users\hp\Desktop\B.tif');%读入B图像
imshow(C) %显示出来
title('输入的B图像')
%绘制直方图
[m,n]=size(C); %测量图像尺寸
D=zeros(1,256); %预创建存放灰度出现概率的向量
for k=0:255
D(k+1)=length(find(C==k))/(m*n); %计算每级灰度出现的概率,将其存入D中相应位置
end
figure,bar(0:255,D,'g'); %绘制直方图
title('B图像直方图')
xlabel('灰度值')
ylabel('出现概率')
axis([0,260,0,0.015])
S1=zeros(1,256);
for i=1:256
for j=1:i
S1(i)=D(j)+S1(i); %计算B灰度图累计直方图
end
end
counts=B
figure,bar(0:255,counts,'r')
title('A图像直方图 ')
S2=zeros(1,256);
for i=1:256
for j=1:i
S2(i)=counts(j)+S2(i);
end
end; %"累计"规定化直方图
%对比直方图,找到相差最小的灰度级
for i=1:256
for j=1:255
if S1(j)<=S2(i)&S1(j+1)>=S2(i)
if abs(S1(j)-S2(i))<=abs(S1(j+1)-S2(i)) T(i)=j;
else T(i)=j+1;
end
end
end
end
%确定变换关系,重组直方图
H=zeros(1,256);
H(1)=S2(1);
for i=2:255
if T(i-1)>0
for k=(T(i-1)+1):T(i)
H(i)=H(i)+D(k);
end
else H(i)=0;
end
end
figure,bar(0:255,H,'g') %显示规定化后的直方图
title('A规定B后的直方图')
xlabel('灰度值')
ylabel('出现概率')
axis([0,260,0,0.6])
%显示规定图
PA=C; %将各个像素归一化后的灰度值赋给这个像素
for i=1:m
for j=1:n
for k=2:255
if T(k-1)<=C(i,j)&C(i,j)<=T(k)
PA(i,j)=k;
break;
end
end
end
end
figure,imshow(PA) %显示规定化后的图像
title('A规定B后图像')
imwrite(PA,'guidinghua.bmp');
二、用已知直方图规定A图
规定灰度为
[zeros(1,49),0.3,zeros(1,49),0.1,zeros(1,49),0.2,zeros(1,49),0.1,zeros(1,49 ),0.2,zeros(1,49),0.1]
Matlab程序:
clear all
A=imread('C:\Users\hp\Desktop\B.tif'); %读入A图像imshow(A) %显示出来
title('输入的A图像')
%绘制直方图
[m,n]=size(A); %测量图像尺寸
B=zeros(1,256); %预创建存放灰度出现概率的向量
for k=0:255
B(k+1)=length(find(A==k))/(m*n); %计算每级灰度出现的概率,将其存入B中相应位置
end
figure,bar(0:255,B,'g'); %绘制直方图
title('A图像直方图')
xlabel('灰度值')
ylabel('出现概率')
axis([0,260,0,0.015])
S1=zeros(1,256);
for i=1:256
for j=1:i
S1(i)=B(j)+S1(i); %计算原灰度图累计直方图
end
end
counts=[zeros(1,49),0.3,zeros(1,49),0.1,zeros(1,49),0.2,zeros(1,49),0.1,zer os(1,49),0.2,zeros(1,49),0.1];%规定化直方图
figure,bar(1:300,counts,'r')
title('规定化直方图')
S2=zeros(1,256);
for i=1:256
for j=1:i
S2(i)=counts(j)+S2(i);
end
end; %"累计"规定化直方图
%对比直方图,找到相差最小的灰度级
for i=1:256
for j=1:256
if S1(j)<=S2(i)&S1(j+1)>=S2(i)
if abs(S1(j)-S2(i))<=abs(S1(j+1)-S2(i)) T(i)=j;
else T(i)=j+1;
end
end
end
end
%确定变换关系,重组直方图
H=zeros(1,256);
H(1)=S2(1);
for i=2:256
if T(i-1)>0
for k=(T(i-1)+1):T(i)
H(i)=H(i)+B(k);
end
else H(i)=0;
end
end
figure,bar(0:255,H,'g') %显示规定化后的直方图title('规定化后的直方图')
xlabel('灰度值')
ylabel('出现概率')
axis([0,260,0,0.6])
%显示规定图
PA=A; %将各个像素归一化后的灰度值赋给这个像素
for i=1:m
for j=1:n
for k=2:256
if T(k-1)<=A(i,j)&A(i,j)<=T(k)
PA(i,j)=k;
break;
end
end
end
end
figure,imshow(PA) %显示规定化后的图像title('规定化后图像')
imwrite(PA,'guidinghua.bmp');。