(完整版)开关磁阻电机驱动系统的运行原理及应用

合集下载

开关磁阻电机原理和应用

开关磁阻电机原理和应用

开关磁阻电机开关磁阻电机是一种新型调速电机,调速系统兼具直流、交流两类调速系统的优点,是继变频调速系统、无刷直流电动机调速系统的最新一代无极调速系统。

它的构造简单稳固,调速范围宽,调速性能优异,且在整个调速范围内都具有较高效率,系统可靠性高。

主要由开关磁阻电机、功率变换器、控制器与位置检测器四部分组成。

控制器内包含控制电路与功率变换器,而转子位置检测器那么安装在电机的一端。

其电机部分由于是运用了磁阻最小原理,故称为磁阻电动机,又由于线圈电流通断、磁通状态直承受开关控制,故称为开关磁阻电动机。

特征开关磁阻电机构造简单,性能优越,可靠性高,覆盖功率范围10W~5MW的各种上下速驱动调速系统。

使的开关磁阻电机存在许多潜在的领域,在各种需要调速和高效率的场合均能得到广泛使用〔电动车驱动、通用工业、家用电器、纺织机械、电力传动系统等各个领域〕。

优点◆其构造简单,价格廉价,电机的转子没有绕组和磁铁。

◆电机转子无永磁体,允许较高的温升。

由于绕组均在定子上,电机容易冷却。

效率高,损耗小。

◆转矩方向与电流方向无关,只需单方相绕组电流,每相一个功率开关,功率电路简单可靠。

◆转子上没有电刷构造稳固,适用于高速驱动。

◆转子的转动惯量小,有较高转矩惯量比。

◆调速范围宽,控制灵敏,易于实现各种再生制动才能。

◆并具频繁启动〔1000次/小时〕,正向反向运转的特殊场合使用。

◆且启动电流小,启动转矩大,低速时更为突出。

◆电机的绕组电流方向为单方向,电力控制电路简单,具有较高的经济性和可靠性。

◆可通过机和电的统一协调设计满足各种特殊使用要求。

缺点其工作原理决定了,假设需要开关磁阻电机运行稳定可靠,必须使电机与控制配合的很好。

因其要使用位置传感器,增加了构造复杂性,降低了可靠性。

对于电机本身而言,转矩脉动大是其固有的缺点;在电机远离设计点的时候,转矩脉动大会表达的更加明显。

假设单纯使用电流斩波或最优导通角控制方法,对其转矩脉动的改善不是很大,需要参加更加复杂的算法。

开关磁阻电机PPT课件

开关磁阻电机PPT课件

当电机低速运行时,im很大,必须限幅
电流斩波控制方式 (CCC)
2.4 ψ-i曲线
得到SR电动机各部分的磁通、磁阻 不同转子位置角下的磁化曲线ψ=f(i)。
φ
在线性模型中,电感L 仅是位置角θ的函数 而与电流无关,因此 对某一θ来讲, ψ= Li为一直线。
i
φ i
SR电机线性模型
2.5 转矩与功率
dt 2
2 dt
ui d (1 Li2 ) 1 i2 dL
d 2
2 d
ui d (1 Li2 ) 1 i2 dL
d 2
2 d
当开关导通,单位时间内输入电能ui 一部分增加磁场储能 (1 Li2 )
2
一部分转化为机械能 (1 i2 dL )
当开关关断
2 d
dL 0
d
dL 0
d
一部分转化为机械能 一部分磁场储能返回电源
波变化,不随电流改变
随电流改变。
四相8/6极SR电机定转子实物
1.1.2 功率变换器
能量提供者 包括直流电源和开关器件
1.1.3 控制器和位置检测器
控制器要求具有下述性能: (1)电流斩波控制 (2)角度位置控制 (3)起动,制动,停车及四象限运行 (4)调速 位置检测器提供转子位置信号,使控制器决定
理想SR模型 定子绕阻电感L与绕阻电流i无关 极尖的磁通边缘效应忽略不计 磁导率μ∞ 忽略所有功率损耗 开关动作瞬时完成 转子旋转角速度Ω=C
2.1 电感与转子位置角的关系
Lmin
L(
)
K (
1)
Lmax
Lmin
1 1 1 2 2 3
Lmax K ( 1) 3 4
d d

开关磁阻电动机的性能及典型应用

开关磁阻电动机的性能及典型应用
开关磁阻电动机的特点使其应用在洗衣机上可以获得良好的效果。开关磁阻电动机调速系统宽广的调速范围,可以使“洗涤“与
脱水“均工作在最佳的转速上,以实现真正意义上的标准洗、快速洗、轻柔洗、丝绒洗,甚至变速洗。脱水时也可以随意选择旋转的转速。还可以按某些设定的程序来提升转速,让衣物在脱水过程中避免因分布不均造成的振动和噪声。开关磁阻电动机卓越的启动性能可消除洗涤过程中电机频繁正反转启动电流对电网的冲击,使洗涤、换向平稳无噪声。开关磁阻电动机调速系统在全部调速范围内的高效率,可以使洗衣机的耗电量大大减少。
2 结构与性能特点
2.1 电动机结构简单、成本低、适用于高速
开关磁阻电动机的结构比通常认为最简单的鼠笼式感应电动机还要简单,定子线圈为集中绕组,嵌放容易,端部短而牢固,工作可靠,能适用于各种恶劣、高温甚至强振动环境;转子仅有硅钢片叠成,因此不会有鼠笼感应电动机制造过程中鼠笼铸造不良和使用中的断条等问题,转子机械强度极高,可工作于极高转速,转速可达每分钟10万转[2]。
目前国内龙门刨床的主传动系统主要有直流机组形式和异步电动机-电磁离合器形式。大量以直流机组为主拖动系统的刨床,使用到现在大多处于严重老化的状态,电机磨损严重,高速重载时电刷上火花较大,故障频繁,维护工作量大,直接影响正常的生产。此外,该系统不可避免地存在设备庞大、耗电多,噪音高的缺点。异步电动机-电磁离合器系统依靠电磁离合器实现正反转向,离合器磨损严重,工作稳定性不好,且不便调速,仅限用于轻型刨床。
(4)电机的起动电流小,对电瓶无冲击,起动转矩大,适合于重载起动。
(5)无论电机还是功率变换器都十分坚固可靠,适用于各种恶劣、高温环境,具有良好的适应性。
鉴于以上优点,国内外都有很多开关磁阻电动机在电动汽车、电动客车、电动自行车的实际应用[6]。

开关磁阻电机

开关磁阻电机

CREATE TOGETHER
DOCS
谢谢观看
THANK YOU FOR WATCHING
开关磁阻电机的工作原理
SRM的工作原理
• 电磁感应原理:转子绕组切割磁力线产生感应电动势 • 磁阻变化原理:定子凸极与转子凸极相对位置变化导致 磁阻变化 • 扭矩产生:磁阻变化产生电磁扭矩,驱动转子旋转
SRM的运转过程
• 启动阶段:电流通过定子绕组产生磁场,转子开始旋转 • 运行阶段:转子转速增加,磁阻变化减小,电流逐渐减 小 • 停止阶段:转子停止旋转,磁阻变化消失,电流降至零
应用领域的拓展
• 新能源汽车:提高电动汽车性能,降低能耗 • 家用电器:提高家用电器性能,降低能耗 • 工业自动化:提高生产效率,降低能耗
技术水平的提升
• 高性能电机的研究与应用:提高电机性能 • 新型控制策略的研究与应用:提高控制精度和响应速度 • 高性能驱动电路的研究与应用:提高驱动效率和可靠性
开关磁阻电机的技术发展趋势
高性能材料的应用
• 高磁能永磁材料:提高电机磁能密度 • 高强度绝缘材料:提高电机绝缘性能 • 高导热材料:提高电机散热性能
高性能电机设计
• 优化磁路设计:提高电机效率和扭矩 • 优化绕组设计:降低铜损,提高效率 • 优化轴承设计:提高电机运行稳定性
开关磁阻电机的研究热点与挑战
研究热点
• 新型控制策略:提高控制精度和响应速度 • 高性能驱动电路:提高驱动效率和可靠性 • 高性能材料的研究与应用:提高电机性能
挑战
• 高效率与高性能的平衡:提高电机效率,同时保持高性能 • 控制策略的优化:实现精确控制,提高系统性能 • 制造工艺的改进:提高电机制造工艺水平,降低成本
开关磁阻电机的未来展望

开关磁阻电机的原理及其控制系统

开关磁阻电机的原理及其控制系统

开关磁阻电机的原理及其控制系统开关磁阻电机80年代初随着电力电子、微电脑和控制理论的迅速发展而发展起来的一种新型调速驱动系统。

具有结构简单、运行可靠、成本低、效率高等突出优点,目前已成为交流电机调速系统、直流电机调速系统、无刷直流电机调速系统的强有力的竞争者。

一、开关磁阻电机的工作原理开关磁阻电机的工作原理遵循磁磁阻最小原理,即磁通总是要沿着磁阻最小路径闭合。

因此,它的结构原则是转子旋转时磁路的磁阻要有尽可能大的变化。

所以开关磁阻电动机采用凸极定子和凸极转子的双凸极结构,并且定转子极数不同。

开关磁阻电机的定子和转子都是凸极式齿槽结构。

定、转子铁芯均由硅钢片冲成一定形状的齿槽,然后叠压而成,其定、转子冲片的结构如图1所示。

图1:开关磁阻电机定、转子结构图图1所示为12/8极三相开关磁阻电动机,S1. S2是电子开关,VD1, VD2是二极管,是直流电源。

电机定子和转子呈凸极形状,极数互不相等,转子由叠片构成,定子绕组可根据需要采用串联、并联或串并联结合的形式在相应的极上得到径向磁场,转子带有位置检测器以提供转子位置信号,使定子绕组按一定的顺序通断,保持电机的连续运行。

电机磁阻随着转子磁极与定子磁极的中心线对准或错开而变化,因为电感与磁阻成反比,当转子磁极在定子磁极中心线位置时,相绕组电感最大,当转子极间中心线对准定子磁极中心线时,相绕组电感最小。

当定子A相磁极轴线OA与转子磁极轴线O1不重合时,开关S1, S2合上,A 相绕组通电,电动机内建立起以OA为轴线的径向磁场,磁通通过定子扼、定子极、气隙、转子极、转子扼等处闭合。

通过气隙的磁力线是弯曲的,此时磁路的磁导小于定、转子磁极轴线重合时的磁导,因此,转子将受到气隙中弯曲磁力线的切向磁拉力产生的转矩的作用,使转子逆时针方向转动,转子磁极的轴线O1向定子A相磁极轴线OA趋近。

当OA和O1轴线重合时,转子己达到平衡位置,即当A相定、转子极对极时,切向磁拉力消失。

《开关磁阻电机》课件

《开关磁阻电机》课件
关磁阻电机在电动汽车领域的应用也越来越广泛。
电动汽车的驱动系统需要能够提供更高的扭矩和功率,同时还要具备较 高的可靠性和效率。开关磁阻电机能够满足这些要求,因此在一些高端 电动汽车中得到了应用。
在工业领域的应用
工业领域是开关磁阻电机的重要应用领 域之一,特别是在需要高扭矩、高可靠
性、高效率和高寿命的场合。
发展
开关磁阻电机在发展过程中不断改进和优化,以提高效率、降低成本、减小体积和重量等方面取得显著进展。目 前,开关磁阻电机已经在工业自动化、电动车、家用电器等领域得到广泛应用。
特点与优势
特点
开关磁阻电机具有结构简单、成本低、可靠性高、效率高、调速范围宽等优点。
开关磁阻电机具有更高的能效和可靠性,适 用于需要频繁启动、制动和调速的场合。此外,开关磁阻电机的控制系统简单, 维护方便,适用于各种恶劣环境。
开关磁阻电机的设计、制造和控制系 统已经得到了很大的发展,但仍存在 一些挑战和问题需要进一步研究和解 决。
对未来研究的展望
随着技术的不断进步和应用需求的不断提高,开关磁阻电 机的性能和功能需要进一步优化和完善。
未来的研究将更加注重开关磁阻电机的智能化、高效化、 小型化和轻量化等方面的研究,以适应更加复杂和多变的 应用场景。
在工业领域中,开关磁阻电机主要用于 驱动各种机械设备,如压缩机、泵、风 机、传送带等。由于其高效、可靠、维 护成本低等优点,开关磁阻电机在工业
领域中得到了广泛应用。
在工业自动化和智能制造领域,开关磁 阻电机的高效性和可靠性也得到了广泛 应用,如机器人关节驱动、自动化生产
线等。
在家用电器领域的应用
家用电器是开关磁阻电机的重要应用领域之一,特别是在需要高效、低噪音、低 维护成本的家电产品中。

开关磁阻电机工作原理及其驱动系统

开关磁阻电机工作原理及其驱动系统

开关磁阻电机工作原理及其驱动系统开关磁阻电机Switched Reluctance Drivesystem, SRD开关磁阻电机驱动系统(Switched Reluctance Drive system, SRD)具有一些很有特色的优点:电机结构简单、坚固、维护方便甚至免维护,起动及低速时转矩大、电流小;高速恒功率区范围宽、性能好,在宽广转速和功率范围内都具有高输出和高效率而且有很好的容错能力。

这使得SR电机驱动系统在家用电器、通用工业、伺服与调速系统、牵引电机、高转速电机、航空航天等领域得到广泛应用。

SR电机是一种机电能量转换装置。

根据可逆原理,SR电机和传统电机一样,它既可将电能转换为机械能——电动运行,在这方面的理论趋于成熟;也可将机械能转换为电能——发电运行,其内部的能量转换关系不能简单看成是SR电动机的逆过程。

开关磁阻电机的发展概况和发展趋势“开关磁阻电机(Switched reluctance motor)”一词源见于美国学者S.A.Nasarl969年所撰论文,它描述了这种电机的两个基本特征:①开关性——电机必须工作在一种连续的开关模式,这是为什么在各种新型功率半导体器件可以获得后这种电机才得以发展的主要原因;②磁阻性——它是真正的磁阻电机,定、转子具有可变磁阻磁路,更确切地说,是一种双凸极电机。

开关磁阻电机的概念实际非常久远,可以追溯到19世纪称为“电磁发动机”的发明,这也是现代步进电机的先驱。

在美国,这种电机常常被称为“可变磁阻电机(variable reluctance motor, VR电机)”一词, 但是VR电机也是步进电机的一种形式,容易引起混淆。

有时人们也用“无刷磁阻电机(Brushless reluctance motor)”一词,以强调这种电机的无刷性。

“电子换向磁阻电机(Electronically commutated reluctance motor)”一词也曾采用,从工作原理来看,甚至比“开关磁阻”的说法更准确—些,但也容易与电子换向的水磁直流电机相混淆。

开关磁阻调速电机工作原理

开关磁阻调速电机工作原理

开关磁阻调速电机工作原理
下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!
Download tips: This document is carefully compiled by theeditor. l hope that after you downloadthem,they can help yousolve practical problems. The document can be customized andmodified afterdownloading,please adjust and use it according toactual needs, thank you!
开关磁阻调速电机工作原理简述:
①结构特点:开关磁阻电机(SRM)由定子和转子组成,定子有多相绕组,转子为凸极铁心,无绕组或永磁体。

②磁阻转矩:电流通过定子绕组时产生磁场,转子凸极在磁场作用下移动至磁阻最小位置,即磁场最强点,形成磁阻转矩。

③定子电流控制:控制器按预定序列和时序开关定子绕组的电流,使定子磁场动态变化,促使转子连续转动。

④转速调节:通过改变电流导通的相位和电流幅值,精细调控转子位置和转速,实现宽范围调速。

⑤四象限运行:配备适当控制策略和制动单元,SRM可实现正反转及制动,适用于频繁起停场合。

⑥效率与成本:因结构简单、调速性能好、效率高且成本相对低,开关磁阻电机在特定领域应用广泛。

综上,开关磁阻电机通过电磁相互作用和适时切换定子绕组电流,以磁阻最小原理驱动转子运转,达成高效调速。

开关磁阻电机的原理及其控制系统

开关磁阻电机的原理及其控制系统

开关磁阻电机的原理及其控制系统开关磁阻电机80年代初随着电力电子、微电脑和控制理论的迅速发展而发展起来的一种新型调速驱动系统。

具有结构简单、运行可靠、成本低、效率高等突出优点,目前已成为交流电机调速系统、直流电机调速系统、无刷直流电机调速系统的强有力的竞争者。

一、开关磁阻电机的工作原理开关磁阻电机的工作原理遵循磁磁阻最小原理,即磁通总是要沿着磁阻最小路径闭合。

因此,它的结构原则是转子旋转时磁路的磁阻要有尽可能大的变化。

所以开关磁阻电动机采用凸极定子和凸极转子的双凸极结构,并且定转子极数不同。

开关磁阻电机的定子和转子都是凸极式齿槽结构。

定、转子铁芯均由硅钢片冲成一定形状的齿槽,然后叠压而成,其定、转子冲片的结构如图1所示。

图1:开关磁阻电机定、转子结构图图1所示为12/8极三相开关磁阻电动机,S1. S2是电子开关,VD1, VD2是二极管,是直流电源。

电机定子和转子呈凸极形状,极数互不相等,转子由叠片构成,定子绕组可根据需要采用串联、并联或串并联结合的形式在相应的极上得到径向磁场,转子带有位置检测器以提供转子位置信号,使定子绕组按一定的顺序通断,保持电机的连续运行。

电机磁阻随着转子磁极与定子磁极的中心线对准或错开而变化,因为电感与磁阻成反比,当转子磁极在定子磁极中心线位置时,相绕组电感最大,当转子极间中心线对准定子磁极中心线时,相绕组电感最小。

当定子A相磁极轴线OA与转子磁极轴线O1不重合时,开关S1, S2合上,A相绕组通电,电动机内建立起以OA为轴线的径向磁场,磁通通过定子扼、定子极、气隙、转子极、转子扼等处闭合。

通过气隙的磁力线是弯曲的,此时磁路的磁导小于定、转子磁极轴线重合时的磁导,因此,转子将受到气隙中弯曲磁力线的切向磁拉力产生的转矩的作用,使转子逆时针方向转动,转子磁极的轴线O1向定子A相磁极轴线OA趋近。

当OA和O1轴线重合时,转子己达到平衡位置,即当A相定、转子极对极时,切向磁拉力消失。

开关磁阻电机驱动系统的运行原理及应用

开关磁阻电机驱动系统的运行原理及应用

开关磁阻电机驱动系统的运行原理及应用1.简介:开关磁阻电机由驱动器和电机两部分组成,其中驱动器根据外部输入源的指令向电机提供电流,而电机则将电流转化为转动力。

2.驱动电流:驱动器根据输入源的指令产生开关电流,该电流可以通过改变驱动器中的电流方向和大小来实现。

在每一个电机相中都有一个电流传感器,用于测量电流。

驱动器会根据这些测量结果,进行控制电机的电流。

3.磁化和消磁:当电流通过电机线圈时,它会产生磁场,从而使定子上的磁阻磁化。

然后,电流将被改变方向,导致磁阻逆磁化。

这个过程会不断重复。

4.转动力产生:由于磁阻的磁化和逆磁化,定子上的转子被吸引和排斥。

这个过程会持续下去,从而使电机转动。

1.工业机械:开关磁阻电机驱动系统可以应用于各种工业机械中,如机床、印刷机、绘图仪和工业机器人等。

它们能够提供高速、高力矩和高精度的转动控制,提高生产效率和产品质量。

2.汽车工业:开关磁阻电机驱动系统可以应用于汽车的多种部件中,如电动方向盘、电动驱动系统和汽车座椅调节器等。

它们能够提供精确的转动控制,提高汽车的舒适性和操纵性。

3.医疗设备:开关磁阻电机驱动系统可以应用于医疗设备,如手术机械、医疗床和医疗影像设备等。

它们能够提供平稳的转动和精确的位置控制,提高医疗设备的性能和安全性。

4.家用电器:开关磁阻电机驱动系统可以应用于家用电器,如洗衣机、空调和冰箱等。

它们能够提供高效的转动和低噪音的操作,提高家用电器的使用体验和节能效果。

总结:开关磁阻电机驱动系统通过开关磁阻电机的独特运动原理,提供高效、高速和高精度的电机控制。

它已经在各个领域得到广泛应用,并为相关行业的发展和进步做出了重要贡献。

未来,随着科学技术的不断进步,开关磁阻电机驱动系统有望进一步发展和创新,为人类社会的发展做出更大的贡献。

4、开关磁阻电机电驱动系统

4、开关磁阻电机电驱动系统

特征:随定、转子磁极重叠的增加和减少,相电感
在Lmax 和Lmin之间线性地变化 。
电动汽车电驱动技术
SR电机转矩的分段线性解析式:
=L i W’=i /2 = L i 2/2
0
T


KT
i
2
0
KT i2
电动汽车电驱动技术
0 q q2 q2 q q3 03 q q4 04 q q5
i
O
q
电动汽车电驱动技术
5 开关磁阻电动机的控制策略
APC运行时Tav与qon、qoff的关系
T
qon 增大
O
电动汽车电驱动技术
qoff
5 开关磁阻电动机的控制策略
控制方式的合理选择
电流斩波可控区
起动斩波 定角度斩波 变角度斩波
APC 控制
0
0
Amin
1 Cmax
n
可变角度运行区
2
*基速以上,角度位置控制(APC),输出恒功率
电动汽车电驱动技术
5 开关磁阻电动机的控制策略
设定电流上、下幅值的斩波图
i Imax
Imin
O
q
电动汽车电驱动技术
5 开关磁阻电动机的控制策略
设定电流上限和关断时间斩波图
i Imax
O
q
电动汽车电驱动技术
5 开关磁阻电动机的控制策略
PWM斩波调压控制的电流波形
电动汽车电驱动技术
电流检测 位置检测 控制器
SRD
开关磁阻电机结构
转子
转子凸极 定子凸极及绕组 定子
电动汽车电驱动技术
开关磁阻电机结构特点
电动汽车电驱动技术

开关磁阻电机ppt

开关磁阻电机ppt

转子磁极形状可变 ,定子磁极形状不 变
磁阻电机具有定、 转子两个磁极
开关磁阻电机的历史发展
20世纪60年代初,英国科学家提出开关磁阻电机的概 念
20世纪70年代,开关磁阻电机进入商业应用
1969年,第一台开关磁阻电机样机研制成功
近年来,开关磁阻电机在新能源汽车等领域应用逐渐 增多
开关磁阻电机的应用场景
THANK YOU.
04
开关磁阻电机的控制与调速
开关磁阻电机的控制方法
控制原理
开关磁阻电机的控制原理是基于磁通闭合 和磁化曲线控制的。通过控制开关磁阻电 机定子电流的通断,可以控制电机的磁通 和转矩。
VS
控制策略
常用的开关磁阻电机控制策略包括电流斩 波控制、角度控制和直接转矩控制等。其 中电流斩波控制是通过控制电流的幅值来 防止电流过大,角度控制是通过控制定子 与转子的相对角度来控制转矩,直接转矩 控制则是直接控制转矩的大小和方向。
开关磁阻电机的调速原理
调速原理
开关磁阻电机的调速原理是通过对电机定子电流的频率和相 位进行控制来实现的。通过改变定子电流的频率和相位,可 以改变转子与定子的相对位置,从而改变电机的转速。
控制方式
开关磁阻电机的调速控制方式包括PWM控制和角度控制两种 。PWM控制是通过调节定子电流的占空比来控制电流的大小 ,角度控制是通过调节定子与转子的相对角度来控制电流的 方向和大小。
开关磁阻电机的基本结构
开关磁阻电机是一种具有凸极效应的电机,其定、转子均为 硅钢片叠加而成,转子上没有绕组,而定子上有集中绕组。
开关磁阻电机的运行原理
通过控制开关磁阻电机的绕组电流,产生磁场,进而使转子 在凸极效应的作用下旋转。
开关磁阻电机的设计

第12章 开关磁阻电动机PPT课件

第12章 开关磁阻电动机PPT课件
术语开关磁阻电机体现了这种电机系统的两个基本特 征。 一是开关性, 电机各相绕组通过功率电子开关电路轮 流供电, 始终工作在一种连续的开关模式; 二是磁阻性, 电机定、 转子间磁路的磁阻随转子位置改变, 运行遵循磁 路磁阻最小原理, 即磁通总是要沿磁阻最小的路径闭合, 因磁场扭曲而产生切向磁拉力, 是真正的磁阻电机。 通过 对一台SRM的定子各相有序地励磁, 转子将会作步进式旋 转, 每一步转过一定的角度。
SRD中常用的功率变换器有不对称半桥型、双绕组型、 分裂电源型、H桥型、公共开关型、电容转储型等主电路拓 扑结构,可以采用IGBT、功率MOSFET、GTO等开关器件。 图12-2所示为开关磁阻电机中几种功率变换器主电路的拓 扑结构,图中Si代表开关器件。
第12章 开关磁阻电动机
图12-2 开关磁阻电机功率驱动主电路拓扑结构
以三相12/8极开关磁阻电动机为例,假设电机理想空载, 图12-3所示为该电机的A相绕组及其与电源的连接。图中 S1、S2为主开关管(功率器件);VD1、VD2为续流二极管; U为直流电源。定子上属于同一相的4个线圈并联组成一相 绕组。
第12章 开关磁阻电动机
图12-3 开关磁阻电动机的工作原理图
第12章 开关磁阻电动机
设当A相磁极轴线OA与转子齿轴线Oa为图12-3所示位 置时,主开关管S1、S2导通,A相绕组通电,电动机内建立起 以OA为轴线的径向磁场,磁力线沿定子极、气隙、转子齿、 转子轭、转子齿、气隙、定子轭路径闭合。通过气隙的磁力 线是弯曲的,此时磁路的磁阻大于定子极与转子齿轴线重合 时的磁阻,因此,转子将受到气隙中弯曲磁力线的切向磁拉 力产生的转矩的作用,使转子逆时针方向转动,转子齿的轴 线Oa向定子A相磁极轴线OA趋近。当OA和Oa轴线重合时, 转子已达到平衡位置,即当A相定子极与转子齿对齐的同时, 切向磁拉力消失。此时关断A相开关管S1、S2,开通B相开关 管,即在A相断电的同时B相通电,建立以B相定子磁极为轴 线的磁场,电机内磁场沿顺时针方向转过30°,而转子在磁 场磁拉力的作用下继续沿着逆时针方向转过15

开关磁阻电机课件

开关磁阻电机课件
磁阻性质
利用转子磁阻不均匀而产生转矩 的电机,又称反应式同步电动机 ,其结构及工作原理与传统的交 、直流电动机有很大的区别。
开关磁阻电机结构
定子
开关磁阻电机的定子铁芯由硅钢片叠压而成,定子的凸极上绕有集中绕组,径 向相对的两个绕组串联或并联构成一相的两个磁极,使产生的磁场沿轴向分布 。
转子
开关磁阻电机的转子由导磁性能良好的硅钢片叠压而成,转子上既无绕组也无 永磁体,转子的凸极形状与定子凸极相似,由若干段弧面组成。
转矩评估
在不同转速和负载条件下,测量电机的输出转矩,以评估其带载能力 和动态响应特性。
转速评估
测量电机在空载和负载条件下的转速,以评估其调速范围和稳定性。
噪音和振动评估
通过专业的噪音和振动测量设备,对电机运行时的噪音和振动水平进 行评估,以反映其机械性能和舒适度。
实验测试方法介绍
空载实验
在无负载条件下运行电机,测 量其空载转速、空载电流和空
开关磁阻电机课件
汇报人:XX
• 开关磁阻电机基本原理 • 开关磁阻电机控制技术 • 开关磁阻电机驱动系统设计 • 开关磁阻电机应用领域及案例分析
• 开关磁阻电机性能评估与测试方法 • 开关磁阻电机发展趋势及挑战
01
开关磁阻电机基本原理
磁阻电机工作原理
磁阻最小原理
磁通总是沿着磁阻最小的路径闭 合,从而产生磁拉力,进而形成 电磁转矩。
THANKS
感谢观看

参数优化方法
通过仿真分析、实验验证等手段 ,对主电路参数进行优化,以提
高系统的效率和稳定性。
保护功能实现
过流保护
过压保护
通过检测电流信号,当电流超过设定值时 ,及时切断电源,避免电机和驱动器的损 坏。

开关磁阻电机原理

开关磁阻电机原理

开关磁阻电机原理
开关磁阻电机(Switched Reluctance Motor,SRM)是使用磁阻转矩产生的直接转矩
型交流电机。

它采用简单的结构,易于制造和维护,具有快速响应和高效率等优点,在工业、交通等领域有着广泛的应用。

开关磁阻电机的工作原理是通过转子和定子之间磁路的变化来产生电磁转矩。

该电机
的定子主要由多个齿形状的磁铁组成,它们相互分离,形成一系列平行的齿槽。

转子上不
带永磁体和绕组,与定子齿槽相对应形成齿空。

转子和定子之间没有电磁场,因此它可以
快速运动,具有快速响应的特点。

当电流加到定子绕组上时,绕组中的电流产生磁场,由于定子齿槽之间产生了差异的
电感量,因此当电流变化时定子齿槽之间的磁场也会发生变化,这就会在定子中产生一个
旋转磁场。

此时,由于转子上未带电势,所以转子会朝着磁场最小的齿空运动。

这样,由
于磁场变化,转子就会产生一个旋转转矩,从而使电机转动。

开关磁阻电机的控制方法主要是通过控制电流和位置来实现的。

控制电流可以通过改
变定子磁场来产生不同的转矩;位置控制则是通过传感器来探测电机的位置和速度,从而
实现对电机的控制。

在现代工业中,开关磁阻电机已经成为最受欢迎的电机类型之一。

它具有简单的结构、少量的部件、高效率、低成本、快速响应等优点,可以用于多种应用,例如:空调压缩机、切割机、泵、风机、电动汽车等。

同时,它还具有较好的低速性能、高扭矩和启动力矩等
特点,因此被广泛应用于可再生能源、工业自动化、交通等领域。

开关磁阻电机讲解

开关磁阻电机讲解

Lmax K(1) 3 4
K ( L m a x L m i n ) / ( 2 1 ) ( L m a x L m i n ) /s
βs表示(biǎoshì)定子齿极极弧宽度(角度)
精品资料
2.2 绕组(ràozǔ)磁链
2.2.1 一相绕组磁通
一相电路电压方程
忽略绕组电阻
uir d
固有(gùyǒu)机械特性
精品资料
基速以下,φ及i均随n减小而 增大,为限制(xiànzhì)φmax和i,
需要调 节电压Us和开关角θon,θoff。 保持恒转矩,固定θon,θoff, 斩波控制外加Us 电流限制(xiànzhì)CCC
电流PWM控制 电压PWM控制
Vg-Vf Us(有效宽度)
控制器要求具有下述性能: (1)电流斩波控制 (2)角度位置控制 (3)起动,制动,停车及四象限运行 (4)调速 位置检测器提供转子(zhuàn zǐ)位置信号,使控
制器决定绕组导通和关断
精品资料
1.2 开关磁阻电动机的基本工作(gōngzuò) 原理
U R’
1
W’ 2'
V
2 W
U R’
改变通电的顺序,转子旋转方向改变改变电流的方 向,转子旋转方向不变
每改变通电一次,定子磁场轴线移动2π/Ns空间角, 转子则每次转过τ/m极距
定子齿极数Ns=2m,转子齿极数为Nr,相数为m,转子旋转一周,即θ =2π=Nrτ,定子m相绕组需轮流通电(tōng diàn)Nr次。 SR电动机的转速n(r/min)与电源输出频率f的关系
精品资料
理想SR模型 定子绕阻电感L与绕阻电流i无关 极尖的磁通边缘效应忽略不计 磁导率μ ∞ 忽略所有(suǒyǒu)功率损耗 开关动作瞬时完成 转子旋转角速度Ω=C

开关磁阻电机大学课件

开关磁阻电机大学课件
阻电机在低速时仍能保持较大的转矩输出,适合于需要重载启动和过 载保护的应用场景;此外,其控制电路简单可靠,可在恶劣环境下工作,适用于各种需要高性能、高 可靠性的应用场景。
02
开关磁阻电机的结构与组成
定子结构
1 3
定子铁芯
由硅钢片叠压而成,是产生磁场的关键部分。
定子绕组
电流斩波控制
总结词
电流斩波控制是一种控制开关磁阻电机 电流的方法,通过设定电流的上限和下 限,当电流超过上限时,控制器会降低 电压以减小电流;当电流低于下限时, 控制器会增加电压以增加电流。
VS
详细描述
在电流斩波控制策略中,控制器实时监测 开关磁阻电机的电流,当电流超过设定的 上限时,控制器会降低电机相电压,以减 小电机电流;当电流低于设定的下限时, 控制器会逐渐增加电机相电压,以增加电 机电流。通过这种方式,可以有效地限制 电机电流,防止过流对电机造成损坏。
传感器
用于检测转子的位置和速度,以便控制器精确控制电 机的运行。
保护电路
用于保护电机和控制器的安全,防止过电流、过电压 等异常情况。
03
开关磁阻电机的控制策略
角度控制
总结词
角度控制是一种精确控制开关磁阻电机转子位置的方法,通过检测转子的位置 并调整开通角和关断角来控制电机的转动。
详细描述
在角度控制策略中,控制器实时检测开关磁阻电机的转子位置,并根据转子的 位置来精确控制电机的开通角和关断角。通过调整开通角和关断角,可以精确 地控制电机的转动,从而实现高精度的位置和速度控制。
06
开关磁阻电机的前景与展望
技术发展趋势
高效能化
随着新材料、新工艺的应用,开关磁阻电机的效 率将进一步提高,降低能耗。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关磁阻电机驱动系统的运行原理及应用(二)
(低轴阻发电机参考资料)
1 引言
开关磁阻电机驱动系统(SDR)具有一些很有特色的优点:电机结构简单、坚固、维护方便甚至免维护,启动及低速时转矩大、电流小;高速恒功率区范围宽、性能好,在宽广转速和功率访问内都具有高输出和高效率而且有很好的容错能力。

这使得SR电机系统在家用电器、通用工业、伺服与调速系统、牵引电机、高转速电机、航空航天等领域得到广泛应用。

SR电机是一种机电能量转换装置。

根据可逆原理,SR电机和传统电机一样,它既可将电能转换为机械能—电动运行,在这方面的理论趋于成熟;也可将机械能转换为电能—发电运行,其内部的能量转换关系不能简单看成是SR电动机的逆过程。

本文将从SR 电机电动和发电运行这两个角度阐述SR电机的运行原理。

2 电动运行原理
2.1 转矩产生原理
控制器根据位置检测器检测到的定转子间相对位置信息,结合给定的运行命令(正转或反转),导通相应的定子相绕组的主开关元件。

对应相绕组中有电流流过,产生磁场;磁场总是趋于“磁阻最小”而产生的磁阻性电磁转矩使转子转向“极对极”位置。

当转子转到被吸引的转子磁极与定子激磁相相重合(平衡位置)时,电磁转矩消失。

此时控制器根据新的位置信息,在定转子即将达到平衡位置时,向功率变换器发出命令,关断当前相的主开关元件,而导通下一相,则转子又会向下一个平衡位置转动;这样,控制器根据相应的位置信息按一定的控制逻辑连续地导通和关断相应的相绕组的主开关,就可产生连续的同转向的电磁转矩,使转子在一定的转速下连续运行;再根据一定的控制策略控制各相绕组的通、断时刻以及绕组电流的大小,就可使系统在最隹状态下运行。

图1 三相sr电动机剖面图
从上面的分析可见,电流的方向对转矩没有任何影响,电动机的转向与电流方向无关,而仅取决于相绕组的通电顺序。

若通电顺序改变,则电机的转向也发生改变。

为保证电机能连续地旋转,位置检测器要能及时给出定转子极间相对位置,使控制器能及时和准确地控制定子各相绕组的通断,使srm能产生所要求的转矩和转速,达到预计的性能要求。

2.2 电路分析
图2中电源vcc是一直流电源,3个电感分别表示srm的三相绕组,igbt1~igbt6为与绕组相连的可控开关元件,6个二极管为对应相的续流二极管。

当第一相绕组的开关管导通时,电源给第一相励磁,电流的回路(即励磁阶段)是由电源正极→上开关管→绕组→下开关管→电源负极,如图2(a)所示。

开关管关断时,由于绕组是一个电感,根据电工理论,电感的电流不允许突变,此时电流的续流回路(即去磁阶段)是绕组→上续流二极管→电源→下续流二极管→绕组,如图2(b)所示。

图2 srm电路工作示意图
2.3 能量转换关系
当忽略铁耗和各种附加损耗时,srm工作时的能量转换过程为:通电相绕组的电感处在电感上升区域内(转子转向“极对极”位置),当开关管导通时,输入的净电能一部分转化为磁场储能,一部分转化为机械能输出;当开关管关断时,绕组电流通过二极管和电源续流,存储的磁场储能一部分转化为电能回馈电源,另一部分则转化为机械能输出。

2.4 sr电动机的运行特性[1][2]
sr电动机运行速度低于ωfc(第一临界速度)的范围内,为了保证ψmax和i不超过允许值,采用改变电压、导通角和触发角三者中任一个或任两个,或三者同时配合控制。

当sr电动机在高于ωfc范围运行时,在外加电压、导通角和触发角都一定的条件下,随着转速的增加,磁链和电流将下降,转矩则随着转速的平方下降(如图3中细实线)。

为了得到恒功率特性,必须采用可控条件。

但是外施电压最大值是由电源功率变换器决定的,而导通角又不能无限增加(一般不能超过半个转子极距)。

因此,在电压和导
通角都达最大时,能得到的最大功率的最高转速ωsc被称之为“第二临界转速”。

当转速再增加时,由于可控条件都已经达到极限,转矩将随转速的二次方下降,如图3所示。

图3 sr电动机的运行特性
开关磁阻电机一般运行在恒转矩区和恒功率区。

在这两个区域中,电机的实际运行特性可控。

通过控制条件,可以实现在粗实线以下的任意实际运行特性。

而在串励特性区,电机的可控条件都已达极限,电机的运行特性不再可控,电机呈现自然串励运行特性,故电机一般不会运行在此区域。

运行时存在着第一、第二两个临界运行点是开关磁阻电机的一个重要特点。

采用不同的可控条件匹配可以得到两个临界点的不同配置,从而得到各种各样所需的机械特性,这就是开关磁阻电动机具有优良调速性能的原因之一。

从设计的观点看,两个临界点的合理配置是保证sr电动机设计合理,满足给定技术指标要求的关键。

从控制角度看,在上述两个区域采用不同的控制方法,在第一临界转速以下一般采用电流斩波控制方式(ccc方式),在第一、第二临界转速之间采用角度位置控制方式(apc方式)。

3 发电运行原理
3.1 开关磁阻发电机(switched reluctance generator)简介
开关磁阻发电机(srg)的研究始于20世纪80年代末。

初期它是被用作飞机上的起动/发电机的,所以,又称为sr起动/发电机[4][5][6]。

由于开关磁阻电机在航天飞机中的广阔应用前景,引起了一些国家政府部门和航天企业的高度重视。

1990年美国空军(usaf)、wright实验室、wpafb联合与通用电气飞机发动机公司(general electric aircraft engine)签约,共同资助ge公司开展开关磁阻组合起动/发电机的研究。

lucas 航空公司(lucas aerospace)也开展了sr起动/发电机的研究,认为sr起动/发电机可以在飞机发动机熄火的紧急情况下,由风力发动机(windmilling engine)驱动为众多的机载设备提供更加可靠的应急电源。

我国在sr发电机的领域也开展了相关的研究活动。

其中西北工业大学、西安交
通大学在国家“九五”预研基金和国家教委博士点基金的资助下进行sr起动/发电机的相关研究,研制了4kw的sr起动/发电机[3]。

南京航天航空大学也开展了sr发电机的研究工作。

与其它发电机相比,开关磁阻发电机具有独特的结构特点:
(1) 结构简单其定、转子均为简单的叠片式双凸极结构,定子上绕有集中绕组,转子上无绕组及永磁体;
(2) 容错能力强,无论从物理方面还是从电磁方面来讲,电机定子各相绕组间都是相互独立的,因而在一相甚至两相故障的情况下,仍然能有一定功率的电能输出;
(3) 可以作成很高转速的发电装置,从而达到很高的能流密度。

3.2 转矩产生原理
如图4所示,与电动运行时不同,绕组在转子转离“极对极”位置(即电感下降区)时通电,产生的磁阻性电磁转矩趋使电机回到“极对极”位置,但原动机驱动转子克服电磁转矩继续逆时针旋转。

此时电磁转矩与转子运动方向相反,阻碍转子运动,是阻转转矩性质。

图4 三相sr发电机剖面图
当转子转到下一相的“极对极”位置时,控制器根据新的位置信息向功率变换器发出命令,关断当前相的主开关元件,而导通下一相,则下一相绕组会在转子转离“极对极”位置通电。

这样,控制器根据相应的位置信息按一定的控制逻辑连续地导通和关断相应的相绕组的主开关,就可产生连续的阻转转矩,在原动机的拖动下发电。

3.3 电路分析
根据法拉第电磁感应定律“运动导体在磁场中会产生电势”,而srg转子仅由叠片构成,没有任何带磁性的磁体。

这就需要在srg发电前有电源提供给srg励磁,使其内部产生磁场。

所以,srg的特点是首先要通过定子绕组对电机励磁。

这一点和其它发电机有着很明显的区别。

srg的工作原理如下:
图5中电源vcc是一直流电源,既可以是电池,也可以是直流电机。

三个电感分别表示srg的三相绕组,igbt1~igbt6为与绕组相连的可控开关元件,6个二极管为对应相的续流二极管。

当第一相绕组的开关管导通时(即励磁阶段),电源给第一相励磁,电流的回路是由电源正极→上开关管→绕组→下开关管→电源负极,如图5(a)所示。


关管关断时,由于绕组是一个电感,根据电工理论,电感的电流不允许突变,电流的续流回路(即发电阶段)是绕组→上续流二极管→电源→下续流二极管→绕组,如图5(b)所示。

3.4 能量转换关系
当忽略铁耗和各种附加损耗时,srg工作时的能量转换过程为:通电相绕组的电感处在电感下降区域内(转子转离“极对极”位置),当开关管导通时,输入的净电能转化为磁场储能,同时原动机拖动转子克服srg产生的与旋转方向相反的转矩对srg做功使机械能也转化为磁场储能;当开关管关断时,srg绕组电流续流,磁场储能转化为电能回馈电源,并且机械能也转化为电能给电源充电。

图5 srg电路工作示意图
3.5 sr发电机的运行特性
sr发电机的运行特性与sr电动机的运行特性类似,只不过将曲线沿速度轴翻转到转矩为负的第四象限,在此不再赘述。

4 结束语
虽然srd系统的发展历程仅仅二十余年,但它取得了令人瞩目的成绩。

其产品已在电动车用驱动系统、家用电器、工业应用、伺服系统、高速驱动、航空航天等众多领域得到成功应用,其功率范围也覆盖了从10w到5mw的宽广范围。

它已成为现代调速系统中一支不可忽视的竞争力量。

作为一种结构简单、鲁棒性能好、价格便宜的新型调速系统,开关磁阻电机及其调速系统引起各国电气传动界的广泛关注和浓厚兴趣,在世界范围内,正在形成理论研究和实际应用齐头并进的发展趋势。

相关文档
最新文档