实验三--三相同步电动机

合集下载

电力系统三个实验

电力系统三个实验

实验一:一机—无穷大系统稳态运行方式实验一、实验目的1.了解和掌握对称稳定情况下,输电系统的各种运行状态与运行参数的数值变化范围;2.了解和掌握输电系统稳态不对称运行的条件;不对称度运行参数的影响;不对称运行对发电机的影响等。

二、原理与说明电力系统稳态对称和不对称运行分析,除了包含许多理论概念之外,还有一些重要的“数值概念”。

为一条不同电压等级的输电线路,在典型运行方式下,用相对值表示的电压损耗,电压降落等的数值范围,是用于判断运行报表或监视控制系统测量值是否正确的参数依据。

因此,除了通过结合实际的问题,让学生掌握此类“数值概念”外,实验也是一条很好的、更为直观、易于形成深刻记忆的手段之一。

实验用一次系统接线图如图2所示。

图2 一次系统接线图本实验系统是一种物理模型。

原动机采用直流电动机来模拟,当然,它们的特性与大型原动机是不相似的。

原动机输出功率的大小,可通过给定直流电动机的电枢电压来调节。

实验系统用标准小型三相同步发电机来模拟电力系统的同步发电机,虽然其参数不能与大型发电机相似,但也可以看成是一种具有特殊参数的电力系统的发电机。

发电机的励磁系统可以用外加直流电源通过手动来调节,也可以切换到台上的微机励磁调节器来实现自动调节。

实验台的输电线路是用多个接成链型的电抗线圈来模拟,其电抗值满足相似条件。

“无穷大”母线就直接用实验室的交流电源,因为它是由实际电力系统供电的,因此,它基本上符合“无穷大”母线的条件。

为了进行测量,实验台设置了测量系统,以测量各种电量(电流、电压、功率、频率)。

为了测量发电机转子与系统的相对位置角(功率角),在发电机轴上装设了闪光测角装置。

此外,台上还设置了模拟短路故障等控制设备。

三、实验项目和方法1.单回路稳态对称运行实验在本章实验中,原动机采用手动模拟方式开机,励磁采用手动励磁方式,然后启机、建压、并网后调整发电机电压和原动机功率,使输电系统处于不同的运行状态(输送功率的大小,线路首、末端电压的差别等),观察记录线路首、末端的测量表计值及线路开关站的电压值,计算、分析、比较运行状态不同时,运行参数变化的特点及数值范围,为电压损耗、电压降落、沿线电压变化、两端无功功率的方向(根据沿线电压大小比较判断)等。

自-三相同步发电机的并网运行

自-三相同步发电机的并网运行

三相同步发电机的并网运行一、实验目的1、掌握三相同步发电机投入电网并联运行的条件与操作方法。

2、掌握三相同步发电机并联运行时有功功率与无功功率的调节。

二、预习要点1、三相同步发电机投入电网并联运行有那些条件?不满足这些条件将产生什么后果?如何满足这些条件?2、三相同步发电机投入电网并联运行时怎样调节有功功率和无功功率?调节过程又是怎样的?三、实验项目1、用准确同步法将三相同步发电机投入电网并联运行。

2、用自同步法将三相同步发电机投入电网并联运行。

3、三相同步发电机与电网并联运行时有功功率的调节。

4、三相同步发电机与电网并联运行时无功功率调节。

(1) 测取当输出功率等于零时三相同步发电机的V形曲线。

(2)测取当输出功率等于0.5倍额定功率时三相同步发电机的V形曲线。

四、实验方法2、屏上挂件排列顺序D52、D53、D34-23、用准同步法将三相同步发电机投入电网并联运行三相同步发电机与电网并联运行必须满足下列条件:(1)发电机的频率和电网频率要相同,即fⅡ=fⅠ;(2)发电机和电网电压大小、相位要相同,即E0Ⅱ=UⅠ;(3)发电机和电网的相序要相同。

为了检查这些条件是否满足,可用电压表检查电压,用灯光旋转法或整步表法检查相序和频率。

4、旋转灯光法(1) 按图5-4接线。

三相同步发电机GS选用DJ18,GS的原动机采用DJ23校正直流测功机MG。

Rst选用R2上180Ω电阻,Rf1选用R1上1800Ω阻值,R f2选用R3上900Ω与900Ω并联加R4上90Ω与90Ω并联共495Ω阻值,R选用R6上90Ω固定电阻。

开关S1选用D52挂箱,S2选用D53挂箱。

并把开关S1打在“关断”位置,开关S2合向固定电阻端(图示左端)。

(2)三相调压器旋钮退至零位,在电枢电源及励磁电源开关都在“关断”位置的条件下,合上电源总开关,按下“启动”按钮,调节调压器使电压升至额定电压220伏,可通过V1表观测。

图5-4 三相同步发电机的并联运行(3) 按他励电动机的起动步骤(校正直流测功机MG电枢串联起动电阻R st,并调至最大位置。

同步发电机参数的测量

同步发电机参数的测量

同步发电机同步发电机参数第13章三相同步发电机的参数测定所属专题:同步发电机发布时间:2014/8/2 15:54:12第13章三相同步发电机的参数测定原理简述各种电抗是定量分析同步电机性能的有用参数。

同步电机的参数主要有;(1)同步电抗等。

本次实验介绍同步发电机中最基本和常用的几个参数的测量方法。

一、同步电抗的求取如前述实验,可通过空载、稳态短路实验求出。

而利用转差率实验可以同时测出凸极式同步电机的直轴、交轴同步电抗的不饱和值。

转差率实验的作法是:把被试同步电机的励磁绕组开路,即不加励磁;原动机拖动转子以接近同步速旋转,约有左右,以避免转子被拖入同步,但其相序须保证电枢旋转磁场的转向与转子转向一致。

此时定子旋转磁场便以转差率速度切割转子。

当定子磁场轴线与转子直轴重合时,电抗达最高值,电枢电流便有最小值。

当定子磁场轴线与转子的交轴重合时,电抗达最低值,而电枢电流便有最大值。

由于线路中电压降的影响,随着电枢电流的变化,定子绕组上测得的电压也有相应的、较小幅度的变动,显然电枢电流有最小值时电压为最大,电枢电流有最大值时电压为最小。

电枢电流和端电压波动的频率正比于转差率。

由于转差率很低,电流表和电压表的指针摆动位置可以被清楚地读取,即记录出各最大电流,电压和最小电流、电压值。

设读取的数据为每相值,则每相同步电抗为:二、负序电抗研究电机不对称运行最有效的方法是对称分量法。

即把不对称的三相电压或三相电流分解为正序、负序和零序分量。

然后对各个分量分别建立方程并求解,最后迭加起来得到最后结果。

对不同相序的电流来说,同步电机的电抗也就有不同数值。

若定子电流为一稳定的对称三相电流,这时定子电流仅有正序分量,所遇到的电抗就是前述的同步电抗,其电抗的测取方法前已介绍。

故正序电抗值等于同步电抗值。

定子三相电流若不对称时则存在负序电流,由于负序电流所产生的旋转磁场与转子转向相反,此反向旋转磁场以两倍同步速度切割转子绕组(包括励磁和阻尼绕组),在其中感应一个两倍频率的交变电势。

三相同步发电机的v形曲线实验原理

三相同步发电机的v形曲线实验原理

三相同步发电机的v形曲线实验原理原理是V形曲线的最低点对应于“正常励磁”情况,此时功率因数为1,定子电流最小且与电压同相。

由于P2=mUIcosφ,当电压与功率因数为常数时,输出有功功率正比于电流,前者增大必然使得后者增大。

由于电枢绕组本身的感性性质,此时电枢反应呈去磁性。

电流越大,去磁效果越明显,因此需要更多的励磁电流才能保持端电压不变。

发电机的“V”形曲线:
通过调节励磁电流可以调节同步发电机无功功率。

励磁电流变化时,发电机的电枢电流也会发生相应的变化。

在有功功率不变时,将励磁电流If从欠励调节到过励,Ia=f (If)的曲线是一个V形。

V形曲线是一簇曲线,每条曲线对应一定的有功功率。

V形曲线上都有一个最低点,对应cosφ=1的情况。

将所有的最低点连接起来,将得到与cosφ=1对应的曲线,该线左边为欠励状态,功率因数超前,右边为过励状态,功率因数滞后。

同步电机实验

同步电机实验

同步电机实验5-1三相同步发电机的运行特性一、实验目的1、用实验方法测量同步发电机在对称负载下的运行特性。

2、由实验数据计算同步发电机在对称运行时的稳态参数。

二、预习要点1、同步发电机在对称负载在下有哪些基本特性?2、这些基本特性各在什么情况下测得?3、怎样用实验数据计算对称运行时的稳态参数?三、实验项目1、测定电枢绕组实际冷态直流电阻。

2、空载实验。

在n=n N、I=0的条件下,测取空载特性曲线U O=f(I f)。

3、三相短路实验。

在n=n N、U=0的条件下,测取三相短路特性曲线I K=f(I f)。

ϕ0的条件下,测取纯电感负载特性4、纯电感负载特性。

在n=n N、I=I N、cos≈曲线。

5、外特性。

在n=n N、I f=常数、cosϕ=1和cosϕ=0.8(滞后)的条件下,测取外特性曲线U=f(I)。

6、调节特性。

在n=n N、U=U N、cosϕ=1的条件下,测取调节特性曲线I f=f(I)。

四、实验方法1、测定电枢绕组实际冷态直流电阻被试电机为三相凸极式同步电机,选用DJ18。

测量与计算方法参见实验4-1。

2、空载实验1)按图5-1接线,校正过的直流电机MG按他励方式联接,用作电动机拖动三相同步发电机GS旋转,GS的定子绕组为Y型接法(U N=220V)。

图5-1 三相同步发电机实验接线图2)调节M12组件上的24V励磁电源串接的R f2至最大位置(用M13组件上的90Ω与90Ω并联),调节MG的电枢串联电阻Rst至最大值(用D44上的180 Ω阻值)、断开开关S1、S2。

将控制屏左侧调压器旋纽向逆时针方向旋转退到零位,检查控制屏上的电源总开关、电枢电源开关及励磁电源开关都须在“关”断的位置,做好实验开机准备。

3)接通控制屏上的电源总开关,按下“开”按钮,接通励磁电源开关,看到电流表A2有励磁电流指示后,再接通控制屏上的电枢电源开关,启动MG。

MG启动运行正常后,把R st调至最小,调节R f1使MG转速达到同步发电机的额定转速1500转/分并保持恒定。

上海交大电机学实验+同步发电机运行特性

上海交大电机学实验+同步发电机运行特性

电机学实验报告实验四同步发电机运行特性一、实验目的1.掌握用实验方法测取三相同步发电机对称运行特性的方法;2.掌握用实验数据获取同步发电机稳态参数的方法。

二、实验内容1.测取发电机的空载特性;2.测取发电机的短路特性;3.测取额定电流条件下发电机的零功率因数负载特性。

三、实验接线图测取三相同步发电机对称运行特性的实验线路图如图4-1所示。

其中发电机G的转子与直流电动机M的转子机械连接,转子励磁绕组接励磁电源,电枢绕组为Y形连接。

图4-1 三相同步发电机运行特性接线图实验过程中,测定三相同步发电机空载特性的时候,将开关S2打开,这样同步发电机处于空载状态。

测定三相同步发电机短路特性的时候,将开关S2的右侧的三个端口短接,这样同步发电机处于短路运行状态。

测定额定电流条件下三相同步发电机零功率因数负载特性的时候,将开关S2闭合,X L 为一个三相饱和电抗器,忽略电阻,则它的功率因数为零,这样来测定零功率因数负载特性。

四、实验设备1.G同步发电机P N=2kW、U N=400V、I N=3.6A、n N=1500r/min;2.M直流电动机P N=2.2kW、U N=220V、I N=12.4A、U fN=220V、n N=1500r/min;3.变阻器R1:0/204Ω、0/17A,励磁变阻器R f1:0/500Ω、1A;4.X L三相饱和电抗器;5.直流电流表30A(电枢);6.直流电流表4A(励磁);7.直流电压表400V;8.交流电压表500V;9.交流电流表10A;10.功率表500V 10A。

五、实验数据1.测定发电机的空载特性:0AB AB CA2.测定发电机的短路特性:表4-2 发电机的短路特性实验数据n=nk A B C3.测定发电机的零功率因数负载特性:表4-3 发电机的零功率因数负载特性实验数据n=nAB AB CA六、特性曲线、参数计算及问题分析1.根据实验数据作出同步发电机的空载运行特性曲线U0=f(I f),如下图4-2所示:图4-2 发电机空载运行特性曲线2.根据实验数据作出同步发电机的短路运行特性曲线I k=f(I f),如下图4-3所示:图4-3 发电机短路运行特性曲线3.根据实验数据作出同步发电机的零功率因数负载特性曲线U=f(I f),如下图4-4所示图4-4 发电机零功率因数负载特性曲线4.利用空载特性和短路特性确定同步电机的直轴同步电抗X d(不饱和值)以及短路比:计算直轴同步电抗X d需要在取同一个I f值的情况下,计算空载电压U0和短路电流I k 的比值。

电机实验(8个电机试验)

电机实验(8个电机试验)

目录实验一单相变压器实验 (1)实验二三相变压器的联接组实验 (7)实验三三相异步电动机工作特性测定实验 (14)实验四三相同步发电机的并联运行实验 (18)实验五异步电动机同步化运行实验 (23)实验六直流他励电动机实验 (28)实验七直流伺服电动机实验 (33)实验八旋转变压器实验 (39)实验一单相变压器实验一、实验目的和任务1、通过空载和短路实验测定变压器的变比和参数。

2、通过负载实验测取变压器的运行特性。

二、实验内容1、空载实验测取空载特性U0=f(I0),P0=f(U0) , cosφ0=f(U0)。

2、短路实验测取短路特性U K=f(I K),P K=f(I K), cosφK=f(I K)。

三、实验仪器、设备及材料四、实验原理1、空载试验:接线如图1-1所示 。

为了便于测量和安全起见,通常在低压侧加电压,将高压侧开路。

为了测出空载电流和空载损耗随电压变化的曲线,外加电压应能在一定范围内调节。

在测定的空载特性曲线I 0=f (U 1),p 0=f (U 1)上,找出对应于U 1= U 1N 时的空载电流I 0和空载损耗p 0作为计算励磁参数的依据。

2、短路试验:接线如图1-2所示。

为便于测量,通常在高压侧加电压,将低压侧短路。

由于短路时外加电压全部降在变压器的漏阻抗Z k 上,而Z k 的数值很小,一般电力变压器额定电流时的漏阻抗压降I 1N Z K 仅为额定电压的4~17.5%,因此,为了避免过大的短路电流,短路试验应在降低电压下进行,使I k 不超过1.2I 1N 。

在不同的电压下测出短路特性曲线I k =f (U k )、p k =f (U k )。

根据额定电流时的p k 、U k 值,可以计算出变压器的短路参数。

五、主要技术重点、难点1、空载实验在三相调压交流电源断电的条件下,按图1-1接线。

被测变压器选用三相组式变压器DJK10中的一只作为单相变压器,其额定容量 S N =50VA ,U 1N /U 2N =127/31.8V ,I 1N /I 2N =0.4/1.6A 。

三相同步发电机实验报告

三相同步发电机实验报告

三相同步发电机实验报告一、实验目的。

本实验旨在通过实际操作,掌握三相同步发电机的工作原理和性能特点,加深对同步发电机的理解,提高实际操作能力。

二、实验原理。

三相同步发电机是一种将机械能转换为电能的设备,其工作原理是利用电磁感应定律,通过旋转磁场和定子导体之间的相对运动来产生感应电动势。

当发电机转子受到外界驱动力使其旋转时,定子中就会产生感应电动势,从而输出电能。

三、实验仪器和设备。

本实验所用的仪器和设备主要包括三相同步发电机、电动机、电流表、电压表、功率表等。

四、实验步骤。

1. 首先,将三相同步发电机和电动机连接起来,确保连接正确无误。

2. 接着,通过控制电动机的转速,使同步发电机转子匀速旋转。

3. 同时,使用电流表、电压表和功率表等仪器,测量同步发电机的电流、电压和功率等参数。

4. 最后,记录实验数据,并进行分析和总结。

五、实验结果和分析。

通过实验测量和数据分析,我们得到了同步发电机的电流、电压和功率等参数。

通过对这些数据的分析,我们可以得出同步发电机的性能特点和工作状态,进一步加深对其工作原理的理解。

六、实验结论。

通过本次实验,我们深入了解了三相同步发电机的工作原理和性能特点,掌握了实际操作技能,提高了对同步发电机的理解。

同时,也加深了对电机原理和电气知识的理解和应用能力。

七、实验总结。

本次实验不仅帮助我们巩固了理论知识,还提高了我们的实际操作能力。

通过实际操作,我们更加深入地理解了同步发电机的工作原理和性能特点,为今后的学习和工作打下了坚实的基础。

八、参考文献。

1. 《电机原理与应用》。

2. 《电气工程基础》。

3. 《同步发电机原理与应用》。

以上就是本次实验的报告内容,希望能对大家有所帮助。

感谢大家的阅读。

实验三--三相同步电动机

实验三--三相同步电动机

实验报告实验名称:三相同步电动机小组成员:许世飞许晨光杨鹏飞王凯征一.实验目的1.掌握三相同步电动机的异步起动方法。

2.测取三相同步电动机的V形曲线。

3.测取三相同步电动机的工作特性。

二.预习要点1.三相同步电动机异步起动的原理及操作步骤。

2.三相同步电动机的V形曲线是怎样的?怎样作为无功发电机(调相机)?3.三相同步电动机的工作特性怎样?怎样测取?三.实验项目1.三相同步电动机的异步起动。

≈0时的V形曲线。

2.测取三相同步电动机输出功率P23.测取三相同步电动机输出功率P=0.5倍额定功率时的V 形曲线。

24.测取三相同步电动机的工作特性。

四.实验设备及仪器1.实验台主控制屏;2.电机导轨及转速测量;3.功率、功率因数表(NMCL-001);4.同步电机励磁电源(含在主控制屏左下方,NMEL-19);5.直流电机仪表、电源(含在主控制屏左下方,NMEL-18);6.三相可调电阻器900Ω(NMEL-03);7.三相可调电阻器90Ω(NMEL-04);8.旋转指示灯及开关板(NMEL-05A);9.三相同步电机M08; 10.直流并励电动机M03。

五.实验方法被试电机为凸极式三相同步电动机M08。

1.三相同步电动机的异步起动 实验线路图如图3-1。

实验开始前,MEL-13中的“转速控制”和“转矩控制”选择开关扳向“转矩控制”,“转矩设定”旋钮逆时针到底。

R 的阻值选择为同步发电机励磁绕组电阻的10倍(约90欧姆),选用NMEL-04中的90Ω电阻。

开关S 选用NMEL-05。

同步电机励磁电源(NMEL-19)固定在控制屏的右下部。

a .把功率表电流线圈短接,把交流电流表短接,先将开关S 闭合于励磁电流源端,启动励磁电流源,调节励磁电流源输出大约0.7A 左右,然后将开关S 闭合于可变电阻器R (图示左端)。

b .把调压器退到零位,合上电源开关,调节调压器使升压至同步电动机额定电压220伏,观察电机旋转方向,若不符合则应调整相序使电机旋转方向符合要求。

《机电传动控制》实验指导书

《机电传动控制》实验指导书
(2)依次按下主控制屏绿色“闭合”按钮开关,使直流电动机电枢电源的船形开关处于“ON”,建立直流电源,并调节直流电源至110V输出。
调节R1使电枢电流达到0.2A(如果电流太大,可能由于剩磁的作用使电机旋转,测量无法进行,如果此时电流太小,可能由于接触电阻产生较大的误差),改变电压表量程为20V,迅速测取电机电枢两端电压UM和电流Ia。将电机转子分别旋转三分之一和三分之二周,同样测取UM、Ia,填入表1-1。
六.注意事项
1.直流他励电动机起动时,须将励磁电源调到最大,先接通励磁电源,使励磁电流最大,同时必须将电枢电源调至最小,然后方可接通电源,使电动机正常起动,起动后,将电枢电源调至220V,使电机正常工作。
2.直流他励电机停机时,必须先切断电枢电源,然后断开励磁电源。同时,必须将电枢电源调回最小值,励磁电源调到最大值,给下次起动作好准备。
b.从数字转速表上观察电机旋转方向,若电机反转,可先停机,将直流电动机电枢或励磁两端接线对调,重新起动,则电机转向应符合正向旋转的要求。
d.调节电动机电枢电源至220V,再调节电动机励磁电流,使电动机(发电机)转速达到1600r/min(额定值),并在以后整个实验过程中始终保持此额定转速不变。
e.调节发电机励磁电流,使发电机空载电压达UO=1.2UN(240V)为止。
2.在控制屏上按次序悬挂NMEL-13C、NMEL-03/4组件,并检查NMEL-13C和M01直流电机测功机的连接。
3.用伏安法测电枢的直流电阻,接线原理图见图1-1。
R:可调电阻箱(NMEL-03/4)中的单相可调电阻R1。
V:直流电压表
A:直流安培表
(1)经检查接线无误后,直流电动机电枢电源调至最小,R1调至最大,直流电压表量程选为300V档,直流电流表量程选为2A档。

三相同步发电机实验报告整合

三相同步发电机实验报告整合

同步发电机运行实验指导书王庆华贺秋丽编广西大学电气工程学院目录一、实验目的二、实验装置及接线三、实验内容实验一电动机- 发电机组的接线实验二发电机组的起动和同步电抗Xd测定实验三发电机同期并网实验实验四发电机的正常运行实验五发电机的特殊运行方式四、实验报告五、附录同步发电机运行实验指导书一、实验目的同步发电机是电力系统最重要又最复杂的电气设备,在电力系统运行中起着十分重要的作用。

通过实验,使学生掌握和巩固同步发电机及其运行的基本概念和基本原理,培养学生的实践能力、分析能力和创新能力,加强工程实线训练,提高学生的综合素质。

二、实验装置及接线实验在电力系统监控实验室进行,每套实验装置以7.5KW直流电动机与同轴的5KW 同步发电机为被控对象,配置常规仪表测量控制屏(常规控制)和计算机监视控制屏(计算机监控)。

可实现对发电机组的测量、控制、信号、保护、调节、并列等功能,本次同步发电机运行实验,仅采用常规控制方式。

直流电动机-同步发电机组的参数如下:直流电动机:型号Z2-52,凸极机额定功率7.5kW额定电压DC220V额定电流41A额定转速1500r/min额定励磁电压DC220V额定励磁电流0.98A(5、6、7号机组为0.5A)同步发电机型号T2-54-55额定功率5kW额定电压AC400V(星接)额定电流9.08A额定功率因数0.8空载励磁电流 2.9A额定励磁电流5A直流电动机-同步发电机组接线如图一所示。

发电机通过空气开关2QS和接触器2KM可与系统并列,发电机机端装有电压互感器1TV和电流互感器1TA,供测量、同期用,系统侧装有单相电压互感器2TV作同期用,两侧电压通过转换开关6SA接入同期表S(MZ-10)。

发电机励磁电源可以取自380V电网(他励方式),也可以取自机端(自励方式),通过4QS进行切换,交流电源经励磁变压器CB降压隔离后,经分立元件整流装置或模块式晶闸管SCR-L变为直流,再通过灭磁开关3KM供电给发电机励磁绕组FLQ,励磁电流通过调压按钮或电位器2WR进行调节。

三相交流同步发电机的组成及工作原理介绍

三相交流同步发电机的组成及工作原理介绍

三相交流同步发电机的组成及工作原理介绍三相同步发电机由原动机拖动直流励磁的同步发电机转子,以转速n(rpm)旋转,根据电磁应原理,三相定子绕阻便感应交流电势。

定子绕阻若接入用电负载,电机就有交流电能输出。

若认为磁路不饱和,则电枢磁势与磁极磁势各自产生相应的磁通,并在定子绕阻内感因电势。

对于极电机,电枢磁势所感应的电势可以表示为Ea=-jIaXa. Xa被称为电枢反应电抗。

Xa+Xσ=Xs隐极同步发电机的同步电抗。

对于凸极电机,因直轴.交轴处磁阻不同,可将电枢磁势分解成Fad和Faq分别研究。

它们所感应的电势分别写成Ead=-jIdXad和Eaq=-jIqXaq,式中Xad.Xaq分别是直轴及交轴电枢反应电抗。

Xad+Xσ=Xd.Xaq+Xσ=Xq,Xd和Xq分别为直轴同步电抗和交交轴同步电抗。

Xσ为漏磁通引起的电抗。

同步电抗是决定同步电机性能的一个重要参数,通个开路实验和稳态实验就可求取。

同步发电机的空载特性是一个很重要的特性,它直接影响着电机的其它特性,通个开路实验还可以发现励磁系统的故障。

态短路特性和零功率因数特性也都属于同步电机的重要特性,和空载特性配合,可以求出同步发电机的态参数及确定出补偿电枢的励磁电流。

同步发电机的外特性曲线用来求取电机运行时的重要指标之一及电压调整率。

同步发电机的调整特性可使运行人员知道在功率因数一定时,不改变端电压值.负载电流到多小而不使励磁电流超过规定值。

国家标准"GB1029" 对三相同步电机的实验方法作了具体规定,适用于普通三相同步发电机的型式实验或检查实验。

通过实验可以确定该电机各性能指标。

各种电机的效率和电压调整率均在部颁标准的相应技术条件中有具体规定,将实验结果与标准规定数据比较即可确定某同步发电机的质量和性能了。

若求取额定励磁电流和电压变化率,一般用做图法,跟国家标准GB1029介绍,其具体步骤如下:(1)如图1上绘制开路特性曲线,并沿纵轴额定相电压相量UN.(2)自原点O作额定电枢电流相量IN,与纵轴成ΦN角(cosΦN 为额定功率因数)。

(完整版)大工《电机与拖动实验》实验报告

(完整版)大工《电机与拖动实验》实验报告

(完整版)大工《电机与拖动实验》实验报告网络教育学院电机与拖动实验报告学习中心:奥鹏学习中心层次:专业:电气工程及其自动化学号:学生:完成日期:年月日实验报告一实验名称:单项变压器实验实验目的:1、通过空载和短路实验测定变压器的变比和参数。

2、通过负载实验测取变压器的运行特性。

实验项目:1、空载实验测取空载特性Uo=F(uo), P=F(uo)2、短路实验测取短路特性Yk=F(Ik), PK=F(I)3、负载实验保持U I =U1u1,cosφ2=1的条件下,测取U2=F (I2)(一)填写实验设备表(二)空载实验1.填写空载实验数据表格2. 根据上面所得数据计算得到铁损耗Fe P 、励磁电阻m R 、励磁电抗m X 、电压比k(三)短路实验1.填写短路实验数据表格O(四)负载实验1. 填写负载实验数据表格(五)问题讨论1. 什么是绕组的同名端?应端,这时我们把这两个对应端叫做线圈的同极性端,或者叫同名端。

2. 为什么每次实验时都要强调将调压器恢复到起始零位时方可合上电源开关或断开电源开关?尽可能避免因万一连线错误而造成短路,烧毁电源。

3. 实验的体会和建议体会:通过实验我对变压器的参数有了进一步的认识和理解,对变压器的特性有了更具体深刻的体会,同时学会了在实验室应根据需要正确选择各仪表量程保护实验设备。

建议:数据的处理只用表格来进行了,显得比较粗糙,可以用图表来处理,结果会更直观。

实验报告二实验名称:直流发电机实验实验目的:掌握用实验方法测定直流发电机的运行特性,并根据所测得的运行特性评定该被试电机的有关性能实验项目:空载特性外特性调整特性(一)填写实验设备表(二)空载特性实验填写空载特性实验数据表格表2-1 n=n N=1600r/min(三)外特性实验填写外特性实验数据表格表2-2 n=n N=1600r/min I f2=I f2N(四)调整特性实验填写外特性实验数据表格表2-3 n=n N=1600r/min,U=U N=200V(五)问题讨论1. 什么是发电机的运行特性?对于不同的特性曲线,在实验中哪些物理量应保持不变,而哪些物理量应测取?答:衡量直流发电机的性能,通常用其特性曲线来判定。

电机学实验报告三相感应电动机

电机学实验报告三相感应电动机

竭诚为您提供优质文档/双击可除电机学实验报告三相感应电动机篇一:电机学实验报告_实验报告课程名称:电机学实验指导老师:章玮成绩:__________________实验名称:异步电机实验实验类型:______________同组学生姓名:杨旭东一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的1、测定三相感应电动机的参数2、测定三相感应电动机的工作特性二、实验项目1、空载试验2、短路试验3、负载试验三、实验线路及操作步骤电动机编号为D21,其额定数据:pn=100w,un=220V,In=0.48A,nn=1420r/min,R=40Ω,定子绕组△接法。

1、空载试验(1)所用的仪器设备:电机导轨,功率表(DT01b),交流电流表(DT01b),交流电压表(DT01b)。

(2)测量线路图:见图4-4,电机绕组△接法。

(3)仪表量程选择:交流电压表250V,交流电流表0.5A,功率表250V、0.5A。

(4)试验步骤:安装电机时,将电机和测功机脱离,旋紧固定螺丝。

试验前先将三相交流可调电源电压调至零位,接通电源,合上起动开s1,缓缓升高电源电压使电机起动旋转,注意观察电机转向应符合测功机加载的要求(右视机组,电机旋转方向为顺时针方向),否则调整电源相序。

注意:调整相序时应将电源电压调至零位并切断电源。

接通电源,合上起动开关s1,从零开始缓缓升高电源电压,起动电机,保持电动机在额定电压时空载运行数分钟,使机械损耗达到稳定后再进行试验。

调节电源电压由1.2倍(264V~66V)额定电压开始逐渐降低,直至电机电流或功率显著增大为止,在此范围内读取空载电压、空载电流、空载功率,共读取7~9组数据,记录于表4-3中。

注意:在额定电压附近应多测几点。

试验完毕,将三相电源电压退回零位,按下电源停止按钮,停止电机。

三相同步发电机的运行特性实验报告

三相同步发电机的运行特性实验报告

三相同步发电机的运行特性实验报告一、实验目的1、掌握三相同步电动机的异步起动方法。

2、测取三相同步电动机的V形曲线。

3、测取三相同步电动机的工作特性。

二、预习要点1、三相同步电动机异步起动的原理及操作步骤。

2、三相同步电动机的V形曲线是怎样的?怎样作为无功发电机(调相机)使用?3、三相同步电动机的工作特性怎样?怎样测取?三、实验项目1、三相同步电动机的异步起动。

2、测取三相同步电动机输出功率P处0时的V形曲线。

4、测取三相同步电动机的工作特性。

3、测取三相同步电动机输出功率P=0∙5倍额定功率时的V形曲线。

四、实验方法1、实验设备2、屏上挂件排列顺序D31、D42、D33、D32、D34-3、D41、D52、D51、D31 3、三相同步电动机的异步起动图8-1三相同步电动机实验接线图1)按图8T 接线。

其中R 的阻值为同步电动机MS 励磁绕组电阻的 10倍(约90Q ),选用D41上90。

固定电阻。

R 选用D41上90。

串联90。

加上90 Q 并联90。

共225 Q 阻值。

R 选用D42上900。

串联 900。

共1800。

阻值并调至最小。

R 选用D42上900。

串联900。

加同步电机A 3~ Z∣zD52∣∣ij 步电力L 励磁电源 O 24V 0彩⅛奥畏出医箕111I0αα上900 Q并联900。

共2250。

阻值并调至最大。

MS为DJ18(Y接法,额定电压U=220V)02)用导线把功率表电流线圈及交流电流表短接,开关S闭合于励磁电源一侧(图8-1中为上端)。

3)将控制屏左侧调压器旋钮向逆时针方向旋转至零位。

接通电源总开关,并按下“开”按钮。

调节D52同步电机励磁电源调压旋钮及R阻值,使同步电机励磁电流I约0.7A左右。

4)把开关S闭合于R电阻一侧(图8-1中为下端),向顺时针方向调节调压器旋钮,使升压至同步电动机额定电压220伏,观察电机旋转方向,若不符合则应调整相序使电机旋转方向符合要求。

上海交大电机学实验+三相同步发电机并网运行

上海交大电机学实验+三相同步发电机并网运行

电机学实验报告实验五三相同步发电机并网运行班级:姓名:学号:同组成员:实验时间:实验地点:一、实验目的1.掌握三相同步发电机投入电网并联运行的条件与操作方法。

2.掌握三相同步发电机并联运行时有功功率与无功功率的调节。

二、实验内容1.用准确同步法将三相同步发电机投入电网并联运行。

2.三相同步发电机与电网并联运行时无功功率调节。

(1) 测取输出功率等于零时三相同步发电机的V形曲线。

(2) 测取输出功率等于0.5倍额定功率时三相同步发电机的V形曲线。

三、实验接线图1.图5-1三相同步发电机与电网并联运行接线图四、实验设备1. T三相感应调压器2. G同步发电机PN =2kW UN=400V IN=3.61A IfN=3.6A nN=1500r/min3. M直流电动机PN =2.2kW UN=220V IN=12.4A UfN=220V nN=1500r/min4. 变阻器励磁变阻器Rf1 0/500Ω 1A5. 并车开关6. 直流电流表30A(电枢)7. 直流电流表 4A(励磁)8. 直流电压表400V9. 交流电压表500V10. 交流电流表10A11. 功率表五、实验数据记录2六、计算及问题分析1. 根据实验操作过程,简要说明发电机与电网并联运行时无功功率调节的方法。

在保持同步发电机的有功功率不变的情况下,调节同步发电机的励磁电流I,改变了功率因数角,调节电机的无功功率输出。

在励磁电流变化的过程中,f在励磁电流取某一值的时候,定子电流会出现一个最小值,这时功率因数角为0,无功功率输出为0。

以这一点为基础,增大励磁电流,功率因数角增大,无功功率也随之增大,且为感性;减小励磁电流,功率因数角减小,为负值,无功功率也随之增大,且为容性。

2.P2≈0时同步发电机的V形曲线I=f(If),如图:3.P2=0.5PN时同步发电机的V形曲线I=f(If),如图:七、思考题1. 如何根据灯光旋转法中灯光旋转的方向判断发电机的频率是高于还是低于电网频率?答:当灯光顺时针熄灭时,发电机频率低于电网频率;逆时针熄灭时,发电机频率高于电网频率。

三相同步发电机的运行特性实验报告

三相同步发电机的运行特性实验报告

三相同步发电机的运行特性实验报告一、实验目的1. 掌握三相同步发电机的空载、短路及零功率因数负载特性的实验求取法。

2.学会用实验方法求取三相同步发电机对称运行时的稳太参数。

二、实验内容:1.空载实验:在n=nN,I=0的条件下,测取同步发电机的空载特性曲线Uo=f(If)。

2.三相短路实验:在n=n N,U=0的条件下,测取同步发电机的三相短路特性曲线I k=f(I f).3..求取零功率因数负载特性曲线上的一点,在n=nN;U=UN;cosØ≈0的条件下,测取当I=IN 时的If值。

三、实验仪器及其接线1.实验仪器如下图所示:2.实验室实际接线图如下图所示:图1 实验室实际接线图四、实验线路及操作步骤:1. 空载实验实验接线图如图2所示图2 实验接线图实验时启动原动机(直流电动机),将发电机拖到额定转速,电枢绕组开路,调节励磁电流使电枢空载电压达到120%U N值左右,读取三相线电压和励磁电流,作为空载特性的第一点。

然后单方向逐渐减小励磁电流,较均匀地测取8到9组数据,最后读取励磁电流为零时的剩磁电压,将测量数据记录于表1中。

表1 空载实验数据记录 n=no=1500转/分 I=0(1)表1中U 0=3AC BC AB U U U ++ U 0*=NU U 0 I f =I ´f +ΔI f0 I I fofI f =* I f0为U 0= U N 时的I f 值,在本实验室中取U N =400V,I N =3.6A 。

(2)若空载特性剩磁较高,则空载特性应予以修正,即将特曲线的的直线部分延长与横轴相交,交点的横坐标绝对植ΔI f0即为修正量,在所有试验测得的励磁电流数据上加上ΔI f0,即得通过坐标原点之空载校正曲线。

如图3所示。

图3 空载特性曲线校正2.短路实验实验线路图如图2所示。

在直流电动机不停机状态下,并且,发电机励磁电流等于零的情况下,这时合上短路开关K 2,将电枢三相绕组短路,将机组转速调到额定值并保持不变,逐步增加发电机的励磁电流I f ,使电枢电流达到(1.1-1.2)倍额定值,同时量取电枢电流和励磁电流,然后逐步减小励磁电流直到降为0为止。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三--三相同步电动机————————————————————————————————作者:————————————————————————————————日期:实验报告实验名称:三相同步电动机小组成员:许世飞许晨光杨鹏飞王凯征一.实验目的1.掌握三相同步电动机的异步起动方法。

2.测取三相同步电动机的V形曲线。

3.测取三相同步电动机的工作特性。

二.预习要点1.三相同步电动机异步起动的原理及操作步骤。

2.三相同步电动机的V形曲线是怎样的?怎样作为无功发电机(调相机)?3.三相同步电动机的工作特性怎样?怎样测取?三.实验项目1.三相同步电动机的异步起动。

≈0时的V形曲线。

2.测取三相同步电动机输出功率P23.测取三相同步电动机输出功率P=0.5倍额定功率时的V 形曲线。

24.测取三相同步电动机的工作特性。

四.实验设备及仪器1.实验台主控制屏;2.电机导轨及转速测量;3.功率、功率因数表(NMCL-001);4.同步电机励磁电源(含在主控制屏左下方,NMEL-19);5.直流电机仪表、电源(含在主控制屏左下方,NMEL-18);6.三相可调电阻器900Ω(NMEL-03);7.三相可调电阻器90Ω(NMEL-04);8.旋转指示灯及开关板(NMEL-05A);9.三相同步电机M08; 10.直流并励电动机M03。

五.实验方法被试电机为凸极式三相同步电动机M08。

1.三相同步电动机的异步起动 实验线路图如图3-1。

实验开始前,MEL-13中的“转速控制”和“转矩控制”选择开关扳向“转矩控制”,“转矩设定”旋钮逆时针到底。

R 的阻值选择为同步发电机励磁绕组电阻的10倍(约90欧姆),选用NMEL-04中的90Ω电阻。

开关S 选用NMEL-05。

同步电机励磁电源(NMEL-19)固定在控制屏的右下部。

a .把功率表电流线圈短接,把交流电流表短接,先将开关S 闭合于励磁电流源端,启动励磁电流源,调节励磁电流源输出大约0.7A 左右,然后将开关S 闭合于可变电阻器R (图示左端)。

b .把调压器退到零位,合上电源开关,调节调压器使升压至同步电动机额定电压220伏,观察电机旋转方向,若不符合则应调整相序使电机旋转方向符合要求。

图4-5 三相同步电动机接线图(MCL-II、MEL-IIB)交流电源输出同步电机励磁电源AVGAUV WI f12SR 选用NMEL-04的90 电阻选用NMEL-05的双刀双掷开关图3-1 三相同步电动机接线图(MCL-11、MEL-11B )c.当转速接近同步转速时,把开关S迅速从左端切换闭合到右端,让同步电动机励磁绕组加直流励磁而强制拉入同步运行,异步起动同步电动机整个起动过程完毕,接通功率表、功率因数表、交流电流表。

2.测取三相同步电动机输出功率P2≈0时的V形曲线a.按1方法异步起动同步电动机。

使同步电动机输出功率P2≈0。

b.调节同步电动机的励磁电流If 并使If增加,这时同步电动机的定子三相电流亦随之增加,直至电流达同步电动机的额定值,记录定子三相电流和相应的励磁电流、输入功率。

c.调节同步电动机的励磁电流If 使If使逐渐减小,这时定子三相电流亦随之减小,直至电流过最小值,记录这时的相应数据,d.继续调小同步电动机的励磁电流,这时同步电动机的定子三相电流反而增大直到电流达额定值,在这过励和欠励范围内读取9~11组数据。

数据记录于表3-1。

表3-1 n=1500r/min; U=220V;P2≈0序号三相电流(A) 励磁电流(A)输入功率(W)IA IB IC I If P1 P2 P1 0.096 0.096 0.096 0.096 0.75 27.81 23.02 50.832 0.11 0.11 0.11 0.11 0.7 21.12 25.82 46.943 0.127 0.127 0.127 0.127 0.65 14.11 28.45 42.564 0.146 0.146 0.146 0.146 0.6 0 31.55 31.555 0.172 0.172 0.172 0.172 0.55 0 35.16 35.166 0.348 0.348 0.348 0.348 0.2 -47.1 58.71 11.617 0.406 0.406 0.406 0.406 0.1 -61.2 66.64 5.448 0.44 0.44 0.44 0.44 0.03 -67.5 71.4 3.99 0.121 0.121 0.121 0.121 0.7 16.93 28.16 45.0910 0.094 0.094 0.094 0.094 0.8 29.38 23.06 52.4411 0.089 0.089 0.089 0.089 0.9 44.85 17.11 61.9612 0.109 0.109 0.109 0.109 1 59.49 11.89 71.3814 0.181 0.181 0.181 0.181 1.2 87.72 0 87.7215 0.224 0.224 0.224 0.224 1.3 103.3 0 103.316 0.265 0.265 0.265 0.265 1.4 117 -6.4 110.617 0.307 0.307 0.307 0.307 1.5 131.5 -10.3 121.218 0.348 0.348 0.348 0.348 1.6 145.6 -13.8 131.819 0.39 0.39 0.39 0.39 1.7 159.6 -17.4 142.220 0.449 0.449 0.449 0.449 1.85 182.03 -36 146.0321 0.087 0.087 0.087 0.087 0.79 32.83 21.23 54.06 表中I = (I A + I B + I C)/3P = PⅠ+ PⅡ3.测取三相同步电动机输出功率P2≈0.5 倍额定功率时的V形曲线。

a.按1方法异步起动同步电动机,调节测功机“转矩设定”旋钮使之加载,使同步电动机输出功率改变,输出功率按下式计算:P2 = 0.105nT2式中 n——电机转速,r/min; T2——由转矩表读出,N·m。

b.使同步电动机输出功率接近于0.5倍额定功率且保持不变,调节同步电动机的励磁电流If 使If增加,这时同步电动机的定子三相电流亦随之增加直到电流达同步电动机的额定电流,记录定子三相电流和相应的励磁电流、输入功率。

c.调节同步电动机的励磁电流If,使If逐渐减小,这时定子三相电流亦随之减小直至电流达最小值,记录这时的相应数据,继续调小同步电动机的励磁电流,这时同步电动机的定子三相电流反而增大直到电流达额定值,在过励和欠励范围内读取9~11组数据并记录于表3-2中。

表3-2 n=1500r/min; U=220V;P2≈0.5PN序号三相电流(A) 励磁电流(A)输入功率(W)IA IB IC I If P1 P2 P2 0.216 0.216 0.216 0.216 0.65 59.7 35.89 95.593 0.228 0.228 0.228 0.228 0.6 52.17 52.71 104.884 0.245 0.245 0.245 0.245 0.55 45.27 55.72 100.995 0.287 0.287 0.287 0.287 0.45 31.05 62.6 93.656 0.34 0.34 0.34 0.34 0.35 15.57 71.01 86.587 0.351 0.351 0.351 0.351 0.33 12.44 72.54 84.988 0.203 0.203 0.203 0.203 0.7 65.03 47.14 112.179 0.194 0.194 0.194 0.194 0.75 71.83 44.3 116.1310 0.187 0.187 0.187 0.187 0.8 78.73 41.54 120.2711 0.186 0.186 0.186 0.186 0.9 92.01 36.35 128.3612 0.197 0.197 0.197 0.197 1 106.9 31.96 138.8613 0.22 0.22 0.22 0.22 1.1 122.1 25.74 147.8414 0.253 0.253 0.253 0.253 1.2 137 20.77 157.7715 0.287 0.287 0.287 0.287 1.3 152.4 16.14 168.5416 0.325 0.325 0.325 0.325 1.4 167.6 11.89 179.4917 0.35 0.35 0.35 0.35 1.46 177.3 9 186.3 表中 I = (I A + I B + I C)/3 P = PⅠ+ PⅡ4.测取三相同步电动机的工作特性a.按1方法异步起动同步电动机,按3方法改变负载电阻,使同步电动机输出功率改变,输出功率按下式计算:P2 = 0.105nT2式中 n——电机转速,r/min;T2——由直流发电机的电枢电流.转矩表读出,N·mb.同时调节同步电动机的励磁电流使同步电动机输出功率达额定值时,且功率因数为1。

c.保持此时同步电动机的励磁电流恒定不变,逐渐减小负载, 使同步电动机输出功率逐渐减小直至为零,读取定子电流、输入功率、功率因数、输出转矩、转速,共取6~7组数据并记录于表3-3中。

表3-3 U=UN =220V; If= A; n=1500r/min序号同步电动机输入同步电动机输出IA (A )IB(A)IC(A)I(A)If(A)P1(W)P2(W)P(W)cosφT2(N.m)Pn(W)η(%)1 0.345 0.3450.3450.3451.18190 50.5240.51 0.57 89.77537.328482 0.336 0.3360.3360.3361.18185 47.87232.871 0.55 86.62537.198873 0.32 0.320.320.321.18177 43.28220.281 0.5 78.7535.749954 0.303 0.3030.3030.3031.18167.837.97205.771 0.45 70.87534.44385 0.284 0.2840.2840.2841.18157.132.7189.81 0.4 63 33.192836 0.267 0.2670.2670.2671.18147.727.69175.391 0.35 55.12531.429967 0.249 0.2490.2490.2491.18137.322.68159.981 0.3 47.2529.534948 0.219 0.2190.2190.2191.18117.813.84131.640.960.2 31.5 23.92899 0.208 0.2080.2080.2081.18109.29.85119.050.930.15 23.62519.84461 0 0.1930.1930.1930.1931.1897.455.18102.630.90.1 15.7515.346391 1 0.180.180.180.181.1880.570 80.570.850.04 6.3 7.81928812 0.179 0.1790.1790.1791.1884.690 84.690.840.03 4.7255.579171表中 I = (I A + I B + I C )/3P = P Ⅰ+ P Ⅱ P 2=0.105nT 2%10012⨯=P P η六.实验报告分析1.作P 2≈0时同步电动机的V 形曲线I =f(I f ),并说明定子电流的性质。

相关文档
最新文档