实验三-控制系统的根轨迹研究分析

合集下载

控制系统的根轨迹分析

控制系统的根轨迹分析

实验四 控制系统的根轨迹分析一. 实验目的:1. 学习利用MATLAB 语言绘制控制系统根轨迹的方法。

2. 学习利用根轨迹分析系统的稳定性及动态特性。

二. 实验内容:1. 应用MATLAB 语句画出控制系统的根轨迹。

2. 求出系统稳定时,增益K 的范围。

3. 实验前利用图解法画出系统的根轨迹,算出系统稳定的增益范围,与实测值相比较。

4. 应用SIMULINK 仿真工具,建立闭环系统的实验方块图进行仿真。

观察不同增益下系统的阶跃响应,观察闭环极点全部为实数时响应曲线的形状;有共轭复数时响应曲线的形状。

(实验方法参考实验二)5. 分析系统开环零点和极点对系统稳定性的影响。

三. 实验原理:根轨迹分析法是由系统的开环传递函数的零极点分布情况画出系统闭环根轨迹,从而确定增益K 的稳定范围等参数。

假定某闭环系统的开环传递函数为)164)(1()1()()(2++-+=s s s s s K s H s G 利用MATLAB 的下列语句即可画出该系统的根轨迹。

b=[1 1]; %确定开环传递函数的分子系数向量a1=[l 0]; %确定开环传递函数的分母第一项的系数a2=[l -1]; %确定开环传递函数的分母第二项的系数a3=[l 4 16]; %确定开环传递函数的分母第三项的系数a=conv(al ,a2); %开环传递函数分母第一项和第二项乘积的系数 a=conv(a ,a3); %分母第一项、第二项和第三项乘积的系数 rlocus(b,a) %绘制根轨迹,如图(4-l )所示。

p=1.5i ; % p 为离根轨迹较近的虚轴上的一个点。

[k ,poles]=rlocfind(b ,a ,p) %求出根轨迹上离p 点很近的一个根及所对应的增益K 和其它三个根。

K=22.5031, poles= -1.5229+2.7454i -1.5229-2.7454i0.0229+1.5108i 0.0229-1.5108i再令p=1.5108i ,可得到下面结果:k=22.6464, poles=-1.5189+2.7382i -1.5189-2.7382i0.0189+1.5197i 0.0189-1.5197i再以此根的虚部为新的根,重复上述步骤,几步后可得到下面的结果: k=23.316, poles=-1.5000+2.7040i -1.5000-2.7040i0.0000+1.5616i 0.0000-1.5616i这就是根轨迹由右半平面穿过虚轴时的增益及四个根。

自控实验报告实验三线性系统的根轨迹

自控实验报告实验三线性系统的根轨迹

实验三 线性系统的根轨迹一、实验目的1. 熟悉MATLAB 用于控制系统中的一些基本编程语句和格式。

2. 利用MATLAB 语句绘制系统的根轨迹。

3. 掌握用根轨迹分析系统性能的图解方法。

4. 掌握系统参数变化对特征根位置的影响。

二、实验报告1.根据内容要求,写出调试好的MATLAB 语言程序,及对应的结果。

2. 记录显示的根轨迹图形,根据实验结果分析根轨迹的绘制规则。

3. 根据实验结果分析闭环系统的性能,观察根轨迹上一些特殊点对应的K 值,确定闭环系统稳定的范围。

4.写出实验的心得与体会。

三、实验内容请绘制下面系统的根轨迹曲线同时得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围。

一、 )136)(22()(22++++=s s s s s Ks G1、程序代码:G=tf([1],[1,8,27,38,26]); rlocus (G); [k,r]=rlocfind(G)G_c=feedback(G,1); step(G_c)2、实验结果:-8-6-4-22468Root LocusReal AxisI m a g i n a r y A x i sselected_point = -8.8815 + 9.4658i k =1.8560e+04 r =-10.2089 + 8.3108i -10.2089 - 8.3108i 6.2089 + 8.2888i6.2089 - 8.2888iTime (seconds)A m p l i t u d eselected_point =-9.5640 - 7.6273i k =1.3262e+04 r =-9.5400 + 7.6518i -9.5400 - 7.6518i 5.5400 + 7.6258i5.5400 - 7.6258iTime (seconds)A m p l i t u d eTime (seconds)A m p l i t u d eselected_point =-0.0095 + 2.1118i k =73.9872 r =-3.9617 + 2.4724i -3.9617 - 2.4724i -0.0383 + 2.1409i -0.0383 -2.1409iTime (seconds)A m p l i t u d e3、结果分析:根轨迹与虚轴有交点,所以在K 从零到无穷变化时,系统的稳定性会发生变化。

根轨迹实验报告

根轨迹实验报告

根轨迹实验报告根轨迹实验报告引言:根轨迹是控制系统理论中的一个重要概念,它描述了系统在参数变化下的稳定性和响应特性。

本实验旨在通过实际操作和数据分析,深入理解根轨迹的原理和应用。

通过对比不同系统的根轨迹,可以更好地理解系统的稳定性和控制性能。

一、实验目的本实验的目的是通过实际操作和数据分析,加深对根轨迹的理解,掌握根轨迹的绘制方法和分析技巧。

同时,通过对比不同系统的根轨迹,分析系统参数对根轨迹的影响,进一步认识系统的稳定性和控制性能。

二、实验装置与方法实验所需的装置包括控制系统实验台、计算机和相应的控制软件。

实验过程中,首先将系统接入实验台,通过控制软件设置系统参数,然后进行数据采集和分析。

根据实验要求,可以改变系统参数、增加干扰等,观察根轨迹的变化。

三、实验结果与分析在实验过程中,我们分别绘制了不同系统的根轨迹,并进行了数据分析。

通过观察根轨迹的形状和位置,我们可以判断系统的稳定性和响应特性。

以一个简单的一阶系统为例,我们改变了系统的比例增益和时间常数,绘制了对应的根轨迹。

通过观察根轨迹的位置和形状,我们可以发现以下规律:当比例增益增大时,根轨迹向左移动,系统的稳定性增强;当时间常数增大时,根轨迹变得更加平缓,系统的响应速度变慢。

在另一个二阶系统的实验中,我们改变了系统的阻尼比和自然频率,绘制了对应的根轨迹。

通过观察根轨迹的形状和分布,我们可以得出以下结论:当阻尼比增大时,根轨迹变得更加收敛,系统的稳定性提高;当自然频率增大时,根轨迹变得更加散布,系统的响应速度增加。

通过对比不同系统的根轨迹,我们可以进一步分析系统的稳定性和控制性能。

例如,当两个系统的根轨迹重合或者相似,可以认为它们具有相似的稳定性和响应特性;而当根轨迹相交或者离散较大时,可能存在系统不稳定或者不良的控制性能。

四、实验总结通过本次实验,我们深入了解了根轨迹的原理和应用。

通过实际操作和数据分析,我们掌握了根轨迹的绘制方法和分析技巧。

线性系统的根轨迹-自动控制原理实验报告

线性系统的根轨迹-自动控制原理实验报告

自动控制原理实验报告实验题目:线性系统的根轨迹班级:学号:姓名:指导老师:实验时间:一、实验目的1. 熟悉MATLAB 用于控制系统中的一些基本编程语句和格式。

2. 利用MATLAB 语句绘制系统的根轨迹。

3. 掌握用根轨迹分析系统性能的图解方法。

4. 掌握系统参数变化对特征根位置的影响。

二、实验内容同时得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围。

2.1绘制下面系统的根轨迹曲线)136)(22()(22++++=s s s s s Ks G程序:G=tf([1],[1 8 27 38 26 0]); rlocus (G); %绘制系统的根轨迹[k,r]=rlocfind(G) %确定临界稳定时的增益值k 和对应的极点r G_c=feedback(G,1); %形成单位负反馈闭环系统 step(G_c) %绘制闭环系统的阶跃响应曲线-12-10-8-6-4-20246-10-8-6-4-20246810Root LocusReal AxisI m a g i n a r y A x i s0204060801001201400.10.20.30.40.50.60.70.80.91Step ResponseTime (sec)A m p l i t u d e得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围:K>28.74252.2绘制下面系统的根轨迹曲线)10)(10012)(1()12()(2+++++=s s s s s K s G 程序:G=tf([1 12],[1 23 242 1220 1000]); rlocus (G); %绘制系统的根轨迹[k,r]=rlocfind(G) %确定临界稳定时的增益值k 和对应的极点r G_c=feedback(G,1); %形成单位负反馈闭环系统 step(G_c) %绘制闭环系统的阶跃响应曲线-60-50-40-30-20-100102030-50-40-30-20-1001020304050Root LocusReal AxisI m a g i n a r y A x i s01234560.0020.0040.0060.0080.010.012Step ResponseTime (sec)A m p l i t u d e得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围: K>1.1202e+032.3绘制下面系统的根轨迹曲线)11.0012.0)(10714.0()105.0()(2++++=s s s s s K s G 程序:G=tf([5 100],[0.08568 1.914 17.14 100 0]); rlocus (G); %绘制系统的根轨迹[k,r]=rlocfind(G) %确定临界稳定时的增益值k 和对应的极点r G_c=feedback(G,1); %形成单位负反馈闭环系统step(G_c) %绘制闭环系统的阶跃响应曲线-60-50-40-30-20-10010203040-60-40-200204060Root LocusReal AxisI m a g i n a r y A x i s012345670.10.20.30.40.50.60.70.80.91Step ResponseTime (sec)A m p l i t u d e得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围:K> 7.8321根据实验结果分析根轨迹的绘制规则:⑴绘制根轨迹的相角条件与系统开环根轨迹增益 值的大小无关。

第4章 控制系统的根轨迹分析

第4章 控制系统的根轨迹分析

绘制根轨迹如图4-13所示。
第4章 控制系统的根轨迹分析
图4-13 例4-5系统的根轨迹
第4章 控制系统的根轨迹分析
图中根轨迹与虚轴的交点可从系统临界稳定的条件
得到τ=1。τ=1时系统的特征方程为
得与虚轴交点的坐标为jω=±j。从根轨迹得到系统稳定时τ
的取值范围为0<τ<1。
第4章 控制系统的根轨迹分析
θj(j=1,2,3,4)。选取实轴上一点s0,若s0为根轨迹上的点,必满足
相角条件,有
第4章 控制系统的根轨迹分析
图4-5 实轴上根轨迹相角示意
第4章 控制系统的根轨迹分析
下面分别分析开环零、极点对相角条件的影响,进而分
析对实轴上根轨迹的影响。
(1)共轭复数极点p4和p5到点s0的向量的相角和为
φ4+φ5=2π,共轭复数零点到s0点的向量的相角和也为2π。
(2)实轴上,s0点左侧的开环极点p3和开环零点z2到点s0所
构成的向量的夹角φ3和θ2均为零度。
(3)实轴上,s0点右侧的开环极点p1、p2和开环零点z1到点
s0 所构成的向量的夹角φ1、φ2和θ1均为π。
第4章 控制系统的根轨迹分析
第4章 控制系统的根轨迹分析
若系统稳定,由劳斯表的第一列系数,有以下不等式成立:
得0<K* <78.47。
由此可知,当 Kc* =78.47时,系统临界稳定,此时根轨迹穿
过虚轴。K* =78.4ω 值由以下辅助方程确定:
将 K* =78.47代入辅助方程,得
解得s=±j2.16。
第4章 控制系统的根轨迹分析
对于例4-1,其在实轴上的根轨迹一条始于开环极点,止于
开环零点(根轨迹位于-2到-5之间),另两条始于开环极点,止于

自动控制原理--控制系统的根轨迹分析及特殊根轨迹

自动控制原理--控制系统的根轨迹分析及特殊根轨迹

j1
s0
j1
jk
s sk
j1
jk
单位阶跃响应为
n
y(t) A0 Akeskt k 1
m
m
Ks zi Kzi
A0
i1 n
s sj
i1 n
GB(0)
sj
j1
s0
j1
m
m
K s zi
Ak
i1 n
s sj
1 s
K sk zi
i1 n
sk sk sj
jk
1
s2
100 8s 100
4 3
os1
1.5
1.7
可求得 0.4, ,n 10
s3
所以 % e 1 2 100% 25%,ts (s3.)5 n 3.5 4 0.9
j
0
利用根轨迹分析控制系统的性能
例11 分析K的变化对系统稳定性的影响
K (s 3) G(s)H (s) s(s 5)(s 6)(s2 2s 2)
增加开环极点的影响 增加极点对根轨迹形状的影响
增加开环零点的影响 增加零点对根轨迹形状的影响
例9 已知某系统闭环传递函数
GB (s) 0.67s 1
1 0.01s2
0.08s 1
试计算在单位阶跃输入时的系统输出超调量 % 和调节时间t。s
解:该闭环系统有三个极点,s1 1.5, s2,3 零4 、j9.2极点 分布如右图。
系统稳定的K的范围为: 0<K<35
例12 分析K的变化对系统的影响。设负反馈系统的开环传递函数为
K s z G(s)H(s) ss p
z p
求系统闭环根轨迹,并分析 p 2, 时z系 统4 的动态性能。

控制系统的根轨迹分析实验报告

控制系统的根轨迹分析实验报告

一、实验目的1. 熟悉控制系统根轨迹的基本概念和绘制方法。

2. 掌握利用MATLAB软件绘制和分析控制系统根轨迹的方法。

3. 通过根轨迹分析,了解系统参数变化对系统性能的影响。

4. 培养实验操作能力和数据处理能力。

二、实验原理根轨迹是指当系统的某一参数(如开环增益K)从0变化到无穷大时,闭环系统的特征根在s平面上的变化轨迹。

通过分析根轨迹,可以了解系统在参数变化时的稳定性、瞬态响应和稳态误差等性能。

三、实验设备1. 计算机2. MATLAB软件3. 控制系统实验箱四、实验内容1. 绘制控制系统根轨迹(1)首先,根据实验要求,搭建控制系统的数学模型。

(2)利用MATLAB中的rlocus函数绘制系统的根轨迹。

(3)观察根轨迹的变化规律,分析系统在不同参数下的稳定性。

2. 分析系统性能(1)根据根轨迹,确定系统的稳定裕度,包括增益裕度和相位裕度。

(2)分析系统在不同参数下的瞬态响应,如上升时间、调整时间、超调量等。

(3)分析系统在不同参数下的稳态误差,如稳态误差和稳态误差系数。

3. 改变系统参数,观察根轨迹变化(1)改变系统的参数,如增益、时间常数等。

(2)重新绘制根轨迹,观察根轨迹的变化规律。

(3)分析系统参数变化对系统性能的影响。

五、实验结果与分析1. 绘制控制系统根轨迹(1)根据实验要求,搭建控制系统的数学模型,得到开环传递函数。

(2)利用MATLAB中的rlocus函数绘制系统的根轨迹。

(3)观察根轨迹的变化规律,分析系统在不同参数下的稳定性。

2. 分析系统性能(1)根据根轨迹,确定系统的稳定裕度,包括增益裕度和相位裕度。

(2)分析系统在不同参数下的瞬态响应,如上升时间、调整时间、超调量等。

(3)分析系统在不同参数下的稳态误差,如稳态误差和稳态误差系数。

3. 改变系统参数,观察根轨迹变化(1)改变系统的参数,如增益、时间常数等。

(2)重新绘制根轨迹,观察根轨迹的变化规律。

(3)分析系统参数变化对系统性能的影响。

控制系统的根轨迹分析——自动控制原理

控制系统的根轨迹分析——自动控制原理

欠阻尼时共轭特征根为 s1,2 n j 1 2n
j 1 2n
闭环极点的张角 为:
n
cos
n
, cos1
( 1 2n )2 ( n )2
称为阻尼角。斜线称为等阻尼线。而根据二阶系统性
能,在等阻尼线上,系统的超调量、衰减率也是相等的。
根轨迹图分析
根据根轨迹图定量估算系统动态性能
-8
-6
-4
-2
0
2
4
6
8
Real Axis
开环零极点对根轨迹的影响
❖ 增加开环极点:
增加的极点将对原根轨迹产生排斥作用,使原根 轨迹向背离所增极点的方向变形。
Root Locus 5
4
3
2
Imaginary Axis
1
0
-1
-2
-3
-4
-5
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
Real Axis
1
s(s 4)(s 6) s1.2 j2.1
解得:kg 44
由于闭环极点之和等于开环极点之和,所以另一个闭环极点 为: p3 7.6
闭环单位阶跃响应
Amplitude
Step Response 1.4
1.2
1
0.8
0.6
0.4
0.2
0
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
Time (sec)
根轨迹图分析
根据根轨迹图分析系统的稳定性 ✓ 闭环特征根在左半平面则稳定; ✓ 闭环特征根在右半平面则不稳定; ✓ 闭环特征根在虚轴上则临界振荡(无阻尼); ✓ 一组闭环特征根如果有在右半平面的不稳定值,

控制系统中的根轨迹分析与设计

控制系统中的根轨迹分析与设计

控制系统中的根轨迹分析与设计控制系统是现代工程中不可或缺的一部分,它涉及到各个领域的应用,从机械工程到化学工程,从航空航天到电力系统。

控制系统的设计和分析对于系统的稳定性和性能至关重要。

在控制系统中,根轨迹分析和设计是一种常用的方法,它能够帮助工程师评估和改进系统的性能。

根轨迹是一个闭环系统的极点随着控制器增益变化而形成的运动路径。

通过根轨迹分析,我们可以得到有关系统性能和稳定性的重要信息。

根轨迹分析可以帮助我们确定控制器的增益范围,以确保系统稳定。

此外,根轨迹还可以提供关于系统的阻尼比、峰值时间和超调量等性能指标的信息。

在根轨迹分析中,我们需要首先确定系统的传递函数。

传递函数是一个数学模型,它描述了输入和输出之间的关系。

常见的传递函数形式包括一阶系统、二阶系统和高阶系统。

一阶系统的传递函数形式为G(s) = K/(sT+1),其中K表示系统的增益,T表示系统的时间常数。

对于二阶系统,传递函数形式为G(s) = K/(s^2+2ξω_ns+ω_n^2),其中K 表示系统的增益,ξ表示系统的阻尼比,ω_n表示系统的自然频率。

在根轨迹分析中,我们还可以利用极点和零点的特性来确定系统的性能。

极点是传递函数的根,它们决定了系统的稳定性。

当极点位于左半平面时,系统是稳定的;当极点位于右半平面时,系统是不稳定的。

零点是传递函数的分子根,它们决定了系统的频率响应。

通过分析极点和零点的位置,我们可以确定系统的性能,并设计适当的控制器。

根轨迹分析的结果可以用于系统的设计和优化。

在设计控制系统时,我们可以根据根轨迹的形状和位置来调整控制器的增益和参数。

通过改变控制器的增益,我们可以移动根轨迹,使系统的稳定性和性能得到改善。

此外,根轨迹还可以用于确定合适的控制策略,例如比例控制、积分控制和微分控制。

除了根轨迹分析,我们还可以利用根轨迹设计方法来设计控制系统。

根轨迹设计方法是一种基于根轨迹分析的控制器设计方法。

通过在根轨迹上确定一个所期望的闭环系统极点的位置,我们可以确定控制器的增益和参数。

根轨迹校正实验报告

根轨迹校正实验报告

根轨迹校正实验报告一、实验目的本实验旨在通过观察系统的根轨迹,对系统进行校正,以达到控制系统的稳定性、快速性和精确性要求。

二、实验原理1. 根轨迹根轨迹是指在极坐标系下,由系统特征方程的根在复平面内的运动轨迹。

2. 根轨迹的性质- 当系统的开环传递函数中,理论上根轨迹的起点是传递函数零点的位置。

- 根轨迹对称于实轴。

- 根轨迹总是从系统的零点出发,逐渐趋向于系统的极点。

3. 根轨迹设计的基本要求- 所有根轨迹应该位于左半平面。

- 根轨迹的密度越大,系统的稳定性越好。

- 根轨迹与虚轴的交点个数为系统开环传递函数的极点数与零点数之差。

- 根轨迹经过的区域越小,系统的快速性越好。

三、实验步骤本次实验使用了MATLAB软件进行根轨迹校正实验,具体步骤如下:1. 给定开环控制系统的传递函数,并画出其对应的零极点分布图。

通过观察零极点的位置,确定系统的初始根轨迹起点。

2. 使用MATLAB的rlocus函数,绘制出开环根轨迹。

通过该函数,我们可以根据系统传递函数的特点,得到根轨迹的形状。

3. 根据根轨迹的形状和性质,校正系统。

可以通过调整控制器的参数或改变系统的结构等方式,来使根轨迹满足系统的要求。

4. 经过多次调整和校正,得到符合要求的根轨迹。

通过观察根轨迹的形状和分布,判断系统是否稳定、快速和准确。

四、实验结果与分析经过根轨迹校正,我们得到了一条符合要求的根轨迹。

通过分析根轨迹的形状和性质,我们可以得出以下结论:1. 系统的稳定性由于根轨迹位于左半平面,且大部分根轨迹较为密集,因此系统的稳定性较好。

没有根轨迹位于右半平面,避免了系统的不稳定性。

2. 系统的快速性根轨迹的起点与旁边的极点较近,根轨迹与虚轴的交点附近也没有极点,因此根轨迹经过的区域较小。

这意味着系统的快速性较好,能够快速响应输入变化。

3. 系统的准确性根轨迹与实轴的交点个数与系统的极点数与零点数之差相符,说明系统的准确性较好。

这样的根轨迹设计使得系统能够准确响应输入信号,实现精确控制。

《模块化自控原理》线性系统的根轨迹分析实验

《模块化自控原理》线性系统的根轨迹分析实验

《模块化自控原理》线性系统的根轨迹分析实验模块化自控原理中的线性系统的根轨迹分析实验是探究线性系统的稳定性和动态特性的一种常用方法,通过实验观测和分析系统的根轨迹,可以得到系统的传递函数以及系统的稳定性等重要信息。

下面是对该实验的详细说明和分析。

1.实验目的1.1理解线性系统的根轨迹概念及其重要性;1.2学习使用根轨迹法进行系统的稳定性和动态特性分析;1.3掌握根轨迹分析实验的具体步骤;1.4提高实验操作和数据处理的能力。

2.实验原理2.1根轨迹的概念根轨迹是以参数变化为基础的线性系统稳定性和动态特性的分析方法之一、根轨迹是指在参数变化的范围内,系统传递函数极点的轨迹,可以用来判断系统的稳定性、响应特性和动态响应快慢等重要指标。

2.2根轨迹的画法根轨迹的画法需要先确定系统的开环传递函数,然后通过对传递函数进行拆项和配平,求解极点的位置。

根轨迹的位置可以通过极点的实部和虚部来表示,根据虚轴对称性和极点与零点的关系,可以画出根轨迹的大致形状和方向。

2.3根轨迹分析的应用根据根轨迹的形状、分布和方向可以判断系统的稳定性和动态特性:-根轨迹在左半平面则系统稳定;-根轨迹与虚轴交点奇数个则系统不稳定;-根轨迹的分布越往左上角或右上角,系统的动态特性越好。

3.实验装置和器材3.1实验装置数字控制系统实验台、计算机、示波器、信号发生器、数模转换器等。

3.2实验器材电脑、电源线、连接线、示波器探头等。

4.实验步骤4.1连接实验装置将数字控制系统实验台与计算机、示波器、信号发生器和数模转换器等设备进行连接。

4.2系统参数调整设置合适的实验参数,包括采样频率、控制周期、信号幅值等。

4.3系统根轨迹绘制在计算机上运行相应的根轨迹绘制软件,根据实验所给的开环传递函数和稳定域范围,绘制系统的根轨迹。

4.4根轨迹分析根据根轨迹的形状、位置和分布等信息,分析系统的稳定性和动态特性,并给出相应的结论和解释。

4.5记录实验数据记录实验中所绘制的根轨迹和分析结果,包括根轨迹的形状、交点、分布等重要特征。

控制系统根轨迹分析

控制系统根轨迹分析

控制系统根轨迹分析简介控制系统根轨迹分析是一种经典的控制系统稳定性分析方法。

通过分析系统的特征根轨迹,可以评估系统的稳定性、阻尼比、过渡时间等性能指标,从而设计合适的控制器来实现系统的稳定和性能要求。

根轨迹的定义控制系统的根轨迹是由系统的特征根在复平面上随参数变化所形成的轨迹。

特征根是系统传递函数的零点,它们决定了系统的动态特性。

根轨迹对应于特征根的运动轨迹,可以直观地反映系统的稳定性和相应的频率响应。

根轨迹的绘制方法步骤一:计算系统的传递函数首先,需要获得系统的传递函数。

传递函数通常是通过将系统的微分方程进行拉氏变换得到的。

传递函数是 Laplace 域中的函数,它描述了输入和输出之间的关系。

步骤二:确定系统的开环极点和零点根轨迹是由系统的特征根构成的,而特征根由系统的开环极点和零点决定。

开环极点指的是系统传递函数的分母多项式的根,而开环零点指的是系统传递函数的分子多项式的根。

通过确定系统的极点和零点,可以得到系统的特征根。

步骤三:绘制根轨迹根轨迹的绘制可以通过手工计算或数值模拟方法实现。

手工计算方法需要根据系统的传递函数进行复杂的计算,而数值模拟方法可以借助计算机软件进行自动计算和绘制。

绘制根轨迹时,需要遵循以下基本规则: - 根轨迹始于系统的零点。

如果系统有多个零点,那么根轨迹将从每个零点开始。

- 根轨迹与实轴交点的个数等于零点的个数减去极点的个数,这一性质被称为根轨迹的零点和极点计数法则。

- 根轨迹在系统的极点位置是不连续的,并且与极点的关联程度取决于极点的幅度和阶数。

根轨迹的稳定性分析通过观察根轨迹图形,可以评估控制系统的稳定性。

根轨迹的稳定性分析方法主要有以下几种:1. 判据法判据法是判断根轨迹稳定性的基本方法之一。

根轨迹的稳定性与根轨迹图形与实轴的关系有关。

如果根轨迹图形位于实轴的左侧,则系统是稳定的;如果根轨迹图形经过实轴,则系统是不稳定的。

2. Astrom法Astrom法是一种根据根轨迹图形的形态特征进行稳定性判断的方法。

实验三 线性系统的根轨迹分析

实验三  线性系统的根轨迹分析

实验三 线性系统的根轨迹分析09电信 任旭乐 20095042046一、 实验目的1.熟悉Matlab 的基本操作;2.掌握利用Matlab 函数实现系统根轨迹的绘制及设计的方法。

3.能够根据所得结果对系统进行性能分析。

二、 实验内容1、已知单位负反馈系统的开环传递函数为: (1)试画出K=0 →∞时的闭环系统根轨迹; (2)求出临界时的K 值及闭环极点; (3)求出使系统稳定的K 值的区间; (4)利用Matlab 函数将剩余的根求出。

程序: a=[1 0]; b=[0.05 1]; c=[0.05 0.2 1]; d=conv(a,b); e=conv(c,d); G=tf([1],e); figure(1); rlocus(G);[k,pole]=rlocfind(G);解:(1)根轨迹如图所示。

(2)临界时k=4.62;闭环极点p=0.336+4.34j (3)由图可知:0<k<4.62时系统稳定。

Root LocusReal AxisI m a g i n a r y A x i s-80-60-40-200204060-60-40-20204060System: G Gain: 4.62P ole: 0.336 + 4.34i Damping: -0.0772Overshoot (%): 128Frequency (rad/sec): 4.35System: G Gain: 0P ole: 0Damping: -1Overshoot (%): 0Frequency (rad/sec): 0System: GGain: 8.5P ole: -19.5Damping: 1Overshoot (%): 0Frequency (rad/sec): 19.5根轨迹2()(0.051)(0.050.21)KG s s s s s =+++2、已知单位负反馈系统的开环传递函数为:(1)试画出K=0 →∞时的闭环系统根轨迹;(2)找出ζ=0.707附近的点,绘制出其相应的单位阶跃响应曲线。

控制系统的根轨迹分析实验报告

控制系统的根轨迹分析实验报告

控制系统的根轨迹分析实验报告控制系统的根轨迹分析实验报告引言:控制系统是现代工程中非常重要的一部分,它可以帮助我们实现对各种物理过程的自动控制。

而根轨迹分析作为一种重要的分析方法,可以帮助我们了解系统的稳定性和动态响应特性。

本实验旨在通过根轨迹分析方法,对一个控制系统进行分析,并得出相应的结论。

实验目的:1. 学习根轨迹分析方法的基本原理和步骤;2. 通过实验分析,了解控制系统的稳定性和动态响应特性;3. 掌握如何根据根轨迹分析结果进行控制系统设计和优化。

实验步骤:1. 实验准备:a. 搭建好控制系统实验平台,包括传感器、执行器和控制器等;b. 确定实验所需的输入信号和采样频率。

2. 数据采集:a. 将输入信号输入到系统中,并采集输出信号;b. 通过数据采集设备将输出信号转换为数字信号。

3. 数据处理和分析:a. 使用MATLAB等软件,将采集到的数据导入,并进行根轨迹分析;b. 根据根轨迹图,分析系统的稳定性和动态响应特性。

实验结果与讨论:通过根轨迹分析,我们得到了系统的根轨迹图。

根轨迹图是描述系统极点随控制参数变化而轨迹的图形,可以直观地反映系统的稳定性和动态特性。

根据根轨迹图,我们可以得出以下结论:1. 系统的稳定性:根轨迹图上的点都位于左半平面,则系统是稳定的;若存在点位于右半平面,则系统是不稳定的。

2. 系统的阻尼比:根轨迹图上的曲线越靠近实轴,则系统的阻尼比越小;曲线越远离实轴,则系统的阻尼比越大。

3. 系统的自然频率:根轨迹图上的曲线越接近原点,则系统的自然频率越小;曲线越远离原点,则系统的自然频率越大。

根据以上分析,我们可以得出对控制系统的一些优化建议:1. 若系统不稳定,在根轨迹图上找到导致不稳定的点,并调整控制参数,使其移动到左半平面,从而提高系统的稳定性。

2. 若系统的阻尼比过小,可能导致系统的动态响应过度振荡,可以通过调整控制参数来增加阻尼比,从而减小振荡幅度。

3. 若系统的自然频率过大,可能导致系统响应过快,可能引起过冲或不稳定,可以通过调整控制参数来减小自然频率,从而改善系统的响应特性。

控制系统的根轨迹法分析

控制系统的根轨迹法分析

可得
s2 20s 50 0
解得
s1,2 10 5 2
因此,分离点为-2.93,会合点为-17.07。
分离角和会合角分别 为 , 90 根轨迹为圆,如下图所示。
(2)当 2 时,阻尼角
2Hale Waihona Puke 45,表示 45角的直线为OB,其方程为

代入特征方程整理后得
(5 k) 10k j(2 2 5 k ) 0
解:(1)起点:有三个开环极点,所以起点为
p1 0, p2 2 j2 3, p3 2 j2 3
(2)终点:因没有有限零点,所以三条根轨迹都将趋于无穷远。
(3)实轴上的根轨迹:根轨迹存在的区间为(-∞,0]。
(4
(5
①渐近线的倾角:根据渐近线计算公式得
φα
180 (1 2μ) 2
60 ,60 ,180
例:单位反馈控制系统的开环传递函数为
K
G (s)
K
s(s 4)(s 6)
若要求闭环系统单位阶跃响应的最大超调量
σ%≤18%,试确定系统的开环增益。
解:绘出 K由零变化到∞时系统的根轨迹如图所示。当K=17时,根轨迹在实轴
上有分离点。当K≥240时,闭环极点是不稳定的。根据σ%≤18 %的要求,求得阻尼 角应为β≤60°,在根轨迹图上作β=60 °的射线,并以此直线和根轨迹的交点A , B作为满足性能指标要求的闭环系统主导极点,即闭环系统主导极点为
闭环系统的极点为
s 2 1
1, 2
n
n
图中阻尼角β与阻尼比ζ的关 系为
cos1
根据根轨迹我们可以确定系统工作在根轨迹上任一点时所对应的ζ,ωn 值,再根据暂态指标的计算公式
% 12 100%

控制系统的根轨迹分析(matlab)..

控制系统的根轨迹分析(matlab)..

13.2图形化根轨迹法分析与设计
13.2.1 图形化根轨迹法分析 与设计工具rltool

MATLAB 图 形 化 根 轨 迹 法 分 析 与 设 计 工 具 rltool是对SISO系统进行分析设计的。既可以 分析系统根轨迹,又能对系统进行设计。其 方便性在于设计零极点过程中,能够不断观 察系统的响应曲线,看其是否满足控制性能 要求,以此来达到提高系统控制性能的目的。
Root Locus 10 8 6 4
System: G Gain: 4.02 Pole: -0.247 + 2.18i Damping: 0.113 Overshoot (%): 70 Frequency (rad/-4 -6 -8 -10 -3.5 System: G Gain: 45.1 Pole: -0.0575 - 6.84i Damping: 0.0084 Overshoot (%): 97.4 Frequency (rad/sec): 6.84
Root Locus 15
10
5
Imaginary Axis
0
-5
-10
-15 -16
-14
-12
-10
-8
-6 Real Axis
-4
-2
0
2
4
图13.5 例3系统根轨迹
Select a point in the graphics window selected_point = -0.0071 + 3.6335i K= 95.5190 POLES = -7.4965 -0.0107 + 3.6353i -0.0107 - 3.6353i -0.4821
3.增加极点。删掉前面所加零点,再为系统增加极点

实验3 控制系统的根轨迹作图

实验3 控制系统的根轨迹作图

实验3 控制系统的根轨迹作图一、实验目的1.利用计算机完成控制系统的根轨迹作图;2.了解控制系统根轨迹图的一般规律3.利用根轨迹进行系统分析及校正。

二、实验步骤1.在Windows 界面上用鼠标双击matlab 图标,即可打开MATLAB 命令平台。

2.练习相关M 函数根轨迹作图函数:rlocus(sys)rlocus(sys,k)r=rlocus(sys)[r,k]=rlocus(sys)函数功能:绘制系统根轨迹图或者计算绘图变量。

格式1:控制系统的结构图如图所示。

输入变量sys 为LTI 模型对象,k 为机器自适应产生的从0→∞的增益向量, 绘制闭环系统的根轨迹图。

格式2:k 为人工给定的增益向量。

格式3:返回变量格式,不作图。

R 为返回的闭环根向量。

格式4:返回变量r 为根向量,k 为增益向量,不作图。

更详细的命令说明,可键入“help rlocus”在线帮助查阅。

例如:系统开环传递函数为)2)(1()(++=s s s k s G g根轨迹作图程序为k=1; %零极点模型的增益值z=[]; %零点p=[0,-1,-2]; %极点sys=zpk(z,p,k);rlocus(sys) 作出的根轨迹图如图所示。

三、实验内容给定如下各系统的开环传递函数,作出它们的根轨迹图,并完成给定要求。

1. )2)(1()(01++=s s s k s G g要求: (1)准确记录根轨迹的起点.终点与根轨迹的条数(2)确定根轨迹的分离点与相应的根轨迹增益(3)确定临界稳定时的根轨迹增益k gL 。

2. )164)(1()1()(202++-+=s s s s s k s G g要求: 确定根轨迹与虚轴交点并确定系统稳定的根轨迹k g 增益范围。

3.已知系统开环传递函数为()22+=s s k G go ,在分别增加开环零点4-=z ,2-=z ,1-=z 的情况下,绘制系统的根轨迹,作时域仿真验证,分析实验结果。

控制系统的根轨迹分析实验报告

控制系统的根轨迹分析实验报告

控制系统的根轨迹分析实验报告课程名称:控制理论乙指导老师:成绩:__________________ 实验名称:控制系统的根轨迹分析实验类型:________________同组学生姓名:__________ 一、实验目的和要求1.掌握用计算机辅助分析法分析控制系统的根轨迹 2.熟练掌握Simulink 仿真环境。

二、实验内容和原理(一)实验原理根轨迹是指,当开环系统某一参数(一般来说,这一参数选作开环系统的增益k)从零变到无穷大时,死循环系统特征方程的根在s平面上的轨迹。

因此,从根轨迹,可分析系统的稳定性、稳态性能、动态性能。

同时,对于设计系统可通过修改设计参数,使闭环系统具有期望的零极点分布,因此根轨迹对系统设计也具有指导意义。

在MATLAB中,绘制根轨迹有关的函数有:rlocus,rlocfind,pzmap等。

(二)实验内容一开环系统传递函数为G(s)?k(s?2)(s2?4s?3)2绘制出此闭环系统的根轨迹,并分析系统的稳定性。

(三)实验要求1.编制MATLAB程序,画出实验所要求根轨迹, 求出系统的临界开环增益,并用闭环系统的冲击响应证明之。

2.在Simulink仿真环境中,组成系统的仿真框图,观察临界开环增益时系统单位阶跃响应曲线并记录之。

三、主要仪器设备计算机一台以及matlab软件,simulink仿真环境四、操作方法与实验步骤1、程序解决方案:在MATLAB中建立文件genguiji.m,其程序如下: clear a0=[0 0 0 1 2];b0=conv([1,4,3],[1,4,3]); G=tf(a0,b0); figure; rlocus(G); syms w k;s=solve('w -22*w +9+2*k=0','(24+k)*w-8*w =0'); k0=eval(s.k); fprintf('临界开环增益\\n'); k1=k0(2) figure; impulse(tf(k1*a0,b0+k1*a0));title('临界时单位冲激响应');grid on; 1xlim([0 20]); 在MATLAB命令窗口中输入下列命令,得到结果 >> genguiji 临界开环增益 k1 = 55.4256 说明:在解出来的方程中k有五个值,这里只取符合题意的根,记为k1. 其输出的曲线如下放大根轨迹图可知,临界稳定状态k=55,这与计算出来的结果是一致的,因此当0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三-控制系统的根轨迹分析
————————————————————————————————作者:————————————————————————————————日期:
实验三 控制系统的根轨迹分析
一、实验目的
1.利用MATLAB 完成控制系统的根轨迹作图;
2.了解控制系统根轨迹图的一般规律;
3.利用根轨迹进行系统分析。

二、实验原理
与根轨迹相关的MATLAB 函数:
1.绘制根轨迹的函数为rlocus ,常用格式为:
rlocus(sys) sys 为系统开环传递函数名称;
rlocus(num,den,k) num,den 为开环传递函数分子分母多项式,k 为根轨迹增益。

k 的范围可以指定,若k 未给出,则默认k 从0→∞,绘制完整的根轨迹;
r= rlocus(num,den) 返回变量格式,不作图,计算所得的闭环根r ;
[r,k]= rlocus(num,den) 返回变量格式,不作图,计算所得的闭环根r 和开环增益k 。

2.利用函数rlocfind( )可以显示根轨迹上任意一点的相关数值,以此判断对应根
轨迹增益下闭环系统的稳定性。

[k,r]=rlocfind(num,den) 运行后会有一个十字光标提示用户,在根轨迹上选择点,用鼠标单击选择后,在命令窗口就会显示此点的根轨迹增益及此时的所有闭环极点值。

例1 )
4)(1()(++=s s s k s G r k 在命令窗口输入:
k=1;
z=[];
p=[0,-1,-4];
[num,den]=zp2tf(z,p,k);
rlocus(num,den);
title(’G k 根轨迹’)
[k,r]=rlocfind(num,den)
3.当开环传递函数不是标准形式,无法直接求出零极点,可用pzmap( )绘制系
统的零极点图。

pzmap(num,den) 在s 平面上作零极点图;
pzmap(num,den) 返回变量格式,不作图,计算零极点。

三、实验内容
给定如下各系统的开环传递函数,作出它们的根轨迹图,并完成给定要求。

1. )
2)(1()(1++=s s s k s G r k 要求:
(1) 准确记录根轨迹的起点、终点与根轨迹条数;
答:起点为0,-1,-2;终点为无穷处;共三条根轨迹。

(2) 确定根轨迹的分离点与相应的根轨迹增益;
答:分离点为(-0.463,0),k=0.382
(3) 确定临界稳定时的根轨迹增益k 1。

答:k1=6
z=[];
p=[0,-1,-2];
[num,den]=zp2tf(z,p,k);
rlocus(num,den);
title('gk1根轨迹');
[k,r]=rlocfind(num,den)
2. )
164)(1()1()(22++-+=s s s s s k s G r k 要求:
确定根轨迹与虚轴交点并确定系统稳定的根轨迹增益k r 范围。

答:与虚轴交点为(0,+-1.63)和(0,+-2.56);系统稳定的根轨迹增益24.1<k<35.9 num=[1,1];den=conv([1,0],conv([1,-1],[1,4,16]));
rlocus(num,den);
title('gk1根轨迹');
[k,r]=rlocfind(num,den)
3. )
2()3()(3++=s s s k s G r k 要求:
(1)确定系统具有最大超调量时的根轨迹增益;
答:k=0.456
(2)确定系统阶跃响应无超调时的根轨迹增益取值范围。

答:分离点为:(-1.27,0),无超调根轨迹范围:0~0.18
z=[-3];
p=[0,-2];
[num,den]=zp2tf(z,p,k);
rlocus(num,den);
title('gk3根轨迹');
[k,r]=rlocfind(num,den)
4.绘出课本中各题作业的根轨迹。

4.2 (1)
(2)
(3)
(4)
四、实验结论
根据绘制的各根轨迹,分析闭环极点在s平面上的位置与系统性能的关系。

相关文档
最新文档