蚁群算法研究综述

合集下载

蚁群算法

蚁群算法

蚁群算法作者:付欣李静来源:《硅谷》2012年第03期摘要:在自然界中,蚂蚁群体表现出高度的结构化组织,蚂蚁种群所表现出的能力远远超出单一的个体,科学家们通过对蚂蚁种群觅食、构建巢穴、任务分配等行为能力的研究发现蚂蚁所特有的控制自身周围环境的能力,早在1989年Cross S等通过著名的双桥实验确定信息素对于蚂蚁觅食过程的指导作用,也为后来蚁群算法的模型建立奠定基础。

关键词:蚁群算法;研究;发展中图分类号:TN911 文献标识码:A 文章编号:1671-7597(2012)0210183-011 蚂蚁个体的抽象蚁群算法的起源是模拟自然界中蚂蚁群体行为,但与真实的蚂蚁个体还存在一定的差别,将自然界中的蚂蚁个体进行抽象的目的就是更方便的刻画蚁群的自然行为,同时抛除与问题建模无关的因素。

通过这种方式得到的蚂蚁个体可以视为一些智能体,它们之间可以通过一定的机制互相通信、影响,同时也可以共同完成所求问题的简单解的构造过程。

2 问题空间的抽象蚁群算法是建立在对自然界三维空间的抽象基础之上,通常是用一个二维的平面来代替现实中的蚂蚁觅食三维空间。

同时自然界中蚂蚁觅食的空间是一个连续的二维空间,而在计算机模拟的问题模型中多数属于离散事件,因此还需要将所需求解的问题离散化为点组成的解空间。

这个抽象过程的可行性在于:尽管蚂蚁是在连续平面中运动,但其运动过程是由离散点所组成,因此对问题空间的抽象过程仅提高了离散化的粒度,与蚂蚁自身的觅食机理没有任何冲突。

在多数应用问题中经常使用图(Graph)结构来对问题空间进行描述。

3 觅食路径的抽象觅食过程中蚁群会在食物和巢穴之间构造一个特定的空间,在这一空间中存在大量的蚁群所固有的信息,这些信息可以指引蚂蚁在此空间中的运动方向,在解决优化问题时,人工蚂蚁在平面节点上搜寻路径的过程就对应了解的构造过程;在人工蚂蚁的运动过程中由平面节点间边上的轨迹提供指导信息,即相当于信息素;人工蚂蚁根据路径上信息素的浓度大小按照一定的概率决定下一步前进的方向,以此类推,经过一定时间之后到达目标节点,这样便可以得到可行解。

多目标优化算法综述

多目标优化算法综述

多目标优化算法综述随着科技的发展和社会进步,人们不断地提出更高的科学技术要求,其中许多问题都可以用多目标优化算法得到解决。

多目标优化算法的发展非常迅速,当前已经有各种综合性比较全面的算法,如:遗传算法、粒子群算法、蚁群算法、模拟退火算法等。

本文将进一步介绍这些算法及其应用情况。

一、遗传算法遗传算法(Genetic Algorithm,简称GA)是一种源于生物学进化思想的优化算法,它通过自然选择、交叉和变异等方法来产生新的解,并逐步优化最终的解。

过程中,解又称为个体,个体又组成种群,种群中的个体通过遗传操作产生新的个体。

遗传算法的主要应用领域为工程优化问题,如:智能控制、机器学习、数据分类等。

在实际应用上,遗传算法具有较好的鲁棒性和可靠性,能够为人们解决实际问题提供很好的帮助。

二、粒子群算法粒子群算法(Particle Swarm Optimization,简称PSO)是一种基于群体智能的优化算法,其核心思想是通过群体中的个体相互协作,不断搜索目标函数的最优解。

粒子群算法适用于连续和离散函数优化问题。

和遗传算法不同,粒子群算法在每次迭代中对整个种群进行更新,通过粒子间的信息交流,误差及速度的修改,产生更好的解。

因此粒子群算法收敛速度快,对于动态环境的优化问题有着比较突出的优势。

三、蚁群算法蚁群算法(Ant Colony Optimization,简称ACO)是一种仿生学启发式算法,采用“蚂蚁寻路”策略,模仿蚂蚁寻找食物的行为,通过“信息素”的引导和更新,粗略地搜索解空间。

在实际问题中,这些target可以是要寻找的最优解(minimum或maximum)。

蚁群算法通常用于组合优化问题,如:旅行商问题、资源分配问题、调度问题等。

和其他优化算法相比,蚁群算法在处理组合优化问题时得到的结果更为准确,已经被广泛应用于各个领域。

四、模拟退火算法模拟退火算法(Simulated Annealing,简称SA)是一种启发式优化算法,通过随机搜索来寻找最优解。

蚁群算法

蚁群算法

蚁群算法综述摘要:群集智能作为一种新兴的演化计算技术已成为越来越多研究者的关注焦点, 其理论和应用得到了很大的发展。

作为群集智能的代表方法之一,蚁群算法ACO (Ant Colony Optimization, 简称ACO) 以其实现简单、正反馈、分布式的优点得到广泛的应用。

蚁群算法是由意大利学者M. Dorigo 提出的一种仿生学算法。

本文主要讨论了蚁群算法的改进及其应用。

在第一章里介绍了蚁群算法的思想起源及研究现状。

第二章详细的介绍了基本蚁群算法的原理及模型建立,并简要介绍了几种改进的蚁群优化算法。

第三章讨论了蚁群算法的最新进展和发展趋势展望。

关键词:群集智能,蚁群算法,优化问题1 引言1.1 概述人类的知识都来自于对自然界的理解和感悟,如天上的闪电,流淌的河流,挺拔的高山,汪洋的大海,人们从中学会了生存,学会了征服自然和利用自然。

自然界中也存在着很多奇特的现象,水中的鱼儿在发现食物时总能成群结队,天上的鸟儿在迁徙时也是组成很多复杂的阵型,蚂蚁在发现食物时总能找到一条最短的路径。

无论鱼儿,飞鸟或是蜜蜂,蚂蚁他们都有一个共同的特点好像有一种无形的力量将群体中的每个个体组织起来,形成一个统一的整体。

看似庞杂的种群却又有着莫大的智慧,让他们能够完成一个个体所无法完成的使命。

整个群体好像一个社会,形成一个有机整体,这个整体对单个个体要求不高,诸多个体组合起来数量庞大,却极具协调性和统一性,这就是群智能。

群智能算法是利用其个体数量上的优势来弥补单个个体的功能缺陷,使整个群体看起来拥有了个体所无法企及的能力和智慧。

单个个体在探索过程的开始都是处于一种盲目的杂乱的工作状态,因此这些个体所能找到的最优解,对于群体而言却并非是最优的而且这些解也都是无规则的,随着越来越多的个体不断探索,单个个体受到其他成员的影响,大量的个体却逐渐趋向于一个或一条最优的路线,原本杂乱的群体渐渐呈现一种一致性,这样整个群体就具有了寻找最优解的能力。

蚂蚁(蚁群)算法的经典简介以及相关资料说明

蚂蚁(蚁群)算法的经典简介以及相关资料说明

蚂蚁(蚁群)算法的经典简介蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型技术。

它由Marco Dorigo于1992年在他的博士论文中引入,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。

为什么小小的蚂蚁能够找到食物?他们具有智能么?设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比较它们的大小,而且更重要的是,你要小心翼翼的编程,因为程序的错误也许会让你前功尽弃。

这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序。

然而,事实并没有你想得那么复杂,上面这个程序每个蚂蚁的核心程序编码不过100多行!为什么这么简单的程序会让蚂蚁干这样复杂的事情?答案是:简单规则的涌现。

事实上,每只蚂蚁并不是像我们想象的需要知道整个世界的信息,他们其实只关心很小范围内的眼前信息,而且根据这些局部信息利用几条简单的规则进行决策,这样,在蚁群这个集体里,复杂性的行为就会凸现出来。

这就是人工生命、复杂性科学解释的规律!那么,这些简单规则是什么呢?下面:范围蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径(一般是3),那么它能观察到的范围就是3*3个方格世界,并且能移动的距离也在这个范围之内。

环境蚂蚁所在的环境是一个虚拟的世界,其中有障碍物,有别的蚂蚁,还有信息素,信息素有两种,一种是找到食物的蚂蚁洒下的食物信息素,一种是找到窝的蚂蚁洒下的窝的信息素。

每个蚂蚁都仅仅能感知它范围内的环境信息。

环境以一定的速率让信息素消失。

觅食规则在每只蚂蚁能感知的范围内寻找是否有食物,如果有就直接过去。

否则看是否有信息素,并且比较在能感知的范围内哪一点的信息素最多,这样,它就朝信息素多的地方走,并且每只蚂蚁多会以小概率犯错误,从而并不是往信息素最多的点移动。

蚁群算法理论、应用及其与其它算法的混合

蚁群算法理论、应用及其与其它算法的混合
蚁群算法理论、应用及其与其 它算法的混合
基本内容
蚁群算法是一种基于自然界中蚂蚁觅食行为的启发式优化算法,被广泛应用 于解决各种优化问题。该算法具有鲁棒性、并行性和自适应性等优点,但同时也 存在一些局限性,如易陷入局部最优解等问题。本次演示将详细介绍蚁群算法的 基本理论、应用场景以及与其它算法的混合使用。
蚁群算法的实现包括两个关键步骤:构造解和更新信息素。在构造解的过程 中,每只蚂蚁根据自己的概率选择下一个节点,这个概率与当前节点和候选节点 的信息素以及距离有关。在更新信息素的过程中,蚂蚁会在构造解的过程中更新 路径上的信息素,以便后续的蚂蚁能够更好地找到最优解。
蚁群算法在许多领域都得到了广泛的应用。在机器学习领域,蚁群算法被用 来提高模型的性能和效果。例如,在推荐系统中,蚁群算法被用来优化用户和物 品之间的匹配,从而提高推荐准确率;在图像处理中,蚁群算法被用来进行特征 选择和图像分割,从而提高图像处理的效果。此外,蚁群算法在数据挖掘、运筹 学等领域也有着广泛的应用。
结论本次演示介绍了蚁群优化算法的理论研究及其应用。通过分析蚁群优化 算法的组成、行为和优化原理,以及其在不同领域的应用案例,本次演示展示了 蚁群优化算法在求解组合优化、路径规划、社会优化和生物信息学等领域问题的 优势和潜力。本次演示展望了蚁群优化算法未来的发展方向和可能挑战,强调了 其理论研究和应用价值。
总之,蚁群算法是一种具有广泛应用价值的优化算法,它通过模拟蚂蚁的觅 食行为来实现问题的优化。未来可以通过进一步研究蚁群算法的原理和应用,以 及克服其不足之处,来提高蚁群算法的性能和扩展其应用领域。
基本内容
理论基础蚁群优化算法由蚁群系统、行为和优化原理三个核心要素组成。蚁 群系统指的是一群相互协作的蚂蚁共同构成的社会组织;行为则是指蚂蚁在寻找 食物过程中表现出的行为模式;优化原理主要是指蚂蚁通过信息素引导和其他蚂 蚁的协同作用,以最短路径找到食物来源。

几种仿生优化算法综述

几种仿生优化算法综述

几种仿生优化算法综述随着机器学习和人工智能技术的不断发展,仿生优化算法越来越重要。

仿生优化算法可以模拟自然选择和进化过程,具有全局搜索能力和较强的鲁棒性。

本文将介绍几种常见的仿生优化算法,包括遗传算法、粒子群算法和蚁群算法,并分析它们的优缺点以及应用场景。

1. 遗传算法遗传算法是一种模拟自然进化过程的优化算法。

它以染色体(即解)为基本单元,通过选择、交叉和变异等操作来生成新的解。

遗传算法具有全局搜索能力,适用于解决复杂的优化问题。

同时,遗传算法的并行化能力也很强,可以加快计算速度。

但是,遗传算法的缺点也显而易见。

它容易陷入局部最优解,因为某些不利因素可能会影响交叉和变异的效果。

此外,遗传算法要求问题能够通过二进制编码进行表示,可能会降低精度和效率。

2. 粒子群算法粒子群算法是一种通过模拟鸟群或鱼群等生物的群体行为来完成优化任务的算法。

粒子群算法的优点在于它具有强大的全局搜索能力和快速收敛速度。

它能够避免落入局部最优解,同时还可以灵活地适应多维问题。

但是,粒子群算法的性能也受到一些限制。

它对问题的初始条件非常敏感,而且可能会出现早熟收敛的情况。

此外,粒子群算法的收敛速度也可能会受到惯性参数的影响。

蚁群算法模拟蚂蚁在寻找食物过程中释放出的信息素。

它通过在搜索过程中建立一个信息素矩阵来指导搜索行为,可以有效地避免落入局部最优解。

蚁群算法还具有分布式和并行性,并且可以应用于动态环境中的优化问题。

然而,蚁群算法也存在一些挑战。

它需要进行大量的计算,因为信息素矩阵需要不断地更新。

此外,蚁群算法的算法参数可能会对搜索性能产生一定的影响。

综上所述,遗传算法、粒子群算法和蚁群算法都是具有广泛应用价值的优化算法。

每种算法都有其优缺点和适用范围,在具体问题中需要根据实际情况选择合适的算法。

对于不同的优化问题,选择合适的算法可以显著提高优化效率和准确性。

蚁群优化算法及其应用

蚁群优化算法及其应用

蚁群优化算法及其应用1.引言1.1蚁群行为一只蚂蚁看起来微不足道,但多个蚂蚁形成的蚁群似乎就是一个非常规整的军队,在很多情况下,他可以完成很多单只蚂蚁完成不到的事。

这种行为可以看成多个蚂蚁之间的合作,最典型的一个例子就是寻找食物。

在我们的生活中,我们经常可以观察到蚂蚁排成一条直线非常有规整的搬运食物,它是一条直线而不是别的形状。

当蚁群的行进路线出现障碍的时候,蚂蚁的位置总是非常规整而又均匀。

只要等待时间一会儿,蚂蚁就能找到回蚁穴的最短路径。

蚂蚁可以利用这个信息。

当蚂蚁出去觅食会释放信息素,并且沿着行进的路线释放,而且蚂蚁之间都可以互相感应信息素。

信息素的浓度多少决定了食物与蚁穴之间的距离。

信息素浓度越高,食物与蚁穴距离就越短。

1.2一个关于寻路行为的简单例子戈斯S等人在1989年进行了“双桥”实验。

这个实验说明了,蚁群会选择出食物与蚁穴的最短的距离。

下面的例子也能解释它。

图 1如图1所示,如果路线是从A点到D点,有俩个选择ABD和ACD路线,假如现在有俩只蚂蚁B和C分别在ABD路线和ACD路线上,一个时间单位进一步,8个时间单位后,情况如图2所示:从ABD路线最后到D的蚂蚁,从ACD路线最后到C的蚂蚁. 再过8个单位时间后,可以得到以下情况:B蚂蚁已经到A点了,而C蚂蚁才到D点.图 232个单位时间后,在ABD路线上的蚂蚁已经折返了两次,而在ACD路线上的蚂蚁只有折返一次,是不是可以说明ABD上面的信息素比ACD多出了一倍。

接下来,受信息素的影响,ABD路径会被两倍多的蚂蚁选择,所以ABD路线上会有更多的蚂蚁,也会有更多的信息素。

最后,在32个单位的时间后,信息素浓度的比值将达到3:1。

信息素浓度越来越高蚂蚁也会相应越来越多,而ACD路径将逐渐被放弃。

这就是蚂蚁如何依赖信息素来形成积极反馈的方式。

由于前一条蚂蚁在一开始的路径上没有留下信息素,所以蚂蚁向两个方向移动的概率是相等的。

但是,蚂蚁移动的时候,它会释放信息素。

启发式优化算法综述

启发式优化算法综述

启发式优化算法综述启发式优化算法 (Heuristic Optimization Algorithms) 是一类通过模拟自然界生物学中的智能行为来解决优化问题的算法。

这些算法通常能够在较短的时间内找到接近最优解的解决方案,尤其适用于复杂的优化问题,如组合优化、连续优化、多目标优化等。

1. 粒子群优化算法 (Particle Swarm Optimization, PSO)粒子群优化算法模拟了鸟群捕食行为中个体之间的信息交流和寻找最佳食物源的过程。

在算法中,每个解被看作是一个“粒子”,通过调整速度和位置以最优解。

粒子之间通过更新自己和邻居的最佳位置来共享信息,并且通过迭代的方式不断收敛到全局最优解。

2. 遗传算法 (Genetic Algorithm, GA)遗传算法模拟了生物进化的过程。

算法通过构建一组候选解,称为“染色体”,其中包含了问题的可能解决方案。

算法使用选择、交叉和变异等操作来生成新的染色体,并根据染色体的适应度评估解的质量。

通过不断迭代,遗传算法可以全局最优解。

3. 蚁群算法 (Ant Colony Optimization, ACO)蚁群算法模拟了蚂蚁寻找食物的行为。

在算法中,每只蚂蚁通过释放信息素来标记其行走路径。

蚂蚁根据信息素浓度决定下一步的行动,并且信息素浓度会根据蚂蚁的选择进行更新。

通过蚂蚁的协作和信息素的反馈,蚁群算法能够出较优解。

4. 模拟退火算法 (Simulated Annealing, SA)模拟退火算法模拟了固体从高温退火到低温的冷却过程。

算法从一个初始解开始,通过随机地变换当前解以生成新的解,并计算新解的目标函数值。

算法根据目标函数值的变化和当前温度来决定是否接受新解。

通过逐渐降低温度的方式,模拟退火算法最终能够收敛到全局最优解。

这些启发式优化算法在不同的问题领域都取得了一定的成功。

它们被广泛运用于机器学习、数据挖掘、智能优化等领域,解决了很多实际问题。

尽管启发式优化算法在大多数情况下能够找到较优解,但并不能保证找到确切的全局最优解。

二元蚁群优化算法研究综述

二元蚁群优化算法研究综述
统的物质组成 、 从研究 “ 它们是什么的 问题 ” 转变 到关 注 “ 它们
现群集智 能的蚁 群系统和鸟群行为引起众 多学者 的广泛关 注。 蜜蜂 、 鸟群和鱼群等群居个体虽然智能不高 、 行为简单 、 只有局 部信息 、 没有集中的指挥 , 由这 些单个个 体组成 的群体在 一 但
定 内在规 律 的作用 下 , 却涌 现 (me e 出异 常复杂 而有序 e r ) g
做什么 的问题 ” 复杂性科学正在 做着这种 开拓性 的研究 ’ 。 , 3 J
复杂性往往是指一些特殊系统所具有 的一些现象 , 这些系统 由
很 多相互作用的部分 即子系统组成 , 这些子系统间通过某种 目
前尚不清楚的 自组织过程 而变得 比处 于某 个环境 中的热力 学
平衡态 的系统更 加有序 、 更加有 信息量 ; 整个 系统 具有完 全 而
作者简介 : 钱乾( 9 3 ) 男 , 18 一 , 安徽 芜湖人 , 助教 , 士, 硕 主要研 究方 向为计算智 能、 算机 网络( prq @16 tm) 程 美英 (9 3 ) 女, 计 sak q 2 . o ; 18 一 , 助教 ,
硕士 , 主要研 究方向为智能计算 ; 清(9 6 ) 男, 熊伟 16 一 , 教授 , 士, 硕 主要研 究方向为智能计算 ; 周鸣争( 9 8 ) 男, 15 - , 教授 , 主要研 究方向为人 工智能.
c n rl b e s a c o t l l e r h;c tsr p e oa aat h o

个过 渡 , 其相关成果 具有延 伸和拓展 价值。正 因为 如此 , 展 从2 O世纪 9 0年代 以来 , 一些 学者开 始注 意到诸 如蚂蚁 、
0 引 言

蚁群算法文献综述

蚁群算法文献综述
关键词:蚁群算法;组合优化;TSP
1. 前言
蚁群算法(AntColonyOptimization,ACO),它由Marco Dorigo于1992年在他的博士论文“Ant system: optimization by a colony of cooperating agents”中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。其机理是:生物界中的蚂蚁在搜寻食物源时,能在其走过的路径上释放一种蚂蚁特有的分泌物信息素,使得一定范围内的其他蚂蚁能够觉察并影响其行为.当某些路径上走过的蚂蚁越来越多时,留下的这种信息素轨迹也越多,以至信息素强度增大,使后来蚂蚁选择该路径的概率也越高,从而更增加了该路径的信息素强度.蚁群算法是一种仿生类非线性优化算法,具有并行性、正反馈性和全局极小搜索能力强等特点.蚁群算法最早应用于旅行商问题(Travelling Salesman Problem)简称TSP问题,后来陆续渗透到其他领域,在很多领域已经获得了成功的应用,其中最成功的是在组合优化问题中的应用。组合优化问题分为两类:一类是静态组合优化问题,其典型代表有TSP,车间调度问题;另一类是动态组合优化问题,例如网络路由问题。本次毕业论文主要聚焦于静态组合优化问题。
蚂蚁在选择路径时,那些有更多蚂蚁曾经选择过的路径(也就是具有更高信息素密度的路径),被再次选中的可能性最大。
当t=0时,没有信息素,有30只蚂蚁分别在B和D。蚂蚁走哪条道路是完全随机的。因此,在每个点上蚂蚁将有15只经过H,另外15只经过C。
当t=1时有30只蚂蚁从A到B,它们发现指向H道路上的信息素密度是15,是由从B出发的蚂蚁留下的;指向C道路上的信息素密度是30,其中15是由B出发蚂蚁留下,另外15是从D出发经过C已经到达B的蚂蚁留下。因此,选择经过C到D的可能性就更大,从E出发到D的30只蚂蚁也面临着同样的选择,由此产生一个正反馈过程,选择经过C的蚂蚁越来越多,直到所有的蚂蚁都选择这条较近的道路。图1是著名的双桥实验的简化描述。

蚁群算法及其在TSP问题中的应用研究

蚁群算法及其在TSP问题中的应用研究

蚁群算法及其在TSP问题中的应用研究摘要:tsp问题是一类典型的np完全问题,蚁群算法是求解该问题的方法之一。

该文在研究蚁群算法的基本优化原理的基础上,建立了求解tsp 问题的数学模型,设计了一个求解tsp问题的蚁群算法程序,并通过仿真实验验证了算法的有效性,分析了蚂蚁规模、周游次数等因素对蚁群算法搜索结果所产生的影响。

关键词:tsp;蚁群算法;np完全问题中图分类号:tp301 文献标识码:a 文章编号:1009-3044(2013)13-3117-03旅行商问题(traveling salesman problem,简称tsp)是一个具有广泛应用背景和重要理论价值的组合优化问题,它已被证明属于np难题[1]。

目前对于求解该类问题的研究主要有两个方向:一是传统的数学规划方法,这种算法可以得到全局最优解,但复杂性往往难以接受,因而不适应于大规模复杂问题的求解。

二是近年来发展起来的各种仿生进化算法如遗传算法、蚁群算法等,此类算法能够在多项式时间内找到全局最优解或近似全局最优解[2]。

蚁群算法(ant colony algorithm,简称aca)是受自然界中蚂蚁集体寻食过程的启发而提出来的一种新的智能优化算法,它具有高度的本质并行性、正反馈选择、分布式计算、鲁棒性等优点,蚁群算法最早成功地应用于解决tsp问题。

本文在研究蚁群算法的基本优化原理的基础上,编写了一个基于vc的求解tsp问题的蚁群算法程序,并且通过多次实验测试,验证了算法的有效性,分析了蚂蚁规模、周游次数等因素对蚁群算法的搜索结果和效率所产生的影响。

1 tsp问题建模2 基于蚁群算法的tsp问题求解2.2蚁群算法的基本原理蚁群算法是一种源于自然生物界的新型仿生优化算法,它于20世纪90年代初由意大利学者m.dorigo,v.maniezzo首次提出[3],蚁群算法的特点是模拟自然界中蚂蚁寻食的群体行为。

研究表明,蚂蚁会在走过的路上留下信息素,信息素会随时间的推移逐渐挥发消失,蚂蚁就是通过信息素进行信息交流。

生物信息计算模型优化算法综述

生物信息计算模型优化算法综述

生物信息计算模型优化算法综述随着科技的进步和生物信息学领域的发展,生物信息计算模型在解决生物学问题和推动医学研究上发挥着重要作用。

然而,由于复杂性和高维度的特点,生物信息数据的分析和处理面临着诸多挑战。

为此,研究人员开发了各种优化算法,以提高生物信息计算模型的准确性和效率。

本文将综述目前常用的生物信息计算模型优化算法,包括粒子群算法、遗传算法、蚁群算法以及模拟退火算法。

1. 粒子群算法(Particle Swarm Optimization,PSO)粒子群算法是一种基于群体智能的优化算法,通过模拟鸟群或鱼群的行为特点实现优化目标的搜索过程。

在生物信息计算模型中,粒子群算法可以应用于序列比对、蛋白质折叠、基因定位等问题。

算法通过粒子群的位置和速度来表示解向量的搜寻过程,不断更新粒子的速度和位置,直到找到全局最优解或满足收敛条件。

2. 遗传算法(Genetic Algorithm,GA)遗传算法是一种基于进化理论的优化算法,通过模拟生物进化的过程来寻求最优解。

在生物信息计算模型中,遗传算法可以应用于基因选择、SNP(Single Nucleotide Polymorphisms)挖掘和基因表达分析等问题。

算法通过种群的选择、交叉和变异操作来模拟自然选择的过程,以生成更优解。

遗传算法具有全局搜索能力和并行处理特点,在生物信息学领域中被广泛应用。

3. 蚁群算法(Ant Colony Optimization,ACO)蚁群算法是一种模拟蚂蚁寻找食物的行为特点的优化算法,通过模拟蚂蚁释放信息素和信息素挥发的过程来寻找最优解。

在生物信息计算模型中,蚁群算法可以应用于聚类分析、基因网络分析等问题。

算法通过蚁群在解空间中随机搜索,并根据路径上信息素的浓度选择更优的路径,最终找到全局最优解。

蚁群算法具有自适应性和强鲁棒性,对于高纬度的数据处理具有一定优势。

4. 模拟退火算法(Simulated Annealing,SA)模拟退火算法是一种基于金属退火过程的优化算法,通过模拟固体的退火过程来寻找最优解。

蚁群算法优化策略综述

蚁群算法优化策略综述
T h e o r e t i c a l D i s c u s s i o n・理 论 探 讨
蚁群算 法优化策略综述
孙 骞 张 进 王 宇 翔
( 西北 大 学现 代教 育技 术 中心 陕 西西安 7 1 0 0 6 9 )
【 摘 要 】 对于求解 T S P问题 , 新型的启发式算法——蚁群算法 , 是成功解决此类问题核心的算法之一。 本文简要介
Su n Qi a n Z h a n g J i n Wa n g Y u - x i a n g
( C o n t e m p o r a r yE d u c a t i o n T e c h n o l o g yC e n t e r o f N o r t h w e s t U n i v e r s i t y S h a n x i X i ’ a n 7 1 0 0 6 9 )
【A b s t r a c t 1 A s a R e w a n t c o l o n y a l g o r i t h m h e u r i s t i c a l g o r i t h m h a s b e e n s u c c e s s f u l l y a p p l i e d t o s o l v e T S P p r o b l e m s . T h i s a r t i c l e b r i e f l y d e s c r i b e s s e v e r a l
ቤተ መጻሕፍቲ ባይዱ
局部 最优解 的搜索 , 难 以 实现广 度搜 索 。 因此 , 在 标 准算
法基 础上 出现 了优 化算 法 , 这 些 优化 算法 主 体通 过对 于 信 息 素 的调节 , 防止 过早 收敛 问题 。在优 化 算法 中核 心

自适应蚁群算法

自适应蚁群算法

自适应蚁群算法!张纪会(东北大学控制仿真中心·沈阳, )高齐圣(青岛化工学院计算机系·青岛, )徐心和(东北大学控制仿真中心·沈阳, )摘要:蚁群算法是由意大利学者 等人首先提出的一种新型的模拟进化算法,初步的研究已经表明该算法具有许多优良的性质,为求解算杂的组合优化问题提供了一种新思路 此方法已经引起了众多学者的研究兴趣 但同时也存在着一些缺点,如需要较长的计算时间,容易出现停滞现象等 目前国内对此研究尚少,为此,本文对蚁群算法的研究现状作一综述,希望能够对相关研究起到一定的启发作用关键词:蚁群算法;强化学习;旅行商问题文献标识码:( , · , , )( , · , , )( , · , , ): , , , , ,: ; ;引言( )本世纪 年代中期创立了仿生学,人们从生物进化的机理中受到启发,提出了许多用以解决复杂优化问题的新方法,如遗传算法、进化规划、进化策略等 蚁群算法是最近几年才提出的一种新型的模拟进化算法,由意大利学者等人首先提出来[ ],他们称之为蚁群系统( ),并用该方法求解旅行商问题( )[ ]、指派问题( )[ , ]、 调度问题[ , ],取得了一系列较好的实验结果 受其影响,蚁群系统模型逐渐引起了其他研究者的注意,并用该算法来解决一些实际问题[ , ]虽然对此方法的研究刚刚起步,但是这些初步研究已显示出蚁群算法在求解复杂优化问题(特别是离散优化问题)方面的一些优越性,证明它是一种很有发展前景的方法 鉴于目前国内尚缺乏这一方面的研究,本文对蚁群算法原理及其研究现状作一综述,希望能够对相关研究有所启发基本蚁群算法( )!基本蚁群算法的原理( )人工蚁群算法是受到人们对自然界中真实的蚁群集体行为的研究成果的启发而提出的一种基于种群的模拟进化算法,属于随机搜索算法 由意大利学者 等人首先提出[ ] 等人首次提出该方法时,充分利用了蚁群搜索食物的过程与著名的旅行商问题( )之间的相似性,通过人工模拟蚂蚁搜索食物的过程(即:通过个体之间的信息交流与相互协作最终找到从蚁穴到食物源的最短路径)来求解 ,为了区别于真实蚂蚁群体系统,我们称这种算法为“人工蚁群算法”象蚂蚁这类群居昆虫,虽然单个蚂蚁的行为极其简单,但由这样的单个简单的个体所组成的蚁群群体却表现出极其复杂的行为,能够完成复杂的任务,不仅如此,蚂蚁还能够适应环境的变化,如:在蚁群运动路线上突然出现障碍物时,!基金项目:主题( )资助项目 收稿日期: ;收修改稿日期:第 卷第 期 年 月控制理论与应用, ,"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""文章编号: ( )蚂蚁能够很快地重新找到最优路径蚁群是如何完成这些复杂的任务的呢?人们经过大量研究发现,蚂蚁个体之间是通过一种称之为外激素()的物质进行信息传递从而能相互协作,完成复杂的任务蚁群之所以表现出复杂有序的行为,个体之间的信息交流与相互协作起着重要的作用蚂蚁在运动过程中,能够在它所经过的路径上留下该种物质,而且蚂蚁在运动过程中能够感知这种物质的存在及其强度,并以此指导自己的运动方向,蚂蚁倾向于朝着该物质强度高的方向移动因此,由大量蚂蚁组成的蚁群的集体行为便表现出一种信息正反馈现象:某一路径上走过的蚂蚁越多,则后来者选择该路径的概率就越大蚂蚁个体之间就是通过这种信息的交流达到搜索食物的目的[]!!!基本蚁群系统模型及其实现()为了便于理解,我们以求解平面上个城市的问题(,,…,n表示城市序号)为例说明蚁群系统模型对于其它问题,可以对此模型稍作修改便可应用[]为模拟实际蚂蚁的行为,首先引进如下记号:设是蚁群中蚂蚁的数量,d ij(i,j,,…,n)表示城市和城市之间的距离,()表示时刻位于城市的蚂蚁的个数,!()()表示时刻在连线上残留的信息量初始时刻,各条路径上信息量相等,设()(为常数)蚂蚁(,,…,)在运动过程中,根据各条路径上的信息量决定转移方向,()表示在时刻蚂蚁由位置转移到位置的概率,()()! "()(),",,{()其中,{,,…,}表示蚂蚁下一步允许选择的城市与实际蚁群不同,人工蚁群系统具有记忆功能,(,,…,)用以记录蚂蚁当前所走过的城市,集合u k随着进化过程作动态调整随着时间的推移,以前留下的信息逐渐消逝,用参数表示信息消逝程度,经过个时刻,蚂蚁完成一次循环,各路径上信息量要根据下式作调整:()·()!,()!!!,()!表示第只蚂蚁在本次循环中留在路径上的信息量,!表示本次循环中路径上的信息量的增量!,若第只蚂蚁在本次循环中经过,,否则{()其中,是常数,表示第只蚂蚁在本次循环中所走路径的长度在初始时刻,()(),!(,,,…,),分别表示蚂蚁在运动过程中所积累的信息及启发式因子在蚂蚁选择路径中所起的不同作用表示由城市转移到城市的期望程度,可根据某种启发式算法具体确定根据具体算法的不同,(),!()及()的表达形式可以不同,要根据具体问题而定曾给出三种不同模型,分别称之为、、[]它们的差别在于表达式()的不同在模型中:!,若第只蚂蚁在时刻和之间经过,,否则{()在模型中:!,若第只蚂蚁在时刻和之间经过,,否则{()它们的区别在于:后两种模型中,利用的是局部信息,而前者利用的是整体信息,在求解问题时,性能较好因而通常采用它作为基本模型参数,,,,可以用实验方法确定其最优组合算法的实现过程可参见文献[,]中的描述,这里省略"基本蚁群算法的优点与不足之处()为了说明基本蚁群系统的优点与不足,文献[]给出用基本蚁群算法求解的典型实验结果,从这些结果可看出蚁群算法具有如下优点:)较强的鲁棒性:对基本蚁群算法模型稍加修改,便可以应用于其它问题;)分布式计算:蚁群算法是一种基于种群的进化算法,具有本质并行性,易于并行实现;)易于与其它方法结合:蚁群算法很容易与多种启发式算法结合,以改善算法的性能众多研究已经证明蚁群算法具有很强的发现较好解的能力,这是因为该算法不仅利用了正反馈原理,在一定程度上可以加快进化过程,而且是一种本质并行的算法,不同个体()之间不断进行信息交流和传递,从而能够相互协作,有利于发现较好解蚁群算法可以解释为一种特殊的强化学习(:)算法[]公式()反映了蚁群算法与学习算法之间的联系其中,相当于学习中的值,表示学习所得到的经验由某种启发式算法确定,如何将这两者结合起来,是提高蚁群算法效率的关键问题虽然蚁群算法有许多优点,但是,这种算法也存在一些缺陷,如:与其它方法相比,该算法一般需要较长的搜索时间,蚁群算法的复杂度可以反映这一点;而且该方法容易出现停滞现象(),即搜索进行到一定程度后,所有个体所发现的解完全一致,不能对解空间进一步进行搜索,不利于发现更好的解对于这两个问题,已经引起了许多研究者的注意,并提出了若干改善方法,如提出的[],等人提出的[]#蚁群算法研究现状()控制理论与应用卷作为一种新型的进化算法,提出不久后便引起了人们的关注,针对其不足之处,人们作了一些有效的研究,下面对此作一简述等人[,,]提出基本蚁群算法后不久,又提出一种更一般的蚁群算法,并称之为[,]在该算法中,个体I的移动规则为S=U!edr{[AO(r,U)][H E(r,U)]},g"g,依概率p I i选择S,{.()AO值按照如下规则进行更新AO(r,S)#(-)·AO(r,S)+·(!AO(r,S)+·U!ed IAO(S,U)).()式(),()进一步揭示了与强化学习算法的联系文献[]研究了的性质,并研究了参数,,g对算法性能的影响实验结果表明,与基本蚁群算法相比,更具有一般性,而且更有利于全局搜索为了克服基本蚁群算法的不足,人们对其作了若干改进文献[,]提出(),其基本思想是仅让每一代中的最好个体所走路径上的信息量作调整,以加快收敛速度,这样便容易出现停滞现象,为了避免这一点,用-分支因子[]作为衡量群体多样性的一个指标,当-分支因子低于某一数值时,便对各个路径上的信息量作动态调整,以期望避免过早出现停滞现象.但是-分支因子计算起来比较复杂,而且对它的界限不容易把握,不便于应用.此外还有等提出的[]文献[]将蚁群算法与两交换方法有机结合,结果表明该方法可以大大提高基本蚁群算法的搜索效率.文献[]通过引入遗忘因子,可以做到对过去知识的慢慢遗忘,因而能够强化后来学习得到知识,不致过早出现停滞现象,有利于发现更好的解.所有这些研究,都在一定程度上提高了基本蚁群算法的效率.!自适应蚁群算法()通过对蚁群算法的分析不难发现:蚁群算法的主要依据是信息正反馈原理和某种启发式算法的有机结合,这种算法在构造解的过程中,利用随机选择策略,这种选择策略使得进化速度较慢,正反馈原理旨在强化性能较好的解,却容易出现停滞现象这是造成蚁群算法的不足之处的根本原因因而我们从选择策略方面进行修改,我们采用确定性选择和随机选择相结合的选择策略,并且在搜索过程中动态地调整作确定性选择的概率当进化到一定代数后,进化方向已经基本确定,这时对路径上信息量作动态调整,缩小最好和最差路径上的信息量的差距,并且适当加大随机选择的概率,以利于对解空间的更完全搜索,从而可以有效地克服基本蚁群算法的两个不足我们的方法属于自适应方法此算法按照下式确定蚂蚁I由i转多到的下一城市SS=U!edI{iU(t)iU(t)},r"p,依概率p I i S(t)选择S,{.()其中,p!(,),r是(,)中均匀分布的随机数当进化方向基本确定后用简单的放大(或缩小)方法调整每一路径上的信息量对于这一算法,我们做过大量实验(由于篇幅所限,这里不给出具体实验结果,有关实验结果将另文发表)实验表明由于采用自适应选择和动态调整策略,算法的性能明显得到改善,该方法不仅能够加快收敛速度,节省搜索时间,而且能够克服停滞行为的过早出现,有利于发现更好的解这对于求解大规模优化问题是十分有利的"蚁群算法的应用()蚁群算法已经在若干领域获得了成功的应用其中最成功的应用是在组合优化问题中的应用,其典型代表有,(),调度等文献[,,,]用蚁群算法求解问题,结果表明该方法优于其它方法文献[,]研究了指派问题的蚁群算法求解效果蚁群算法在调度问题中的应用也得到了初步研究[,],利用的析取图模型与问题的相似性,可用蚁群算法求解调度问题,并取得了一系列较好的实验结果等[]在等人研究成果的基础上,提出了一种求解指派类型问题的一般模型,并用来研究着色问题等[]研究了求解连续空间优化问题的蚁群系统模型,并用来解决某些实际工程设计问题,但是蚁群算法在求解连续优化问题方面的优越性相对要弱一些虽然对此方法的研究刚刚起步,但是这些初步研究已显示出蚁群算法在求解算杂优化问题(特别是离散优化问题)方面的一些优越性#结论()蚁群算法是一种新型的模拟进化算法,其研究刚刚开始,远未象,等算法那样形成系统的分析方法和坚实的数学基础,有许多问题有待进一步研究,如算法的收敛性、理论依据等但可以想象,随着研究的深入,蚁群算法也将同其它模拟进化算法一样,获得越来越多的应用参考文献()[],[]:[],:,,[],[]:()[]:,,[],,[],,():[],[],,,,,[][]:[]:,,(下转第页)期自适应蚁群算法(上接第(页)[*]A051)G,<%,1O8)*9G>@>$5L!:4@%99$*/06)5%P>%*1$)2)2/0,$134 H$13$*)*%D02>1$0*),7)2/0,$13460,-020,$*/=,0@2%4$*/,)=35["]!"!063%>,$51$-5,"#&#,%)("):")+’"%&[$]G0,$/0M,M)*$%OO0Q)*9A020,*$8!8*15751%4:0=1$4$O)1$0*@7 )-020*706-00=%,)1$*/)/%*15["]!:;;;(,)*5!0*&751%45,M)*)*9A7@%,*)1$-5,"##*,%*("):%&’!"[&]G0,$/0M,M)*$%OO0Q)*9A020,*$8!8*15751%4:)*)>10-)1)271$-0=1$4$O$*/=,0-%55[?]!(%-3*$-)2?%=0,1#"’)"*,+02$1%-*$-09$M$2)*0,"##"[#]R)1.$*5A!’%),*$*/H$139%2)7%9,%H),95[G]!;*/2)*9:+57-3020/7G%=),14%*1,S*$D%,5$1706A)4@,$9/%,"#&#[")]G0,$/0M)*9’>-)M!851>9706504%=,0=%,1$%506)*1JT[8]!:*:<M Q0$/1,R;@%2$*/)*9:?%-3%*@%,/,%1)2%95!+,0-!06!13:*1!A0*6!0*+),)22%2+,0@2%4&02D$*/6,04U)1>,%(++&U)[A]!E%,2$*:&=,$*/%,JQ%,2)/,"##*,*+*’**+[""]’>-)M,V)4@),9%22))*9G0,$/0M!8*1JT:)*,%$*60,-%4%*1 2%),*$*/)==,0)-31013%1,)D%2$*/5)2%54)*=,0@2%4[8]!:*:+,0-!06"%13M)-3$*%’%),*$*/A0*6![A]!W,)*-%:M0,/)*N)>64)**,"##+,%+%’%*)["%](304)551X1O2%)*9<02/%,<005!M)IJ4$*)*15751%4)*920-)25%),-360,-04@$*)10,$)20=1$4$O)1$0*=,0@2%45[8]!:*:+,0-!06%*9:*1!A0*6!0*M%1)3%>,$51$-5[A]!R$%*:&=,$*/%,JQ%,2)/,"##$["(]&1X1O2%()*9<005<!:4=,0D%4%*150*13%)*15751%4:$*1,09>-$*/4)IJ4$*)*15751%4[8]!:*:+,0-!:*1!A0*6!8,1$6$-$)2U%>,)2U%1H0,.)*9V%*%1$-82/0,$134[A]!R$%*:&=,$*/%,JQ%,2)/,"##$["!]张纪会,徐心和!带遗忘因子的蚁群算法["]!系统仿真学报,%))),(%)["+]张纪会,徐心和!具有变异特征的蚁群算法["]!计算机研究与发展,%))),(")["*]张纪会,徐心和!一种新型的模拟进化算法———蚁群算法["]!系统工程理论与实践,"###,(():&!’&$本文作者简介张纪会"#*#年生!博士!主要研究方向为:离散事件动态系统,智能调度,智能计算,混合系统等!高齐圣"#**年生!博士,副教授!主要研究方向为:智能优化,智能管理等!徐心和"#!)年生!东北大学教授,博士生导师!主要研究方向为离散事件动态系统,计算机控制与仿真,混合系统等!自适应蚁群算法作者:张纪会, 高齐圣, 徐心和, ZHANG Jihui, GAO Qisheng, XU Xinhe作者单位:张纪会,徐心和,ZHANG Jihui,XU Xinhe(东北大学控制仿真中心·沈阳,110006), 高齐圣,GAO Qisheng(青岛化工学院计算机系·青岛,266042)刊名:控制理论与应用英文刊名:CONTROL THEORY & APPLICATIONS年,卷(期):2000,17(1)被引用次数:165次1.Colorni A;Dorigo M;Maniezzo V Distributed optimization by ant colonies 19912.Colorni A;Dorigo M;Maniezzo V An investigation of some properties of an ant algorithm 19923.Colorni A;Dorigo M;Maniezzo V Ant system for job shop scheduling 1994(01)4.Maniezzo V;Colorni A;Dorigo M The ant system applied to the quadratic assignment problem 19945.Bilchev G;Parmee I C Searching heavily contrained design spaces 19956.Costa D;Hertz A;Dubuis O Imbedding of a sequential algorithm within an evolutionary algorithm for coloring problem in graphs 1989(01)7.Dorigo M;Maniezzo V;Colorni A Ant system: optimization by a colony of cooperating agents 1996(01)8.Dorigo M;Maniezzo V;Colorni A Ant system: an autocatalytic optimizing process 19919.Watkins C Learning with delayed rewards 198910.Dorigo M;Luca M A study of some properties of ant-Q[外文会议] 199611.Luca M;Gambardella;Dorigo M Ant-Q: an reinforcement learning approach to the traveling salesman problem 199512.Thomas stützle;Holger Hoos Max-min ant system and local search for combinatorial optimization problems 199713.Stützle T;Hoos H Improvements on the ant system: introducing max-min ant system 199714.张纪会;徐心和带遗忘因子的蚁群算法 2000(02)15.张纪会;徐心和具有变异特征的蚁群算法[期刊论文]-计算机研究与发展 2000(01)16.张纪会;徐心和一种新型的模拟进化算法--蚁群算法[期刊论文]-系统工程理论与实践 1999(03)1.吴庆洪.张纪会.徐心和.WU Qing-Hong.ZHANG Ji-Hui.XU Xin-He具有变异特征的蚁群算法[期刊论文]-计算机研究与发展1999,36(10)2.吴斌.史忠植一种基于蚁群算法的TSP问题分段求解算法[期刊论文]-计算机学报2001,24(12)3.陈崚.沈洁.秦玲.陈宏建基于分布均匀度的自适应蚁群算法[期刊论文]-软件学报2003,14(8)4.王颖.谢剑英一种自适应蚁群算法及其仿真研究[期刊论文]-系统仿真学报2002,14(1)1.李静.刘学.赵健基于蚁群寻优的汽车牵引力PID控制参数整定[期刊论文]-吉林大学学报(工学版) 2008(4)2.李荣东.杨娜蚁群算法在泄水建筑物下游收缩断面水深计算中的应用[期刊论文]-黑龙江水利科技 2008(2)3.谢宏蚁群算法解决TSP问题的研究[期刊论文]-农业网络信息 2007(3)4.康一梅.杨恩博.杨鑫凯基于改进蚁群算法的火源定位策略研究[期刊论文]-计算机工程与应用 2012(2)5.桑国珍.何小虎基于自适应蚁群算法的研究[期刊论文]-科技信息 2010(10)6.韩芳.周忠勋.孙毅基于改进双种群蚁群算法的无功优化研究[期刊论文]-东北电力大学学报 2010(4)7.毛力.荚恒松.卞锋基于分类蚁群算法的彩色图像自动分类[期刊论文]-计算机工程与应用 2008(6)8.岳凤.刘希玉自适应调整挥发系数的逆向蚁群算法[期刊论文]-计算机工程与应用 2008(3)9.王艳松.陈国明.张加胜蚁群算法在油田配电网开关优化配置中的应用[期刊论文]-石油大学学报(自然科学版) 2005(2)10.詹士昌蚁群算法在连续性空间优化问题中的应用[期刊论文]-杭州师范学院学报(自然科学版) 2004(5)11.李志伟基于群集智能的蚁群优化算法研究[期刊论文]-计算机工程与设计 2003(8)12.郝晋.石立宝.周家启求解复杂TSP问题的随机扰动蚁群算法[期刊论文]-系统工程理论与实践 2002(9)13.郝晋.石立宝.周家启具有随机扰动特性的蚁群算法[期刊论文]-仪器仪表学报 2001(z1)14.海丽切木·阿布来提浅谈几种智能优化算法[期刊论文]-电脑知识与技术 2011(19)15.刘媛.韩应征蚁群算法求解优化函数[期刊论文]-中国新技术新产品 2009(12)16.李国宁.凌卫新基于模拟退火的动态蚁群算法求解TSP[期刊论文]-科学技术与工程 2009(11)17.尤晓清.邱矩平.林苗.吴桂生.马振龙仿生智能算法的比较分析[期刊论文]-福建电脑 2009(1)18.野莹莹.付丽君.程立英基于MATLAB的蚁群算法仿真研究[期刊论文]-装备制造技术 2008(11)19.于红斌.李孝安基于分区策略的蚂蚁算法[期刊论文]-微处理机 2007(3)20.陈建良.朱伟兴蚁群算法优化模糊规则[期刊论文]-计算机工程与应用 2007(5)21.杨海.王洪国.侯鲁男.孙向群混沌蚁群算法及其在智能交通中的应用[期刊论文]-成都大学学报(自然科学版) 2007(4)22.付宇.肖健梅动态自适应蚁群算法求解TSP问题[期刊论文]-计算机辅助工程 2006(4)23.詹士昌.徐婕用于多维函数优化的蚁群算法[期刊论文]-应用基础与工程科学学报 2003(3)24.李虹.孙志毅基于MATLAB的改进型基本蚁群算法[期刊论文]-太原重型机械学院学报 2003(3)25.杨欣斌.孙京诰.黄道一种进化聚类学习新方法[期刊论文]-计算机工程与应用 2003(15)26.陈昌富.谢学斌露天采矿边坡临界滑动面搜索蚁群算法研究[期刊论文]-湘潭矿业学院学报 2002(1)27.魏平.熊伟清用于一般函数优化的蚁群算法[期刊论文]-宁波大学学报(理工版) 2001(4)28.程艳燕蚁群算法基本原理及其应用综述[期刊论文]-科技创业月刊 2011(4)29.赵义飞.高锦宏.刘亚平.哈亮基于蚁群优化神经网络的故障诊断[期刊论文]-北京信息科技大学学报(自然科学版) 2010(2)30.曾强.杨育.王小磊.赵川大型工程项目任务多目标优化调度方法[期刊论文]-计算机工程与应用 2010(24)31.楼小明一种改进的自适应蚁群算法求解TSP问题[期刊论文]-黑龙江科技信息 2009(24)32.荚恒松.毛力基于群体分类的自适应蚁群算法[期刊论文]-计算机工程与设计 2007(15)33.郭立俊.余晓芬蚁群算法在系留气球PID控制中的研究与应用[期刊论文]-计量与测试技术 2007(12)34.贺建民.闵锐多Agent系统中蚁群算法的设计与实现[期刊论文]-微电子学与计算机 2006(10)35.张军英.敖磊.贾江涛.高琳求解TSP问题的改进蚁群算法[期刊论文]-西安电子科技大学学报(自然科学版)2005(5)36.詹士昌.徐婕蚁群算法在水位流量关系拟合中的应用[期刊论文]-杭州师范学院学报(自然科学版) 2005(2)37.王一清.宋爱国.黄惟一基于Bayes决策的蚁群优化算法[期刊论文]-东南大学学报(自然科学版) 2005(4)38.卢辉斌.范庆辉.贾兴伟一种改进的自适应蚁群算法[期刊论文]-计算机工程与设计 2005(11)39.林海波蚁群算法及其应用研究[学位论文]硕士 200540.孙京诰.李秋艳.杨欣斌.黄道基于蚁群算法的故障识别[期刊论文]-华东理工大学学报(自然科学版) 2004(2)41.张华.王秀坤.孙焘蚁群算法在考试安排中的应用[期刊论文]-计算机工程与设计 2003(12)42.冯佳.张晓晞蚁群算法在游园最优路径选择上的应用[期刊论文]-北京联合大学学报(自然科学版) 2010(2)43.高峰.武睿.刘南平基于自适应蚁群算法的无线传感器网络能量优化[期刊论文]-河北工业大学学报 2010(6)44.张友华.乐毅.辜丽川.王超优选参数的蚁群算法实现物流路径优化[期刊论文]-计算机技术与发展 2009(3)45.李国宁.凌卫新基于模拟退火的动态蚁群算法求解TSP[期刊论文]-科学技术与工程 2009(11)46.赵雪花.黄强.吴建华蚁群聚类在径流影响因素时间序列分析中的应用[期刊论文]-水力发电 2008(2)47.徐纪锋.张开旺.王晓原基于自适应蚁群算法的最短路径搜索方法研究[期刊论文]-中国科技信息 2008(23)48.胡宏梅.董恩清基于蚁群聚类的码书设计[期刊论文]-苏州大学学报(工科版) 2007(2)49.詹士昌.徐婕.吴俊蚁群算法中有关算法参数的最优选择[期刊论文]-科技通报 2003(5)50.李小珂.韩璞.刘丽.李志涛基于蚁群算法的PID参数寻优[期刊论文]-计算机仿真 2003(z1)51.高尚.钟娟.莫述军连续优化问题的蚁群算法研究[期刊论文]-微机发展 2003(1)52.李艳君.吴铁军连续空间优化问题的自适应蚁群系统算法[期刊论文]-模式识别与人工智能 2001(4)53.黄樟灿.吴方才.胡晓林基于信息素的整数规划的演化求解[期刊论文]-计算机应用研究 2001(7)54.韩芳.邢晓哲.方婷婷.王成儒融合鱼群和微分进化的蚁群算法的无功优化[期刊论文]-黑龙江电力 2011(2)55.郭崇慧.谷超.江贺求解旅行商问题的一种改进粒子群算法[期刊论文]-运筹与管理 2010(5)56.周燕霞.孙建伶一种基于路径权重均衡的蚁群算法[期刊论文]-工业控制计算机 2008(10)57.张统华.鹿晓阳群体智能优化算法的研究进展与展望[期刊论文]-山西建筑 2007(1)58.何定润.刘晓云.陈东义基于可穿戴计算机电源管理的蚁群算法[期刊论文]-电子科技大学学报 2007(2)59.冯登超.杨兆选.乔晓军基于改进型蚁群算法和Gauss-Markov随机场的植物病斑自适应分割[期刊论文]-沈阳农业大学学报 2007(3)60.余建军.孙树栋.褚崴.牛刚刚自适应蚁群算法及其在多约束多目标柔性Job-Shop调度中的应用[期刊论文]-数学的实践与认识 2007(17)61.蔡国伟.张言滨.孙铭泽.辛鹏.王继松基于蚁群最优算法的配电网重构[期刊论文]-东北电力大学学报 2007(4)62.邓小波.曹聪聪.龙伦海.康耀红蚁群算法搜索熵研究[期刊论文]-海南大学学报(自然科学版) 2007(4)63.吴靓.何清华.黄志雄.邹湘伏基于蚁群算法的多机器人集中协调式路径规划[期刊论文]-机器人技术与应用2006(3)64.张志民.张小娟.李明华.胡小兵一种引入奖励与惩罚机制的蚁群算法[期刊论文]-计算机仿真 2006(7)65.詹士昌.徐婕蚁群算法在马斯京根模型参数估计中的应用[期刊论文]-自然灾害学报 2005(5)66.朱树人.匡芳君.王艳华基于粒度原理的蚁群聚类算法[期刊论文]-计算机工程 2005(23)67.刘士新.宋健海.唐加福蚁群最优化--模型、算法及应用综述[期刊论文]-系统工程学报 2004(5)68.李茂军.罗安.童调生人工免疫算法及其应用研究[期刊论文]-控制理论与应用 2004(2)69.汤放奇.李茂军.罗安人工免疫算法的全局收敛性分析[期刊论文]-长沙电力学院学报(自然科学版) 2004(3)70.杨勇.宋晓峰.王建飞.胡上序蚁群算法求解连续空间优化问题[期刊论文]-控制与决策 2003(5)71.张宗永.孙静.谭家华蚁群算法的改进及其应用[期刊论文]-上海交通大学学报 2002(11)72.徐宁.李春光.张健.虞厥邦几种现代优化算法的比较研究[期刊论文]-系统工程与电子技术 2002(12)73.姜学鹏.洪贝.曹耀钦基于证据理论决策的蚁群优化算法[期刊论文]-计算机技术与发展 2009(8)74.朱百成.周绍梅.刘欣沂一种具有动态自适应特征的改进的蚁群优化策略[期刊论文]-现代计算机(专业版)2009(12)。

智能优化算法综述

智能优化算法综述

智能优化算法综述智能优化算法是一类基于生物进化、群体智慧、神经网络等自然智能的优化算法的统称。

与传统优化算法相比,智能优化算法可以更好地解决高维、非线性、非凸以及复杂约束等问题,具有全局能力和较高的优化效果。

在实际应用中,智能优化算法已经广泛应用于机器学习、数据挖掘、图像处理、工程优化等领域。

常见的智能优化算法包括遗传算法、粒子群优化算法、蚁群算法、模拟退火算法、人工免疫算法、蜂群算法等。

这些算法都具有模拟自然进化、群体智慧等特点,通过不断优化解的候选集合,在参数空间中寻找最优解。

遗传算法是一种基于进化论的智能优化算法,在解决寻优问题时非常有效。

它基于染色体、基因、进化等概念,通过模拟自然进化的过程进行全局。

遗传算法通过选择、交叉、变异等操作来生成新的解,并根据适应度函数判断解的优劣。

遗传算法的优势在于能够在空间中进行快速全局,并适用于复杂约束问题。

粒子群优化算法是一种模拟鸟群觅食行为的智能优化算法。

粒子群算法通过模拟粒子在解空间中的过程,不断更新速度和位置,从而寻找最优解。

粒子群算法的优势在于能够迅速收敛到局部最优解,并具有较强的全局能力。

蚁群算法模拟了蚁群在寻找食物和建立路径上的行为,在解决优化问题时较为常用。

蚁群算法通过模拟蚂蚁释放信息素的过程,引导蚁群在解空间中的行为。

蚂蚁根据信息素浓度选择前进路径,并在路径上释放信息素,从而引导其他蚂蚁对该路径的选择。

蚁群算法具有良好的全局能力和自适应性。

模拟退火算法模拟了固体物质退火冷却的过程,在解决优化问题时具有较好的效果。

模拟退火算法通过接受更差解的机制,避免陷入局部最优解。

在过程中,模拟退火算法根据一定的退火规则和能量函数冷却系统,以一定的概率接受新的解,并逐渐降低温度直至收敛。

模拟退火算法具有较强的全局能力和免疫局部最优解能力。

人工免疫算法模拟了人类免疫系统对抗入侵的过程,在解决优化问题时表现出较好的鲁棒性和全局能力。

人工免疫算法通过模拟免疫系统的机制进行,不断生成、选择、演化解,并通过抗体、抗原等概念来刻画解的特征。

蚁群算法基本原理及其应用综述

蚁群算法基本原理及其应用综述

A A. 究 了 蚂 蚁 的行 为 . 出 其 基 本 C 研 提 原理 及 数学 模 型 . 将 之 应 用 于 寻求 旅 并
为便 于 研 究 提 出 以下 基 本假 设 : 蚂
蚁 间 通 过 信息 素 和环 境 进 行 间接 通 信 :
蚂 蚁 对 环境 的反 应 由其 内部 模决 定 : 蚂
数 和均 匀 分 布 的 随机 数 . 大 小 决定 了 其 利 用 先 验 知 识 与 探 索新 路 径 之 间 的相
局 部 收 敛 无 法寻 找 到 全 局最 优 解 : 转 移 概 率过 大 时 .虽 有 较 快 的收 敛 速度 . 但 会 导致 早 熟 收敛 . 以 正反 馈 原 理所 所
引 起 的 自催 化 现 象 意 在 强 化 性 能 好 的
其 中 ,。 q分 别 为 [ , ] 的 参 q和 01上
距 食 物源 较短 的分 支 蚂 蚁之 间 通过 信 息 素进 行 信 息 的传 递 . 径上 的信 息 素 捷
越 多 . 引 的 蚂 蚁 越 多 . 成 正 反 馈 机 吸 形
信 息 和启 发 信 息 在 蚂 蚁 选 择 路 径 中 的 相 对 重要 性 ; ( )为信 息 素 浓 度 的 函 T ・
制 .达 到 一 种协 调 化 的 高 组织 状 态 . 该 调 整 .如 全 局 更 新 规 则 和 局 部 更 新 规
行 为 称 集 体 自催 化 目前 研 究 的 多 追踪 的征兵 。
11 蚁 群 算 法 的 基 本 原 理 .
2 蚁 群 算 法 的发 展
数 根 据 不 同的模 型 . 息 素做 不 同 的 信
则。
单 的行 为能 力 . 整 个 蚁群 却 能 完 成 一 但 系 列复 杂 的 任 务 . 种 现象 是 通 过 高度 这

蚁群算法及其改进形式综述

蚁群算法及其改进形式综述

e n. l ig ma y d f c l c mbn td o t z t n p o lms Ho v r I o e f c n W. i p p ri t d c st emo e n d i s v n n if u t o i a e p i a i r b e . we e 。 t sn tp re t O Th s a e r u e h d l a d o i mi o i n o s p o lms a o ti ,u r b e b u s mma ie si r v d v rin n o e a t t u u er s a c s e . t r si z t mp o e e s sa d f r c ssi f t r e e r h i u s o s s
An l ny Al o ihm nd S m m a y o t m p o e g r t m s t Co o g r t a u r fI s I r v d Al o ih
HUANG Z i in Z h— o g, HANG n — e LIQu — u x De g k , n h i
展, 显示 了其 在求 解复 杂 的组 合 优化 问题方 面 的优 势 。 同时 由 于 蚁 群 算 法 收敛 速 度 慢 , 易 发 生 停 容 滞 , 于陷入 局 部最 优 解 等 不 足 , 易 国内 外 专 家学 者 对其 进行 了不 断的改 进 , 高 了算法 的性 能 。 提
了 较 好 的 实 验 效 果 , 着 又 在 二 次 分 配 问 题 接
2 蚁 群 算 法 的 模 型
研究 表 明 : 蚁 在 觅食 途 中 , 蚂 能够 在 所 经 过 的
路径 上 留下一 种挥 发性 分泌 物 一信息 素 , 能够 感 并 知 这种 物质 的存在 及其 强度 , 着这种 物 质强度 高 朝 的方 向移动 , 强度 越高 的路径 , 择它 的 蚂蚁越 多 , 选 越发增 加该 路径 的信 息素强 度 , 这样 又将 吸 引更多 的蚂蚁 , 而形 成 一种 正反 馈 , 蚁 最 终 可 以 发 现 从 蚂 蚁 巢与食 物之 间 的最 短 路径 。通 常用 求 解 个 城 市 的 T P问题 ( 找 一 条 经 过 各 城 市 一 次 且 回 到 S 寻 原 出发城 市 的最短路 径 ) 明蚁群 算法 的模 型 。 说 引入 如 下标 记 : 表 示 城市 个 数 , 表示 蚂 蚁 m 数 量 , 表 示城 市 i d, 和城 市J之 间距 离 , t 表示 b( )

蚁群算法在移动机器人路径规划中的应用综述

蚁群算法在移动机器人路径规划中的应用综述

蚁群算法在移动机器人路径规划中的应用综述一、本文概述随着和机器人技术的快速发展,移动机器人的路径规划问题已成为研究热点。

路径规划是指在有障碍物的环境中寻找一条从起点到终点的安全、有效路径。

蚁群算法作为一种模拟自然界蚁群觅食行为的智能优化算法,因其出色的全局搜索能力和鲁棒性,在移动机器人路径规划领域得到了广泛应用。

本文旨在综述蚁群算法在移动机器人路径规划中的研究现状、应用实例以及未来发展趋势,以期为相关领域的研究者提供参考和借鉴。

本文首先介绍蚁群算法的基本原理和特点,然后分析其在移动机器人路径规划中的适用性。

接着,详细梳理蚁群算法在移动机器人路径规划中的应用案例,包括室内环境、室外环境以及复杂动态环境等不同场景下的应用。

本文还将讨论蚁群算法在路径规划中的优化策略,如参数调整、算法融合等。

总结蚁群算法在移动机器人路径规划中的优势与不足,并展望其未来的研究方向和发展趋势。

二、蚁群算法基本原理蚁群算法(Ant Colony Optimization, ACO)是一种模拟自然界蚂蚁觅食行为的优化算法,由意大利学者Marco Dorigo等人在1991年首次提出。

蚁群算法的基本原理是模拟蚂蚁在寻找食物过程中,通过信息素(pheromone)的释放和跟随来进行路径选择,最终找到从蚁穴到食物源的最短路径。

在算法中,每个蚂蚁都被视为一个智能体,能够在搜索空间中独立探索和选择路径。

蚁群算法的核心在于信息素的更新和挥发机制。

蚂蚁在选择路径时,会倾向于选择信息素浓度较高的路径,因为这意味着这条路径更可能是通向食物源的有效路径。

同时,蚂蚁在行走过程中会释放信息素,使得走过的路径上信息素浓度增加。

然而,随着时间的推移,信息素会逐渐挥发,这是为了避免算法陷入局部最优解。

在移动机器人路径规划问题中,蚁群算法可以被用来寻找从起点到终点的最优或近似最优路径。

将搜索空间映射为二维或三维的网格,每个网格节点代表一个可能的移动位置,而路径则由一系列节点组成。

蚁群算法在移动机器人路径规划中的应用综述

蚁群算法在移动机器人路径规划中的应用综述

1引言路径规划是移动机器人自主导航最关键的一个环节,也是机器人领域的研究热点[1]。

其主要目的是在有障碍物的工作环境中,依据一定的性能指标(行走路径最短、规划时间最短及能耗最少等),在模型空间中找到一条从起始位置到目标位置的安全无碰撞的最优或次优路径[2]。

经过几十年的发展,国内外学者提出了许多富有成效的路径规划方法,如A*算法[3]、人工势场法[4]、神经网络[5]、遗传算法[6-7]、模糊逻辑[8]、粒子群优化算法[9]等。

这些方法在移动机器人路径规划中取得较好的效果,但面对复杂环境时依然存在一定的缺陷。

蚁群算法是模拟自然界中蚂蚁群体觅食行为而提出的一种启发式搜索算法,具有正反馈、并行计算、鲁棒性好等特点,因此许多学者将蚁群算法用于机器人的路径规划并取得较好的效果[10-21]。

蚁群算法具有较快的收蚁群算法在移动机器人路径规划中的应用综述张松灿1,2,普杰信1,司彦娜1,孙力帆11.河南科技大学信息工程学院,河南洛阳4710232.河南科技大学电气工程学院,河南洛阳471023摘要:路径规划是移动机器人领域的一个研究热点,蚁群算法在移动机器人的路径规划得到广泛应用。

介绍了常见的几种蚁群算法,从蚁群算法结构、参数选取及优化、信息素优化等方面对已有的蚁群算法方法进行了分类综述,同时对多蚁群优化算法、融合蚁群算法在移动机器人路径规划的应用进行了分类比较与分析。

从蚁群算法的理论研究、算法融合、多蚁群算法研究等方面对蚁群算法在移动机器人路径规划中的未来研究内容和研究热点进行展望。

关键词:蚁群算法;路径规划;信息素更新;融合算法;种群多样性文献标志码:A中图分类号:TP18doi:10.3778/j.issn.1002-8331.1912-0160张松灿,普杰信,司彦娜,等.蚁群算法在移动机器人路径规划中的应用综述.计算机工程与应用,2020,56(8):10-19. ZHANG Songcan,PU Jiexin,SI Yanna,et al.Survey on application of ant colony algorithm in path planning of mobile puter Engineering and Applications,2020,56(8):10-19.Survey on Application of Ant Colony Algorithm in Path Planning of Mobile RobotZHANG Songcan1,2,PU Jiexin1,SI Yanna1,SUN Lifan11.School of Information Engineering,Henan University of Science and Technology,Luoyang,Henan471023,China2.School of Electrical Engineering,Henan University of Science and Technology,Luoyang,Henan471023,ChinaAbstract:Path planning is a promising research domain in the field of mobile robot.Ant colony algorithm is widely used in path planning of mobile robot.Firstly,several common ant colony algorithms are introduced in this paper,and then the existing improved ant colony algorithms are classified and discussed according to ant colony algorithm structure,parame-ter selection and optimization,pheromone updating and optimization,etc.At the same time,the application of multi ant colony optimization algorithm and hybridized ant colony algorithm in path planning of mobile robot is classified and ana-lyzed.Finally,the future research contents and hotspot of ant colony algorithm in path planning of mobile robot are pros-pected from the aspects of theoretical research,hybridized algorithm and multi ant colony algorithm.Key words:ant colony algorithm;path planning;pheromone updating;hybrid algorithm;population diversity基金项目:国家自然科学基金(No.U1504619);河南省国际科技合作计划(No.152102410036)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蚁群算法综述控制理论与控制工程09104046 吕坤一、蚁群算法的研究背景蚂蚁是一种最古老的社会性昆虫,数以百万亿计的蚂蚁几乎占据了地球上每一片适于居住的土地,它们的个体结构和行为虽然很简单,但由这些个体所构成的蚁群却表现出高度结构化的社会组织,作为这种组织的结果表现出它们所构成的群体能完成远远超越其单只蚂蚁能力的复杂任务。

就是他们这看似简单,其实有着高度协调、分工、合作的行为,打开了仿生优化领域的新局面。

从蚁群群体寻找最短路径觅食行为受到启发,根据模拟蚂蚁的觅食、任务分配和构造墓地等群体智能行为,意大利学者M.Dorigo等人1991年提出了一种模拟自然界蚁群行为的模拟进化算法——人工蚁群算法,简称蚁群算法(Ant Colony Algorithm,ACA)。

二、蚁群算法的研究发展现状国内对蚁群算法的研究直到上世纪末才拉开序幕,目前国内学者对蚁群算法的研究主要是集中在算法的改进和应用上。

吴庆洪和张纪会等通过向基本蚁群算法中引入变异机制,充分利用2-交换法简洁高效的特点,提出了具有变异特征的蚊群算法。

吴斌和史忠植首先在蚊群算法的基础上提出了相遇算法,提高了蚂蚁一次周游的质量,然后将相遇算法与采用并行策略的分段算法相结合。

提出一种基于蚁群算法的TSP问题分段求解算法。

王颖和谢剑英通过自适应的改变算法的挥发度等系数,提出一种自适应的蚁群算法以克服陷于局部最小的缺点。

覃刚力和杨家本根据人工蚂蚁所获得的解的情况,动态地调整路径上的信息素,提出了自适应调整信息素的蚁群算法。

熊伟清和余舜杰等从改进蚂蚁路径的选择策略以及全局修正蚁群信息量入手,引入变异保持种群多样性,引入蚁群分工的思想,构成一种具有分工的自适应蚁群算法。

张徐亮、张晋斌和庄昌文等将协同机制引入基本蚁群算法中,分别构成了一种基于协同学习机制的蚁群算法和一种基于协同学习机制的增强蚊群算法。

随着人们对蚁群算法研究的不断深入,近年来M.Dorigo等人提出了蚁群优化元启发式(Ant-Colony optimization Meta Heuristic,简称ACO-MA)这一求解复杂问题的通用框架。

ACO-MH为蚁群算法的理论研究和算法设计提供了技术上的保障。

在蚁群优化的收敛性方面,W.J.Gutjahr做了开创性的工作,提出了基于图的蚂蚁系统元启发式(Graph-Based Ant System Metaheuristic)这一通用的蚁群优化的模型,该模型在一定的条件下能以任意接近l的概率收敛到最优解。

T.StBtzle 和M.Dorigo对一类ACO算法的收敛性进行了证明,其结论可以直接用到两类实验上,证明是最成功的蚁群算法——MMAs和ACS。

N.Meuleau和M.Dorigo研究了随机梯度下降(Stochastic Gradlent Descent,简称SGD)和蚁群优化之间的关系,将蚁群优化看成是一种近似的SGD算法,并根据SGD实现了理论上收敛的蚁群优化算法。

蚁群算法的应用研究一直非常活跃。

继M.Dorigo首先将AS算法用于TSP 问题之后,V.Maniezzo等人首先将AS算法应用于指派问题(QuadraticAssignment Problem,简称QAP)。

最近几年Gambardella,Thailard和StUtzle等也发表了一些用蚁群算法求解QAP问题的文章。

目前,蚁群算法是求解QAP问题最有效的算法之一。

蚁群算法在通讯网络领域(尤其是网络路由问题)的应用受到越来越多的学者的关注。

由于网络中的信息分布性、动态性、随机性和异步性与蚁群算法相似,如利用局部信息发现解,间接的通讯方式和随机状态的转换。

Di Caro和Dorigo 已经在相关的文献中将ACO应用于网络路由问题,并称这种算法为Antnet。

除了各种组合优化问题外,蚁群算法还在函数优化、系统辨识、机器人路径规划、数据挖掘、大规模集成电路的综合布线设计等领域取得了令人瞩目的成果。

三、蚁群算法的原理及数学模型1.蚁群算法的基本原理根据生物学家和仿生学家的长期观察和研究发现,没有视觉的蚂蚁在运动时会通在路径上释放出一种特殊的分泌物——信息素,并通过其来寻找路径。

当它们碰到一个还没有走过的路口时,就随机挑选一条路径前行,同时释放出与路径长度有关的信息素。

蚂蚁走的路径越长,则释放的信息量越小。

当后来的蚂蚁再次碰到这个路口的时候,选择信息量较大路径的概率相对较大,这样便形成了一个正反馈机制。

最优路径上的信息量越来越大,而其他路径上的信息量却会随着时间的推移而逐渐消减,最终整个蚁群会找出最优路径。

同时蚁群还能够适应环境的变化,当蚁群的运动路径上突然出现障碍物时,蚂蚁也能很快地重新找到最优路径。

信息素在蚁群寻找最优路径的过程中发挥了重要作用。

2.蚁群算法的机制原理蚁群算法是作为一种新的计算智能模式引入的,该算法基于如下基本假设:(1)蚂蚁之间通过信息素和环境进行通信。

每只蚂蚁仅根据其周围的局部环境做出反应,也只对其周围的局部环境产生影响。

(2)蚂蚁对环境的反应由其内部模式决定。

因为蚂蚁是基因生物,蚂蚁的行为实际上是其基因的适应性表现,即蚂蚁是反应型适应性主体。

(3) 在个体水平上,每只蚂蚁仅根据环境做出独立选择;在群体水平上,单只蚂蚁的行为是随机的,但蚁群可通过自组织过程形成高度有序的群体行为。

由上述假设和分析可见,基本蚁群算法的寻优机制包含两个基本阶段:适应阶段和协作阶段。

蚁群算法实际上是一类智能多主体系统,其自组织机制使得蚁群算法不需要对所求的问题的每一方面都有非常深入的了解。

3. 蚁群算法的数学描述组合优化(Combinatorial Optimization)是运筹学中最活跃的分支之一,在计算机科学、计算生物学、物流和供应链管理等新兴领域有大量的应用。

组合优化主要通过研究数学方法寻找到离散事件的最优编排、分类、次序或筛选等。

组合优化又称组合规划,是指在给定有限集的所有具备某些条件的子集中,按某种目标找出一个最优子集的一类数学规划。

从最广泛的意义上说,组合规划与整数规划这两者的领域是一致的,都是指在有限可供选择方案组成的集合中,选择使目标函数达到极值的最优子集。

旅行商问题是运筹学的著名命题,也是目前研究最为广泛的组合优化问题之一。

对TSP 的研究成果将对求解NP(Non .deterministic Polynomial Time)类问题产生重要影响。

蚂蚁在运动过程中,根据各条路径上的信息量及路径的启发信息来计算状态转移概率。

每个蚂蚁应用一个状态转移规则来建立一个问题的解决方案,直到所有蚂蚁都建立了完整的解决方案。

完成一次循环后,各路径进行信息量调整,存储所找到的最短路径,直到满足条件为止,其中状态转移规则为:⎝⎛∈••=∑⊂else allowed j t t t t t k allowed s is is ik ij k k ,0,)]([)]([)]([)]([)(P ij 若βαβαητητ (1)),...,2,1(m k tabu k =用以记录蚂蚁k 当前过的城市为记忆列表,其中允许)(k tabu n k -=集合k tabu 随着进化过程动态调整,ij η为先验知识能见度在TSP 问题中为城市转移到城市的启发信息,一般取ij ij /d 1=η,α为路径上ij 残留信息的重要程度,β为启发信息的重要程度。

信息素更新规则采用如下公式:),1,()()1(+∆+•=+t t t t ij ij ij ττρτ (2),)1,()1,(1∑=+∆=+∆mk k ij ij t t t t ττ (3)⎩⎨⎧=+∆否则在本次循环中经过路径如果蚂蚁,0);,(,/),(j i k L Q n t t k k ijτ (4)其中:k L 为第k 只蚂蚁在本次循环中所走的路径长度,Q 是信息素强度,)1,(+∆t t kij τ表示第k 只蚂蚁在时刻)1,(+t t 留在路径),(j i 上的信息素量,)1,(+∆t t ij τ表示本次循环中路径),(j i 的信息素的增量;)1(ρ-为信息素轨迹的衰减系数)(,10∈ρ。

根据具体算法的不同,ij τ∆,k ij τ∆及)(P t kij 的表达形式可以不同,Dorigo 曾给出3种不同模型,分别称为蚁周系统、蚁量系统和蚁密系统,在蚁量系统和蚁密系统中,蚂蚁在建立方案的同时释放信息素,利用的是局部信息;而蚁周系统是在蚂蚁已经建立了完整的轨迹后再释放信息素,利用的是整体信息。

在一系列的标准测试问题上的运行试验表明,蚁周算法的性能优于其他两种算法。

四、 蚁群算法的实现步骤和程序流程图以TSP 为例,基本蚁群算法的具体实现步骤如下:(1)参数初始化。

令时间0=t 和循环次数0=c N ,设置最大循环次数m ax c N ,将m 只蚂蚁置于n 个城市上)(n m <,令有向图上每条边),(j i 的初始化信息量const ij =τ,其中const 表示常数,且初始时刻0)0(=∆ij τ。

(2)循环次数1+←c c N N 。

(3)蚂蚁数目1+←k k 。

(4)蚂蚁个体根据状态转移概率公式(1)计算的概率选择城市j 并前进,{}k tabu C j -∈。

(5)修改禁忌表指针,即选择好之后将蚂蚁移动到新的城市,并把该城市移动到该蚂蚁个体的禁忌表中。

(6)若集合C 中城市未遍历完,即m k <,则跳转到第(3)步,否则执行第(7)步。

(7)根据公式(2)和式(3)更新每条路径上的信息量。

(8)若满足结束条件,即如果循环次数cmac c N N ≥,则循环结束并输出程序计算结果,否则清空禁忌表并跳转到第(2)步。

蚁群算法的程序流程图如下图所示:图1 基本蚁群算法的程序结构流程五、蚁群算法与其它智能算法的比较当前研究的很多算法都是人们受到大自然现象的启发,通过模拟大自然一些物种的行为提出的,如蚁群算法是模拟自然界蚁群行为,遗传算法是基于生物进化理论原理发展起来的,人工神经网络算法是模拟人脑组织结构和运行机制,模拟退火算法来源于固体退火原理等。

这些仿生优化算法通过模拟生物系统中生物体本能特性和无意识的寻优活动优化自身状态,以达到获得求解问题的最优解。

作为同一类的智能算法,它们有许多相同的特点。

(1)都是不确定性的算法生物体在自然界中并不是确定性变化的,正是由于本身一些不确定性因素的影响,导致生物体个体之间的差异,也保证生物种群的多样。

仿生优化算法利用了这种不确定性的特性,它们借助随机特性,保证算法在求解过程中存在一定的不确定性因素,从而实现算法个体求解的多样性。

也正是这种多样性,使得算法在求解某些问题的过程中,能够避免陷入局部解,保证整个求解过程朝着最优解的方向不断进行。

相关文档
最新文档