烟囱的设计计算(加热炉,2013)

合集下载

烟囱计算

烟囱计算

烟囱高度的确定具有一定速度的热烟气从烟囱出口排除后由于具有一定的初始动量,且温度高于周围气温而产生一定浮力,所以可以上升至很高的高度。

这相对增加了烟囱的几何高度,因此烟囱的有效高度为:式中:H—烟囱的有效高度,m;—烟囱的几何高度,m;—烟囱抬升高度,m 。

根据《锅炉大气污染物排放标准》(GB13271—2014)规定,每个新建锅炉房只能设一根烟囱,烟囱高度应根据锅炉房装机总容量确定,按下表规定执行。

由于给定的锅炉型号为:SHS20-25,蒸发量为20t/h。

故选定烟囱几何高度H s=45m.烟气释放热计算取环境大气温度20℃,大气压力=98kPa=0.35=0.3511.051=122.51kw式中:烟气热释放率, kw;−大气压力,取邻近气象站年平均值;−实际排烟量,/s−烟囱出口处的烟气温度,433.15k;−环境大气温度,取=273.15+20=293.15k烟囱直径的计算烟囱平均内径可由下式计算式中:—实际烟气流量,;—烟气在烟囱内的流速,,取20。

取烟囱直径为DN850mm;校核流速。

烟囱抬升高度的计算式中:—烟囱出口流速,取20;—烟囱出口内径,;—烟囱出口处平均风速,取10.故最终烟囱的有效高度H为:H=+=45+5.35=50.35m取51m。

式中:—烟囱抬升高度,m;—烟囱几何高度,m。

烟囱高度校核假设吸收塔的吸收效率为80%,可得排放烟气中二氧化硫的浓度为:二氧化硫排放的排放速率:用下式校核 :式中:σy/σz—为一个常数,一般取0.5-1此处取0.8;最大地面浓度查得国家环境空气质量二级标准时平均的浓度为,所以设计符合要求。

烟囱的阻力损失计算标准状况下的烟气密度为,则可得在实际温度下的密度为:烟囱阻力可按下式计算:式中:—摩擦阻力系数,无量纲,本处取0.02;—管内烟气平均流速,;—烟气密度,; —烟囱长度,; —烟囱直径,。

烟道阻力损失及烟囱计算根据实例

烟道阻力损失及烟囱计算根据实例

15.烟道阻力损失及烟囱计算根据实例计算烟囱是工业炉自然排烟的设施,在烟囱根部造成的负压——抽力是能够吸引并排烟的动力。

在上一讲中讲到的喷射器是靠喷射气体的喷射来造成抽力的,而烟囱是靠烟气在大气中的浮力造成抽力的,其抽力的大小主要与烟气温度和烟囱的高度有关。

为了顺利排出烟气,烟囱的抽力必须是足够克服烟气在烟道内流动过程中产生的阻力损失,因此在烟囱计算时首先要确定烟气总的阻力损失的大小。

15.1 烟气的阻力损失烟气在烟道内的流动过程中造成的阻力损失有以下几个方面:摩擦阻力损失、局部阻力损失,此外,还有烟气由上向下流动时需要克服的烟气本身的浮力――几何压头,流动速度由小变大时所消耗的速度头——动压头等。

15.1.1 摩擦阻力损失摩擦阻力损失包括烟气与烟道壁及烟气本身的粘性产生的阻力损失,计算公式如下:t m h dLh λ=(mmH 2O) )1(2h 0204t gw βγ+= (mmH 2O)式中:λ—摩擦系数,砌砖烟道λ=0.05 L —计算段长度,(m ) d —水力学直径)(4m uFd =其中 F —通道断面积(㎡);u —通道断面周长(m );t h —烟气温度t 时的速度头(即动压头)(mmH 2O);0w —标准状态下烟气的平均流速(Nm/s );0γ—标准状态下烟气的重度(㎏/NM 3);β—体积膨胀系数,等于2731; t —烟气的实际温度(℃)15.1.2 局部阻力损失局部阻力损失是由于通道断面有显著变化或改变方向,使气流脱离通道壁形成涡流而引起的能量损失,计算公式如下:)1(202t gw K Kh h t βγ+==(㎜H 2O)式中 K —局部阻力系数,可查表。

15.1.3 几何压头的变化烟气经过竖烟道时就会产生几何压头的变化,下降烟道增加烟气的流动阻力,烟气要克服几何压头,此时几何压头的变化取正值,上升烟道与此相反,几何压头的变化取负值。

几何压头的计算公式如下:)(y k j H h γγ-=(㎜H 2O )式中 H —烟气上升或下降的垂直距离(m ) k γ—大气(即空气)的实际重度 (kg/m 3)y γ—烟气的实际重度(kg/m 3)图15.1 为大气中每米竖烟道的几何压头,曲线是按热空气算出的,烟气重度与空气重度差别不大时,可由图15.1查取几何压头值。

烟囱的计算

烟囱的计算
锅炉及锅炉房设备6~10章
第 一 章 基 本 知识 第 二 章 燃 料 及燃烧 计算 第 三 章 锅 炉 热平衡 第 四 章 燃 烧 原理及 燃烧设 备 第 五 章 锅 炉 本体布 置及热 力计算 第 六 章 锅 炉 设备的 空气动 力计算 第 七 章 锅 炉 受压元 件的强 度计算 第 八 章 锅 炉 水 循环 及汽水 分离 第 九 章 锅 炉 化学水 处理 第 十 章 锅 炉 房设备 及其布 置 退出
二 、 风 道 流 动总阻 力:§6.4 Nhomakorabea道阻力计算

时,


时,
,(海拔高度
时)。
1. 冷 风 道 阻 力 :
① 冷风流量:
② 当 时, ;当
时 , 不 计。

计 算 同 烟 道 阻力计 算。
第六章
2. 管 式 空 气 预 热器 连通箱 的 3. 热 风 道 阻 力 : ① 热风流量: ② 层 燃 炉 流 动热风 道阻力 :
分 别 计 算 气 阻力系 数,最 后求得 烟道全 压降
第六章
§6.3 烟道阻力计算
二、烟道系统阻力计算
1. 锅 炉 管 束
1) 凝 渣 管

,且
时 , 其 阻 力忽略 不计

,且
时 , 按 横 向冲刷 计算器 阻力
2) 锅 炉 管 束 ① 其 阻 力 为 横向冲 刷、纵 向冲刷 及局部 阻力之 和 ② 横 向 冲 刷 管排只 按一半 管排数 计算, 纵向冲 刷取假 想中 心间距离 ③ 隔 板 的 考 虑方法 ④ 部 分 顺 列 、部分 错列的 管排, 应分别 计算相 加
三、烟囱直径的计算
i——烟 囱 锥 度 , 0.02~0.03
第六章

钢烟囱计算书最终

钢烟囱计算书最终

向基本风压
wcr10:
wcr10=(1.3Vcr1)2 (10/H)2α
0.998
/1600=
wcr10T12= 查GB0009表7.4.3 ξ=
0.07 2.04
横向风振临界风
速对应的顺风向
各截面风压标准
值计算如下:
截面号
标高 μz μs ξ ν1 θν θB ν=
wk=βz
ψz
βz= μsμ
zwcr10
标高3.4m
1 h(m)
0
22 1.284 0.502 2.04 0.81
1
15 1.14 0.502 2.04 0.81
2
8
1 0.502 2.04 0.81
3
0
1 0.502 2.04 0.81
3.4
1 0.502 2.04 0.81
Bz/B0
ν1θ νθB
Z/H
1+ξ (kN/
ψz
νψ z/μs
m2)
1
1 0.81
1 1 2.29 1.47
1 1 0.81 0.681818 0.56 1.82 1.04
1 1 0.81 0.363636 0.19 1.32 0.66
1
1 0.81
0 0.02 1.03 0.52
1 1 0.81 0.154545 0.04 1.06 0.53
6
cnpt
266209092.xlsD2000
2.5 Mpa
导热系数:
700℃:≤
0.25 W/m.K
1000℃:≤
0.25 W/m.K
使用温度:
80 ℃
线变化率:
1000℃X3h:

钢烟囱计算书计算书

钢烟囱计算书计算书

计算书xxxx项目xxxx装置66米钢烟囱文件编号:xxxx钢烟囱设计软件QY-Chimney *********工程建设有限公司2017年10月目录1、设计资料.........................................................17、加强圈间距计算..................................................1、设计资料1.基本设计资料烟囱总高度H = 66.000m烟气温度T gas= 80.00℃烟囱底部高出地面距离: 0mm夏季极端最高温度T sum= 40.00℃冬季极端最低温度T win = -15.00℃最低日平均温度T win = -5.00℃烟囱日照温差△T = 15.00℃基本风压w0 = 0.35kN/m2瞬时极端最大风速: 50.00(m/s)地面粗糙度: B类烟囱筒体几何缺陷折减系数d = 0.50烟囱安全等级: 二级抗震设防烈度: 7度(0.10g)设计地震分组: 第一组建筑场地土类别: Ⅱ类筒壁腐蚀厚度裕度: 2.00mm衬里起始高度: 0.00m设置破风圈: 是2.材料信息序号使用部位材料名称最高使用温度(℃)密度(kg/m3)导热系数l(W/(m·K))1隔热层JM-1001100850.00-----2筒壁钢材Q235(B)2507850.0058.150给定三个温度点下隔热层的导热系数值给定温度(℃)350450550导热系数(W /(m·K))0.2000.2000.240 3.几何尺寸信息烟囱总分段数: 7烟囱筒身分段参数表编号标高(m)烟囱筒壁外直径(mm)分段高度(m)066.002000.00-----160.002000.00 6.00 250.002000.0010.00 340.002000.0010.00 430.004000.0010.00 520.004000.0010.00610.004000.0010.0070.004000.0010.00烟囱总截面数: 18烟囱筒身分节参数表(1)截面编号标高(m)烟囱筒壁外直径(mm)分节高度(m)隔热层厚度(mm)筒壁厚度(mm)材料总厚度(mm)坡度(%)066.002000.00-----100.0010.00110.000.000 160.002000.00 6.000100.0010.00110.000.000 255.002000.00 5.000100.0010.00110.000.000 350.002000.00 5.000100.0010.00110.000.000 445.002000.00 5.000100.0010.00110.000.000540.002000.00 5.000100.0010.00110.000.00010.00 635.003000.00 5.000100.0016.00116.0010.00 730.004000.00 5.000100.0016.00116.000 823.004000.007.000100.0016.00116.000.000 921.004000.00 2.000100.0016.00116.000.000 1020.004000.00 1.000100.0016.00116.000.000 1119.004000.00 1.000100.0016.00116.000.000 1217.004000.00 2.000100.0016.00116.000.000 1315.004000.00 2.000100.0016.00116.000.000 1412.504000.00 2.500100.0016.00116.000.0001510.004000.00 2.500100.0016.00116.000.000 16 5.004000.00 5.000100.0016.00116.000.000 170.004000.00 5.000100.0016.00116.000.000烟囱筒身分节参数表(2)截面编号标高(m)附加重量(kN)附加风载(kN)洞口数量洞口形状洞口宽度(mm)洞口高度(mm)洞口直径(mm)66.00.000.000--------------------160.00.000.000--------------------255.00.000.000--------------------50.030.000.000--------------------45.040.000.000--------------------40.00.000.000--------------------535.060.000.000--------------------30.070.000.000--------------------23.00.000.001圆形----------1000 821.090.000.001圆形----------100020.0100.000.000--------------------19.0110.000.001圆形----------100017.00.000.001圆形----------1000 1215.0130.000.001圆形----------100012.50.000.001圆形----------2000 1410.0150.000.000--------------------16 5.000.000.000--------------------170.000.000.000--------------------钢平台参数表平台编号标高(m)平台宽度(mm)角度(°)活荷载自重均布(kN/m2)总计(kN)均布(kN/m2)总计(kN)113.001000.0060.00 2.00 5.24 1.00 2.62 215.001000.0060.00 2.00 5.24 1.00 2.62 317.001000.0060.00 2.00 5.24 1.00 2.62 419.001000.0060.00 2.00 5.24 1.00 2.62 521.001000.0060.00 2.00 5.24 1.00 2.62 623.001000.0060.00 2.00 5.24 1.00 2.62 746.001000.00360.00 3.5032.99 1.009.42平台荷载折减系数: 1.00是否设置爬梯: 是爬梯自重(沿高度): 5.00(kN/m) 4.烟囱底座设计参数烟囱底板材料: Q235(B)烟囱底板内径D1: 3500.00mm烟囱底板外径D2: 8000.00mm偏心弯矩M e: 0.00kN.m地脚螺栓材料: Q235(B)地脚螺栓数量n: 6地脚螺栓腐蚀裕量c2: 4.0mm地脚螺栓中心线直径D3: 7500mm 筋板材料: Q235(B)筋板高度hj: 600.00mm盖板材料: Q235(B)盖板类型: 环形盖板是否有垫板: 是垫板厚度td: 20mm 垫板宽度L4: 500mm2、计算依据《烟囱设计规范》 GB 50051-2013(以下简称“烟规”)《建筑结构荷载规范》GB 50009-2012(以下简称“荷载规范”)《建筑抗震设计规范》GB 50011-2010(以下简称“抗震规范”)《钢结构设计规范》GB 50017-2003(以下简称“钢结构规范”)《烟囱设计手册》(中国计划出版社, 2014年5月第1版, 以下简称“烟囱手册”)《塔式容器》NB/T 47041-2014《碳素结构钢》GB/T 700-2006《低合金高强度结构钢》GB/T 1591-2008《钢结构设计手册》(第三版)中国建筑工业出版社《钢结构连接节点设计手册》(第二版)中国建筑工业出版社3、筒体自重计算如果存在洞口的话则扣除洞口部位的重量。

烟道阻力损失及烟囱计算

烟道阻力损失及烟囱计算

15.烟道阻力损失及烟囱计算烟囱是工业炉自然排烟的设施,在烟囱根部造成的负压——抽力是能够吸引并排烟的动力。

在上一讲中讲到的喷射器是靠喷射气体的喷射来造成抽力的,而烟囱是靠烟气在大气中的浮力造成抽力的,其抽力的大小主要与烟气温度和烟囱的高度有关。

为了顺利排出烟气,烟囱的抽力必须是足够克服烟气在烟道内流动过程中产生的阻力损失,因此在烟囱计算时首先要确定烟气总的阻力损失的大小。

15.1 烟气的阻力损失烟气在烟道内的流动过程中造成的阻力损失有以下几个方面:摩擦阻力损失、局部阻力损失,此外,还有烟气由上向下流动时需要克服的烟气本身的浮力――几何压头,流动速度由小变大时所消耗的速度头——动压头等。

15.1.1 摩擦阻力损失摩擦阻力损失包括烟气与烟道壁及烟气本身的粘性产生的阻力损失,计算公式如下:t m h dLh λ=(mmH 2O) )1(2h 0204t gw βγ+= (mmH 2O)式中:λ—摩擦系数,砌砖烟道λ=0.05 L —计算段长度,(m ) d —水力学直径)(4m uFd =其中 F —通道断面积(㎡);u —通道断面周长(m );t h —烟气温度t 时的速度头(即动压头)(mmH 2O);0w —标准状态下烟气的平均流速(Nm/s );0γ—标准状态下烟气的重度(㎏/NM 3);β—体积膨胀系数,等于2731; t —烟气的实际温度(℃)15.1.2 局部阻力损失局部阻力损失是由于通道断面有显著变化或改变方向,使气流脱离通道壁形成涡流而引起的能量损失,计算公式如下:)1(202t gw K Kh h t βγ+==(㎜H 2O)式中 K —局部阻力系数,可查表。

15.1.3 几何压头的变化烟气经过竖烟道时就会产生几何压头的变化,下降烟道增加烟气的流动阻力,烟气要克服几何压头,此时几何压头的变化取正值,上升烟道与此相反,几何压头的变化取负值。

几何压头的计算公式如下:)(y k j H h γγ-=(㎜H 2O )式中 H —烟气上升或下降的垂直距离(m ) k γ—大气(即空气)的实际重度 (kg/m 3)y γ—烟气的实际重度(kg/m 3)图15.1 为大气中每米竖烟道的几何压头,曲线是按热空气算出的,烟气重度与空气重度差别不大时,可由图15.1查取几何压头值。

加热炉工艺与传热计算

加热炉工艺与传热计算

• 常用炉管外径: 60,73,89,102,114,127,152,168,193,219,273
• 管心距 • 基本是1.75~2倍管外径
• d辐射段炉膛尺寸
• 炉膛高度=(1.5~2)X火焰高度,但要确保可见火焰高度不超 过辐射段高度的2/3。
• 常用油气联合燃烧器的火焰高度:
燃烧器放热量,106kcal/h 火焰高度,mm
2传热计算
• 内膜 • 气体、液体、气液两相 • 外膜 • 光管、翅片管、钉头管、垢阻、流速
• 烟气质量流速:1~3kg/m2.s。
• 烟气温度与入口介质温差:一般70~80 ℃ ,最低可为 40~50 ℃
• 如果设计的加热炉烧重质燃料油,对流段应装吹灰器。烧 轻质燃料油如石脑油,买方应规定是否加吹灰器。
序号 加热炉名称
1
常减压炉
平均表面热强度, kcal/m2.h
20000~30000
2
焦化炉
25000~30000
3
重整加热炉
20000~28000
4
减粘炉
20000~25000
5
常规重沸炉
22000~30000
• 辐射段平均热强度通常按管心距为两倍炉管公称直 径的单排管单面辐射考虑。如果直接受火焰辐射, 第一排遮蔽管应按辐射管束确定其平均辐射热强度。
• c辐射管管径及管程数
• 根据经验暂选质量流速。(控制指标是压降)
• 管内面积X管程数X质量流速=流量
序号 加热炉名称
1
常、减压炉
2
焦化炉
3
重整加热炉
4
减粘裂解炉
5
重沸炉
管内介质质量流速, kg/m2.s 980~1500 1200~2000 170~240 3000~4000 1200~2000

钢烟囱计算实例

钢烟囱计算实例

食用蚂蚱致过敏性休克13例临床分析摘要】目的:探讨食用蚂蚱引起过敏性休克的临床特点和治疗方法。

方法:回顾分析我院急诊科收治13例食用蚂蚱引起过敏性休克的临床资料。

结果:经过氧疗,应用血管活性药物、抗组织胺药、肾上腺皮质激素,输液及对症治疗,13例全部治愈。

结论:早诊断、及时正确治疗是成功的关键,避免因做辅助检查,转运或搬动患者而贻误抢救时机。

【关键词】蚂蚱;过敏性休克【中图分类号】R7816+7【文献标识码】B【文章编号】1003-5028(2013)10-0241-01油炸蚂蚱作为餐桌上的美味佳肴,深受食客们的喜爱。

但是,可引起部分人过敏反应,甚至过敏性休克而危及生命。

我院急诊科自2008年9月至2012年9月共收治食用蚂蚱导致过敏性休克13例,在此,进行回顾性临床分析,以提高对本病的认识,减少死亡率。

1资料与方法11一般资料:本组共13例,其中男9例,女4例;年龄最小21岁,最大48岁,平均年龄35岁;有过敏史者2例,11例否认有过敏史;均为聚餐时发生。

食用蚂蚱量最少1只,最多6只;首次食用者12例,有食用史1例;出现症状时间最短<1min,最长20min,平均12min;自发病到救治的时间:最短6min,最长65min,平均32min。

12临床表现:本组患者都是在饭店或家中赴宴时,食用油炸蚂蚱后发病的。

出现症状或症状加重,由朋友或家人护送及时来院。

13例患者均不同程度地出现胸闷、心慌、出冷汗、面色苍白或发绀、脉搏细弱或触不到、心率>100次/min、收缩压<80mmHg、脉压<30mmHg的休克表现。

同时出现全身瘙痒10例,荨麻疹及其他皮损9例,血管神经性水肿5例,口唇、舌部及四肢末梢麻木感9例,呼吸困难5例(其中喉头水肿2例),烦躁不安5例,淡漠6例,昏迷2例,头晕9例,晕厥2例,恶心呕吐3例。

13治疗方法:全部病例均平卧,保持呼吸道通畅。

鼻导管或面罩大流量吸氧,立即肌肉注射01%肾上腺素05ml,必要时15~20min后重复一次。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

( ) ΔPI
=
ρa − ρg
Hs
g gc
=
354⎜⎜⎝⎛⎞H
s
ΔPI
=
354
×
⎜⎛ ⎝
1 293

1 660
⎟⎞H ⎠
s
= 0.672H s (mH2O)
ΔPII
=
354⎜⎜⎝⎛
1 Ta
−1 Tf
⎟⎞ ⎟⎠
H
C
=
354
×
⎜⎛ ⎝
1 293

1 843.1
⎟⎞ ⎠
×
3.52
ρ1
=
354 1051
=
0.337
kg
m2
w1
=
mg
3600bLC ρ1
=
22500 3600 × 3.2 × 2.142 × 0.337
=
2.706(m
s)
Δp1
=
ζ1
w12 2
ρ1
=
0.396 ×
2.7062 2
× 0.337
=
0.498(Pa)
(2)烟气流过对流室的压力降
对流室截面积 = 3.2 × 2.142 = 6.854 (m2)
钉头区域外部流通面积:
Aso = [b – (dC + 2l) × 8]·LC = [2.142 – (0.127 + 2 × 0.025) × 8] × 3.2 = 2.323 (m2)
钉头区域内部流通面积:Asi = 3.123 – 2.323 = 0.8 (m2) 钉头间隙: d'p = 2 × 0.016 – 0.012 = 0.02 (m)
---辐射传热与管式加热炉
第十一节 烟囱的设计计算
烟囱作用: 产生抽力,使烟气在加热炉中不断流动,同 时把烟气送到高空排出,以减少地面污染。
一 烟囱的直径
GS↑直径↓投资费用↓ 阻力↑
在自然通风时,取:G = (2.5 ~ 3.5) kg/(m2.s)
Ds =
4
π
×
(2.5
~
mg
3.5)×
3600
=
0.81.8 12
× ⎜⎛ 0.02 ⎟⎞0.2 ⎝ 0.077 ⎠
=
0.042588
[ ( )] Ggo
=
22500
3600 × (2.323 + 0.173178)
=
2.5
kg
m2s
Tf = 843.1 K 查烟气的粘度μg = 0.0478 mPa.s 烟气流过对流室的压力降:
1 烟气由辐Δp射1 =室ζ1至2wg对12c 流ρ1 室的压力降ΔP1 2 烟气通过对流室的压力降ΔP2
烟气通过错排光管管排的压力降
Δp2
=
Tf 2324
G2 max
N
c
⎜⎜⎝⎛
d G p max
μg
⎟⎞−0.2 ⎟⎠
烟气通过错排钉头管管排的压力降
Δp2
=
Tf 2324
Gg2o
N
c
⎜⎜⎝⎛
d ′p′Ggo
烟囱产生的抽力ΔPI
ΔPI =(ρa - ρg)Hs
g gc
=
354( 1 Ta

1 Tm
)
H
s
mmH2O
ρg
=
29 × 22.4
273.15 Tm
=
354 Tm
对流室产生的抽力ΔPⅡ
ΔpII
=
354⎜⎜⎝⎛
1 Ta
−1 Tf
⎟⎞ ⎟⎠
H
c
(二) 压力降的计算
烟气流动的压力降
a. 烟气沿烟道流动的压力降; b. 烟气流过挡板、转弯或截面变化等局部的压力降; c.烟气流过对流室管排的压力降; d.烟气流过空气预热器的压力降(有预热器时)。
解: 1. 烟囱的直径
取烟囱质量流速Gg = 3.5 kg/(m2.s)
Ds =

π Gg
mg × 3600
=
4 × 22500 = 1.51(m)
π × 3.5 × 3600
2. 烟囱和对流室产生的抽力
已知:炉膛高H = 13 m,对流室的高度HC = 3.52 m;辐射室烟气 出口温度T'g = 1051 K,对流室烟气平均温度Tf = 843.1 K,烟囱内烟气 平均温度Tm = 710 – 50 = 660 (K),大气温度Ta = 20 + 273 = 293 K。
每排炉管光管所占截面积 = dCLCnw = 0.127 × 3.2 × 8 = 3.251 (m2)
每排钉头所占截面积
= 2dsl
×
LC d ′p
nw
=
2 × 0.012 × 0.025 2 × 0.016
× 3.2 × 8
=
0.48 (m2)
每排自由流通面积 = 6.854 – 3.251 – 0.48 = 3.123 (m2)
=
2.775(mH2O)
总抽力:ΔP = ΔPI + ΔPII = 0.672Hs + 2.775
3. 总压力降
(1)烟气由辐射室至对流室的压力降
A2 = b × LC = 4 × 2.142 × 3.2 = 0.283
A1 π 4 ⋅ D2 π × 5.5562
查表7-8,ζ1 = 0.396
( ) 烟气进对流室时的密度:
Hs Ds
ws 2gc
ρg
5 烟囱挡板的压力降ΔP5
Δp5
=ζ5
ws2 2gc
ρg
6 烟囱出口的动能损失ΔP6
Δp6
=
ws2 2gc
ρg
(三)烟囱的最低高度Hs
由抽力确定烟囱高度
ΔP1 + ΔPII = ΔP1 + ΔP2 + ΔP3 + ΔP4 + ΔP5 + ΔP6 + 2 决定烟囱高度的其它因素
钉头端间隙: d''p = dC – 2l = 0.127 – 2 × 0.025 = 0.077 (m)
烟气在钉头外部质量流速:
⎜⎛ mg ⎜⎝ 3600Ggo

Aso
⎟⎞1.8 ⎟⎠
=
A1.8 si
Ns
⎜⎜⎝⎛
dp′ dp′′
⎟⎟⎠⎞
0.2
⎜⎛ 22500 ⎜⎝ 3600Ggo

2.323
⎟⎞1.8 ⎟⎠
μg
⎟⎞−0.2 ⎟⎠
由下式计算烟气在钉头外部区域的烟气质量流速Ggo
⎜⎛ mg ⎜⎝ 3600Ggo

Aso
⎟⎞1.8 ⎟⎠
=
A1.8 si
Ns
⎜⎜⎝⎛
dp′ dp′′
⎟⎟⎠⎞
0.2
3 烟气由对流Δp室3 至= ζ烟3 2w囱gs 2c的ρ压g 力降ΔP3
4 烟气在烟囱内的摩擦损失ΔP4
Δp4

mg ——烟气的质量流量:kg/h。
二 烟囱的高度
烟囱高度所形成的抽力用于: 克服烟气流动过程中的总压力降; 克服空气通过燃烧器的压力降; 保证炉膛内具有一定的负压;
最低高度:假定烟囱和对流室所产生的抽力应等于烟气 在加热炉和烟囱内流动的压力降。
(一)抽力的计算
抽力是由于炉内烟气的密度差而产生的。
* 不低于附近的蒸馏塔等设备的顶标高,以避免火灾; * 圆筒炉烟囱的最低高度应能利用烟囱上的炉管吊环吊出
辐射炉管,所以还必须满足由下式计算的最低高度:
* 受航空方面的限制; * 受环境保护方面的限制,必须根据环境保护法规定的要求
计算烟囱高度。
[例7—7]
根据例7—4、7—5及7—6的条件及计算结果,进行烟囱的设计计算。
相关文档
最新文档