传感器标定与校准

合集下载

传感器概述

传感器概述


dy(t ) y(t ) x(t ) dt
1.2 传感器的一般特性
(1)一阶传感器的单位阶跃响应
一阶传感器单位阶跃响应的通式:

dy(t ) y(t ) x(t ) dt
式中 x(t ) 、 (t ) 分别为传感器的输入量和输出 y 量,均是时间的函数,表征传感器的时间常数, 具有时间“秒”的量纲。 一阶传感器的传递函数:
1.1 基本概念
附:传感器组成示意图
敏感元件的输出作 为转换元件的输入
被测量
敏感 元件
转换 元件
转换 电路
电量
直接感受被测量
转化为电量参数
传感器组成示意图
1.1 基本概念
1.1.3 传感器的分类
物质定律如虎克定律 F = k x主要由物 质的性质决定
按工作机理分类 可分为物理型、化学型、生物型 按构成原理又分为:结构型、物性型和复合型三大类 无源传感器 按能量的转换分类 场的定律,如电场、磁场、物质场主 要由其结构参数决定 可分为能量控制型和能量转换型 按输入量分类 有源传感器 常用的有机、光、电和化学等传感器 按输出信号的性质分类 可分为模拟式传感器和数字式传感器
1.2 传感器的一般特性
以动态测温的问题为例说明传感器动态特性。 在被测温度随时间变化或传感器突然插入被测 介质中以及传感器以扫描方式测量某温度场的 温度分布等情况下,都存在动态测温问题,如 图所示:
动态测温
1.2 传感器的一般特性
传感器的种类和形式很多,但它们一般可以 简化为一阶或二阶系统。 高阶可以分解成若干个低阶环节。 对于正弦输入信号,传感器的响应称为频率 响应或稳态响应;对于阶跃输入信号,则称 为传感器的阶跃响应或瞬态响应。

传感器调校制度模版

传感器调校制度模版

传感器调校制度模版一、引言本制度的目的是确保传感器的准确性和可靠性,在调校过程中遵循标准化的程序和方法。

通过实施此制度,旨在提高传感器的精度和性能,保障产品质量和客户满意度。

二、适用范围本制度适用于所有需要进行传感器调校的项目。

所有与传感器调校相关的部门和人员必须遵守本制度。

三、定义1. 传感器调校:对传感器进行校准、调试和配置的过程,以确保其准确性和性能。

2. 校准:通过与已知标准进行比较,调整传感器的输出以减小误差。

3. 调试:对传感器进行设置和配置,以满足特定的工作要求。

四、责任和义务1. 质量部门负责制定和维护传感器调校制度,监督制度的执行和合规性。

2. 技术人员应熟悉传感器调校相关知识和技术,并按照制度要求进行调校工作。

3. 操作人员应按照制度进行传感器调校,并记录调校过程和结果。

五、传感器调校流程1. 调校前准备1.1 检查传感器和相关设备是否完好无损。

1.2 准备标准装置和测试设备。

1.3 根据需要,选择适当的环境条件进行调校。

2. 校准过程2.1 连接传感器和标准装置。

2.2 检查传感器的输出与标准装置的读数是否一致。

2.3 如有差异,按照标准操作步骤进行调整,直至输出与标准装置一致。

2.4 记录校准结果和调整过程。

3. 调试过程3.1 检查传感器的配置和设置是否符合要求。

3.2 根据工作要求,调整传感器的参数和设置。

3.3 检查调试结果和工作状态。

3.4 记录调试结果和设置参数。

六、记录和报告1. 调校和调试过程中,应记录关键步骤、参数和事件。

2. 调校完成后,应撰写调校报告,包括调校结果、校准和调试过程记录等信息。

3. 调校报告应存档并向相关部门提供副本。

七、培训和审核1. 新员工应接受传感器调校相关培训,了解本制度和工作要求。

2. 定期进行内部审核,评估制度的有效性和合规性。

3. 根据需要进行外部审核,确保制度符合相关标准和法规要求。

八、制度更新和修订1. 质量部门应定期评估和更新本制度,确保其与最新的技术和法规保持一致。

压力传感器校准标定流程

压力传感器校准标定流程

压力传感器校准标定流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!压力传感器的校准与标定流程详解在各种工业和科研领域中,压力传感器作为重要的测量设备,其准确性至关重要。

第11章 传感器标定与校准

第11章 传感器标定与校准
标定传感器的精度高一个等级。这样,通过标定确定的
传感器的静态性能指标才是可靠的,所确定的精度才是
可信的。
胥 永 刚
§11.2 传感器静态标定
胥 永 刚
胥永刚制
龙岩学院物理与机电工程学院
3) 静态特性标定的方法
对传感器(或传感系统)进行静态特性标定,首先就 是创造一个静态标准条件,其次是选择与被标定传感器 的精度要求相适应的一定精度等级的标定用仪器设备, 然后按以下步骤进行标定: (1) 将传感器(或传感系统)全量程(测量范围)分成若 干等间距点; (2) 根据传感器量程分点情况,由小到大逐渐一点一 点地输入标准量值,并记录下与各输入值相对应的输出 值;
2 2 A 1 2 n n 2 1 2
arctg2 n
1 n

2
由幅频特性求一阶传 感器时间常数τ
由幅频特性求欠阻尼二阶 传感器的ωn和ζ
胥 永 刚
§12.2 传感器动态标定
胥 永 刚
胥永刚制
龙岩学院物理与机电工程学院
传感器对阶跃压力的响应曲线是输出压力与时间 的关系曲线,所以又称为时域曲线。 若传感器振荡周期Td 是稳定的,而且振荡幅度有 规律地单调减小,则传感器(或测压系统)可以近似 地看成是二阶系统。 根据试验获得的阶跃响应曲线,确定传感器的固 有频率ωn和阻尼比ζ,求得压力传感器的幅频特性和相 频特性分别为
胥 永 刚
§11.3 传感器动态标定
胥 永 刚
胥永刚制
龙岩学院物理与机电工程学院
传感器的动态标定主要是确定传感器的动态响 应,而与动态响应有关的参数,一阶传感器为时间 常数τ,二阶传感器则有固有频率ωn和阻尼比ζ两个 参数。 标准激励信号:

监测传感器调校制度

监测传感器调校制度

监测传感器调校制度是指对于各类监测传感器进行调校、校准、维护和管理的一系列规定和措施的总称。

监测传感器在实际应用中起到了至关重要的作用,由于环境、使用条件和时间的变化,传感器的性能会逐渐发生变化,因此需要对传感器进行定期的调校以保证其测量结果的准确性和可靠性。

本文将从调校制度的目的、具体内容、实施方法和效果评估等方面对监测传感器调校制度进行详细介绍。

一、调校制度的目的1. 确保数据准确性:监测传感器的测量结果直接影响到监测数据的准确性,对于某些关键性参数的监测尤其重要。

通过定期的传感器调校,可以减少传感器误差,提高测量结果的准确性,保证数据的可靠性。

2. 延长传感器寿命:传感器在实际应用中会受到各种因素的影响,如温度、湿度、压力等环境因素,以及使用频率、工作方式等。

定期的传感器调校不仅可以发现和排除传感器中的故障,还可以及时检修和更换老化严重的传感器,延长其使用寿命,提高设备的可用性。

3. 优化监测系统性能:监测系统通常由多个传感器组成,传感器之间存在着相互作用和配合问题。

通过传感器调校可以发现和排除传感器之间的不匹配问题,提高监测系统的整体性能,确保监测系统的稳定和可靠性。

4. 提高质量管理水平:传感器调校是一项技术活动,通过制定和实施调校制度,可以规范传感器调校的流程和方法,提高工作的规范性和一致性,从而提高传感器调校和管理的质量水平。

二、调校制度的具体内容1. 调校周期和方法:制定传感器调校的周期和方法,根据传感器的特点和使用情况,确定合理的调校周期和调校方法。

一般情况下,传感器的调校周期为一年一次,重要参数的调校周期为半年一次。

2. 调校流程和程序:制定传感器调校的流程和程序,明确调校的步骤和要求。

具体包括:准备工作、传感器状态检查、传感器调校操作、测量数据记录、调校结果评估等。

3. 调校记录和归档:记录传感器调校的各项数据和结果,包括调校时间、调校人员、调校操作、测量数据、调校结果等内容。

压力传感器标定与校准

压力传感器标定与校准

压力传感器检定:1.静态检定2.动态检定我们把压力传感器的特性分成两类静态特性和动态特性;压力传感器静态特性的主要指标是灵敏度、线性度、迟滞、重复性、精度、温度漂移和零点漂移等等;一般我们校准压力传感器都是校准其静态特性,这是因为我们将压力传感器理想化,认为其固有频率相当大而且本身无阻尼,这时压力传感器的静态特性和动态特性是一样的;然而在被测压力随时间变化的情况下,压力传感器的输出能否追随输入压力的快速变化是一个很重要的问题;有的压力传感器尽管其静态特性非常好,但由于不能很好地追随输入压力的快速变化而导致严重的误差,有时甚至出现高达百分之百的动态误差;所以我们必须要进行压力传感器动态特性的校准,认真分析其动态响应特性;压力传感器动态特性可以用它的上升时间、固有频率、幅频特性、相频特性等参数来描述;迟滞e H:正行程与反行程之间的曲线的不重合度;线性度e L非线性误差:输入输出校准曲线实际与选定的拟合直线之间的吻合程度;重复性e R:正行程或反行程曲线多次测量时曲线的一致程度;置信系数a=2%或a=3%贝塞尔公式线性度、迟滞反映系统误差;重复性反映偶然误差;误差三者反应系统总误差e S:e S=或根据检定规程一压力传感器静态,在校准精密线性压力传感器时给出的校准曲线有二种最小二乘直线和端点平移线;动态检定:1.瞬态激励法阶跃信号激励2.正弦激励法正弦信号激励动态检定指标、参数:频率响应、谐振频率、自振频率、阻尼比、上升时间、建立时间、过冲量、灵敏度;正弦激励法:正弦压力信号输入法是一种间接的检定方法,即被检定的压力传感器和一个“参考”压力传感器相比较,而“参考”压力传感器具有理想的动态性能;正弦压力激励法在高频、高压时,正弦信号往往严重畸变;因此一般只能用于小压力或低频范围的检定;图1 正弦压力标定与校准原理正弦激励法可以采用数字压力表和相位计可以分别测量正弦信号的幅值和相位,测得标准压力传感器测量得到的正弦压力幅值A等于标准压力传感器响应电压幅值与标准压力传感器幅值灵敏度的乘积和相位ɵ1 ,以及被检定压力传感器响应正弦信号的幅值B和相位ɵ2 ,幅值灵敏度=,相移=ɵ2 -ɵ1;瞬态激励法:一般采用瞬变函数激励信号,这时就要用激波管来产生激波;瞬态压力信号输入法利用阶跃波和其它非周期的脉冲信号作输入,目前运用得比较成功的是阶跃波输入法;根据被标定的压力传感器的阶跃响应,再用解析的方法计算其动态特性,此方法不需要动态性能己知的参考压力传感器,所以它是一种直接的标定方法;激波管动态压力标准采用阶跃压力对压力传感器进行检定,他可以产生上升时间为纳秒级别的阶跃压力;图2 激波管动态压力传感器检定原理频率响应:由正弦压力激励下的稳态响应特性,由幅频特性与相频特性组成;幅频特性指正弦压力激励下,输出量与被测量振幅之比与频率的关系;相频特性指输出量与被测量相差随频率变化的关系;谐振频率:压力传感器具有最大幅值响应时的激励信号的频率;自振频率振铃频率w d:阶跃信号激励当被测量为阶跃变化时,在传感器输出中瞬时出现的自由振堂频率;w d ;过冲量δ:阶跃信号激励对传感器施加节约压力信号激励后,其响应中超出终值部分的最大值与阶跃响应幅度之比δ图3阻尼比:实际阻尼系数与临界阻尼系数之比为阻尼比;上升时间t r:压力传感器被阶跃压力激励时,其响应值从阶跃响应幅度的10%过渡到90%所需的时间如图1;建立时间t s:压力传感器被阶跃压力激励时,其响应从阶跃响应幅度的10%时刻起至与终值只差进入阶跃响应幅度的±5%范围内时刻止所需的时间如图1;图4灵敏度K s:压力传感器响应变化量与激励变化量之比;K s =;为阶跃压力值;图5延时时间t s:输入阶跃压力作用到传感器到传感器有信号输出时的时间差;图6表1为压力传感器计量性能要求:表2为正弦压力标准的性能指标:表3为激波管动态压力标准参考文献:1.林俊阳.压力传感器的动态特性测试方法研究.厦门大学2.张大有.激波管在压力传感器动态性能校准和实验上的应用.宇航计测技术3.JJG 624-2005 动态压力传感器检定规程4.张近等.压力测量系统的激波管动态校准.传感器技术5.王刚等.压力传感器校准和测控系统研究.四川大学。

传感器第一章

传感器第一章

第一章练习题第一节:机电一体化系统常用传感器知识点一:传感器的定义、组成和功能。

(第一节)1、传感器一般有敏感元件、转换元件和三部分组成。

(200914)2、传感器的组成部分中,直接感受被测物理量的是_____________。

(200502)A、转换元件B、敏感元件C、转换电路D、放大元件3、传感器中直接感受被测量的部分是()(200803)A.转换元件B.敏感元件C.转换电路D.调理电路4、传感器的主要功能是()。

(200901)A传递信息 B感受被测量 C分析、处理信号 D执行要求的操作知识点二:传感器的分类。

(第一节及表1-1)(一)按被测量对象分类:1、下面传感器中属于非接触式传感器的是()。

A.触觉传感器 B.滑动觉传感器 C.压触觉传感器 D.视觉传感器(二)按工作机理分类:2、利用光电效应的传感器属于_____________。

(200302)A、电阻型B、结构型C、物性型D、电感型(三)按被测物理量分类:3、下列被测物理量适合于使用红外传感器进行测量的是:_____________。

(200101)A、压力B、力矩C、温度D、厚度4、适合于使用红外传感器进行测量的被测物理量是 _____________。

(200703)A、转度B、温度C、厚度D、加速度(四)按工作原理分类:5、按照工作原理分类,固体图象式传感器属于_____________。

(200103)A、光电式传感器B、电容式传感器C、压电式传感器D、磁电式传感器(五)按传感器能量源分类:6、无源型传感器又称为_____________转换型传感器。

(200314)7、按传感器能量源分类,以下传感器不属于能量转换型的是_____________。

(200603)A、压电式传感器B、热电式传感器C、光电式传感器D、压阻式传感器(六)按输出信号的性质分类:8、按输出信号的性质可将传感器分为、、。

第三节:传感器与检测系统基本特性的评价指标与选用原则。

传感器标校检定制度

传感器标校检定制度

传感器标校检定制度传感器标校检定制度是指对传感器进行定期标定和检定的一项管理制度。

传感器是一种将物理量转换成电信号的装置,广泛应用于工业自动化控制、仪器仪表、环境监测等领域。

准确可靠的传感器是保障生产和科学研究质量的基础,而标校检定制度是确保传感器正常工作和性能可靠的重要手段。

传感器标校检定制度的目的是通过对传感器进行标定和检定,确保其测量结果的准确性和可靠性。

标定是将传感器的输出信号与标准值进行比对,以确定其测量误差;检定是通过对传感器的各项性能指标进行测试和评估,判断其是否达到规定要求。

1.标校检定计划:确定标校检定的对象、时间和频率。

传感器的工作环境和使用条件不同,标校检定的要求也会有所差异。

计划应根据传感器使用情况、技术要求和法律规定等因素进行合理安排。

2.标准装置与标准物件的选择:标准装置和标准物件是进行传感器标定和检定的基础。

标准装置应具备高精度、稳定性好和可追溯性等特点,以保证标定结果的准确性和可靠性。

3.标校检定方法:标校检定方法是进行传感器标定和检定的技术依据。

传感器的类型和工作原理不同,标校检定方法也会有所差异。

常见的标校检定方法包括零点校准、量程校准、线性度校准、灵敏度校准等。

4.标校检定记录:标校检定记录是记录传感器标定和检定过程和结果的文件。

记录应包括传感器的型号、编号、标定和检定日期、标定值、测量误差、检定结论等信息。

标校检定记录应保存完整,并按要求进行归档和管理。

5.标校检定结果的评定:对于标校检定结果,应进行评定和分级。

评定应根据标定结果和测量误差,以及传感器的技术要求和标准规定等因素进行综合考虑,确定传感器的使用状态和性能可靠性,为用户提供合理的参考依据。

传感器标校检定制度的实施可以有效提高传感器的测量精度和可靠性,减少误差和风险。

这有助于保证生产过程的稳定性和一致性,提高产品的质量和效率。

此外,标校检定制度还有利于科学研究的开展和环境监测的准确性,为社会和经济的可持续发展提供有力支撑。

传感器标定

传感器标定

4. 动态标定
传感器的动态标定就是通过实验得到传感器动态性 能指标,确定方法常常因传感器的形式(如电的、机械 的、气动的等)不同而不完全一样,但从原理上一般可 分为阶跃信号响应法、正弦信号响应法、随机信号响应 法和脉冲信号响应法等。 (1)阶跃信号响应法 1)一阶传感器时间常数τ的确定 输入x是幅值为A的阶跃函数时,由一阶传感器的微 分方程可得: t − e y(t) = kA[1- τ ]
2.压电式压力传感器的静态标定
压电式压力传感器的静态标定可在活塞式压力计上进行。 传感器安装在静重式标准活塞压力计的接头上,传感器配接由静 态标准电荷放大器和显示记录设备(可选用数字式峰值电压表、 光线示波器、笔录仪、磁带记录仪等)组成的标准测量系统。
3.热电阻的静态标定
标定步骤:用标准温度计测出恒温箱温度,将被测热电阻置 于恒温箱中,被测热电阻串联标准电阻Rs、可调电位器电压表和 毫安表,调节可调电位器使被测系统回路电流控制在4mA。先将 切换开关置标准电阻Rs一侧,读取电位差计示值Us,再转置被测 电阻端读出电位
(1)振动标定设备 1)电动式中、低频激振器
中频激振器工作的频率范围 为5~7.5kHz,一般采用电动式 激振器作为中频标定用振动台。 图1.18所示为电动式激振器 结构示意图,驱动线圈7固装在 顶杆4上,并由支承弹簧1支承 在壳体2中,线圈7正好位于磁 极5与铁心6的气隙中。磁钢3、磁极5、铁心6和气隙构成磁回路, 当线圈7通以经功率放大的交变电流时,它在气隙的磁场中受力, 该力通过顶杆4传到试件8上便是激振力。
3. 静态标定
确定传感器静态指标,主要是线性度、灵敏度、 迟滞和重复性。传感器的静态特性是在静态标准条 件下进行标定的,主要用于检验、测试其静态特性 指标。静态标准条件主要包括没有加速度、振动、 冲击(除参数本身是被测量)及环境温度(一般为 室温20℃±5℃)、相对湿度不大于85%、气压为 (101±7)kPa等条件。 一般的静态标定包括如下步骤: (1)将传感器全量程(测量范围)分成若干等间 距点。

传感器校准标定台用途

传感器校准标定台用途

传感器校准标定台用途传感器校准标定台,这家伙听起来挺高大上的,但实际上啊,它就是咱们工业界、科研圈里的一个“超级英雄”,默默无闻地干着保证数据准确的活儿。

要说它的用途啊,那可真是多了去了,简直就是一把“万能钥匙”,哪儿需要准确测量,哪儿就有它的身影。

咱们先说说工业生产线吧。

你知道吗,在那些全自动化的车间里,机器人们可是不分昼夜地忙碌着,组装零件、检测质量,全靠传感器来传递信息。

可传感器这玩意儿,用久了就像咱们人一样,偶尔会“打个盹儿”,数据就不那么准了。

这时候,校准标定台就派上大用场了,它就像个“体检医生”,定期对传感器进行检查和校准,确保它们给出的每一个数据都是准确无误的。

这样一来,生产线上的产品质量就有了保障,咱们消费者也能买到更放心的产品了。

再来说说科研领域吧。

科学家们天天跟各种高精尖的设备打交道,做实验、搞研究,哪个环节都离不开数据的支持。

而传感器,就是他们获取数据的重要工具。

不过,科学研究讲究的是严谨和精确,一点点误差都可能导致整个实验结果偏离轨道。

所以,校准标定台在这里就显得尤为重要了。

它就像是科研人员的“得力助手”,帮助他们把传感器调整到最佳状态,确保实验数据的准确性和可靠性。

这样一来,科学家们就能更加准确地揭示自然规律,推动科技的进步和发展了。

还有啊,像环境监测、航空航天、智能交通这些领域,也都离不开传感器校准标定台的帮助。

你想啊,要是空气质量监测仪的数据不准确,咱们怎么知道空气好不好呢?要是飞机的导航系统出了偏差,那后果可就不堪设想了。

所以,这些关键领域的传感器,更是需要定期校准和标定的,以确保它们的稳定性和可靠性。

其实啊,传感器校准标定台的作用还不止这些呢。

它就像是一个“守护者”,默默守护着咱们生活中的方方面面。

无论是家里的智能电表、水表,还是医院的医疗设备,都离不开它的保驾护航。

它用自己的方式,确保着这个世界的正常运行和我们的生活质量。

所以啊,别看传感器校准标定台平时不怎么起眼,但它可是咱们现代社会中不可或缺的一员。

传感器的标定与校准

传感器的标定与校准

标定与校准的概念新研制或生产的传感器需要对其技术性能进行全面的检定,以确定其基本的静、动态特性,包括灵敏度、重复性、非线性、迟滞、精度及固有频率等。

例如,对于一个压电式压力传感器,在受力后将输出电荷信号,即压力信号经传感器转换为电荷信号。

但是,究竟多大压力能使传感器产生多少电荷呢?换句话说,我们测出了一定大小的电荷信号,但它所表示的加在传感器上的压力是多大呢?这个问题只靠传感器本身是无法确定的,必须依靠专用的标准设备来确定传感器的输入――输出转换关系,这个过程就称为标定。

简单地说,利用标准器具对传感器进行标度的过程称为标定.具体到压电式压力传感器来说,我们用专用的标定设备,如活塞式压力计,产生一个大小已知的标准力,作用在传感器上,传感器将输出一个相应的电荷信号,这时,再用精度已知的标准检测设备测量这个电荷信号,得到电荷信号的大小,由此得到一组输入――输出关系,这样的一系列过程就是对压电式压力传感器的标定过程,如图1-19所示。

图1—19 压电式压力传感器输入――输出关系校准在某种程度上说也是一种标定,它是指传感器在经过一段时间储存或使用后,需要对其进行复测,以检测传感器的基本性能是否发生变化,判断它是否可以继续使用。

因此,校准是指传感器在使用中或存储后进行的性能复测。

在校准过程中,传感器的某些指标发生了变化,应对其进行修正.标定与校准在本质上是相同的,校准实际上就是再次的标定,因此,下面都以标定为例作介绍。

1.7.2 标定的基本方法标定的基本方法是,利用标准设备产生已知的非电量(如标准力、位移、压力等),作为输入量输入到待标定的传感器,然后将得到的传感器的输出量与输入的标准量作比较,从而得到一系列的标定数据或曲线.例如,上述的压电式压力传感器,利用标准设备产生已知大小的标准压力,输入传感器后,得到相应的输出信号,这样就可以得到其标定曲线,根据标定曲线确定拟合直线,可作为测量的依据,如图1-20所示.有时,输入的标准量是由标准传感器检测而得到的,这时的标定实质上是待标定传感器与标准传感器之间的比较,如图1-21所示。

气体传感器校准方法

气体传感器校准方法

气体传感器校准方法1、气体传感器校准的意义随着人们对生活品质要求的不断提高,气体传感器在各种场合得到了广泛应用,如环保检测、医疗诊断、工业控制等领域。

然而,对于任何一款传感器,除了要有高灵敏度、低功率消耗、小尺寸等“硬件指标”,还必须保证其稳定性和准确性,才能保证实际应用中的可靠性。

而这就要求在购买后,对气体传感器进行一定的校准,以检验其准确度是否达到标准。

因此,气体传感器的校准显得尤为重要。

2、气体传感器校准的分类气体传感器校准的方法一般分为以下两种:*零点校准:在气体传感器空气中不含目标气体时,将输出信号调整为设定的零点值,即校准传感器在无气体情况下的输出值。

*标定校准:根据目标气体的浓度进行校准,以确保传感器输出浓度与实际浓度之间的误差极小。

实际应用中,针对不同的气体传感器类型和所用场景,可能会采用不同的校准方式。

3、气体传感器校准的步骤*第一步:检查设备的基本状况。

在校准传感器之前,应确保设备的工作状态、环境温度等基本参数在正常范围内,以保证校准结果的准确性。

*第二步:进行零点校准。

将传感器置于室内空气中,调整传感器信号输出值为零,并将零点值记录下来。

*第三步:进行标定校准。

使用标准气体浓度标定器与传感器联通,并通过标定器设置预定的气体浓度,记录传感器的输出值。

*第四步:校准后的数据处理。

计算传感器输出值与标定浓度之间的误差,进行数据处理,校准传感器输出结果。

如果误差较大,需要重新进行校准,直到满足精度要求。

4、气体传感器校准的注意事项*气体传感器的校准一般需要专门的设备,因此应在专业人员的指导下操作,以免造成损失。

*校准的间隔时间一般视传感器类型和应用场景而定,但通常不建议超过6个月,以确保传感器准确度的可靠性。

*在数量可行的情况下,应当保证每台传感器在校准前后的应用环境尽可能恒定,以避免参数变化对校准误差的影响。

*校准过程中,应避免光线、电磁波等外界干扰对传感器输出信号的影响,同时应严格遵守安全操作规程,确保操作人员的人身安全。

氧气传感器标校方法

氧气传感器标校方法

氧气传感器标校方法
氧气传感器标校方法如下:
1. 准备标准氧气气瓶和标定仪器,保证标准氧气气瓶的纯度符合要求。

2. 将氧气传感器连接到标定仪器上,并将标定仪器与标准氧气气瓶连接。

3. 打开标准氧气气瓶,使氧气流入传感器,并等待一段时间,直到传感器稳定。

4. 记录传感器输出的电压或电流值,并与标准氧气气瓶的氧气浓度进行比较,计算出传感器的误差。

5. 根据误差值,调整传感器的校准参数,使其输出值与标准氧气气瓶的氧气浓度相匹配。

6. 重复以上步骤,直到传感器的误差达到最小值,标定完成。

7. 标定完成后,将传感器与标定仪器断开连接,并将传感器安装到实际使用的设备中进行测试。

如何评估传感器的性能

如何评估传感器的性能

如何评估传感器的性能传感器是工业和科技领域中的一项重要技术。

传感器可以测量物理量,例如温度、压力、湿度、流量、反射率、距离等等。

传感器的性能决定了它在应用中的可靠性和精确度。

因此,评估传感器的性能是非常重要的。

本文将介绍评估传感器性能的方法和技术。

评估传感器性能的参数可以分为精确度、线性度、响应时间、稳定性和灵敏度等。

其中,最重要的参数可能是精度和灵敏度。

精度是指传感器的输出值与真实值之间的误差。

通常,精度的评估需要进行校准或测试。

例如,在温度传感器中,我们可以将传感器放入不同温度的环境中,然后记录其输出值,以此来评估其精度。

线性度是指传感器的输出与测量量之间的比例关系。

换句话说,线性度能够反映传感器的输出是否与输入成线性关系。

如果传感器的输出不是线性的,则需要进行线性校准。

响应时间是指传感器从接收到输入信号到产生输出的时间。

响应时间非常重要,因为在某些应用中,需要实时准确的测量。

例如,在质量控制中,需要传感器即时响应以保证产品质量。

稳定性是指传感器输出的长期变化,通常以时间为自变量。

在某些实时监测应用中,稳定性问题可能导致错误的结果。

通常,需要对传感器稳定性进行周期性测试。

灵敏度是指传感器响应的最小输入量。

在检测弱信号或小变化的应用中,灵敏度非常重要。

评估传感器性能的方法下面是一些评估传感器性能的方法和技术。

1.标准测试标准测试是评估传感器性能的最常用方法。

标准测试通常是在标准条件下进行的,以确定传感器在不同条件下的精度、灵敏度、线性度和响应时间等参数。

标准测试需要有标准的测试装置和标准条件。

在实际应用中,标准测试可以确定传感器的性能并进行标定和校准。

2.工程实验在工程实验中,我们可以模拟实际应用情况,评估传感器在不同条件下的性能。

例如,在汽车制造中,可以使用不同的路况、速度和温度来评估传感器的性能。

3.模拟仿真在模拟仿真中,可以使用计算机程序模拟传感器的行为,评估其性能。

模拟仿真可以更好地了解传感器的行为,并进行可靠性分析。

传感器动态校准方法

传感器动态校准方法

传感器动态校准方法传感器的动态校准是一个复杂的过程,涉及到多个学科的知识,包括物理学、力学、数学等。

以下是几种常见的动态校准方法:1. 正弦力法:被校力传感器安装在电磁振动台上,质量块连接在力传感器上。

正弦力标准装置是采用五个加速度传感器测试质量块顶面加速度。

各模块同步工作,同时进行数据处理,获得校准结果。

2. 冲击力法:力传感器信号和加速度传感器信号都被程控标定仪采集后转换为数字信号。

在动态力传感器量程范围内选,用冲击力标准装置对动态力传感器进行校准。

对于选择的每个测量点,在冲击力标准装置的同一高度,连续冲击3次。

各模块同步工作,同时进行数据处理,获得校准结果。

3. 在线测量和自适应算法:这种方法需要在称重传感器的安装和固定后进行初始校准。

这一步骤可以通过施加已知质量的物体来进行。

将已知质量的物体放置在称重传感器上,记录下称重传感器输出的数值。

根据已知质量和传感器输出的数值,可以计算出校准系数。

校准系数可以用于将传感器的输出值转化为真实物体的重量。

在实际使用过程中,动态校准方法需要进行在线测量。

在线测量是指在物体称重的同时,对称重传感器的输出值进行实时监测和记录。

这可以通过连接称重传感器和数据采集系统来实现。

数据采集系统可以记录下称重传感器的输出值,并将其与已知质量的物体进行对比。

通过在线测量,可以得到称重传感器输出值和真实物体重量之间的差异。

这种差异可以被视为误差,需要通过自适应算法进行修正。

自适应算法可以根据测量误差的大小和方向来调整称重传感器的校准系数。

以上方法仅供参考,如有需要,建议查阅传感器动态校准方面的文献或咨询相关领域的专家学者,获取更全面准确的信息。

传感器的标定与校准讲义

传感器的标定与校准讲义
测量误差有绝对误差和相对误差之分。 (1)绝对误差
绝对误差在理论上是指测量值x与被测量的真值xi之间的 差值,即
=xxi=xx0 (真值xi一般用相对真值x0代替) 绝对误差是可正可负的,而不是误差的绝对值;绝对误 差还有量纲,它的单位与被测量的单位相同。
12.1 测量误差基本概念
测量误差的分类:
●标准活塞压力计标定装置,如图14-7所示;压力标定 曲线如图14-8所示。
图14-7 活塞压力计标定压力示意图
图4-8 压力标定曲线
12.4 压力传感器的标定和校准
●杠杆式测力计标定装置,如图14-9所示,砝码重量与 压力的关系
W=pSb/a p=Wa/Sb
图14-9 杠杆式压力标定机示意图
12.4 压力传感器的标定和校准
静态标定—标定静态特性:灵敏度,线性度,
传感器的标定
精度…;
动态标定—动态特性参数(;n,)测试; 动态标定信号:阶跃信号或正弦信号。
传感器的标定与校准的目的:保正测量的准确、统一和法
制性。
12.1 测量误差基本概念
12.1.1 测量与测量误差
1.测量 “测量是以确定量值为目的的一种操作”。这种“操作” 就是测量中的比较过程——将被测参数与其相应的测量单 位进行比较的过程。实现比较的工具就是测量仪器仪表 (简称仪表)。 检测是意义更为广泛的测量,它包含测量和检验的双 重含义。工程参数检测就是用专门的技术工具(仪表), 依靠能量的变换、实验和计算找到被测量的值。一个完整 检测过程应包括:
12.3 传感器的动态特性标定
二、二阶传感器的动态标定
确定传感器的阻尼比和固有频率 n 。 欠阻尼二阶传感器的阶跃响应(如图14-3)
y(t) k 1

传感器的标定与校准讲义课件

传感器的标定与校准讲义课件

要点二
位移传感器的校准
校准的目的是确保位移传感器在长时间内保持其准确性。 这包括检查传感器的线性度、重复性和可靠性等性能指标 。如果传感器读数与标准位移存在偏差,需要进行调整或 更换。
其他类型传感器的标定与校准
• 其他类型的传感器,如加速度传感器、陀螺仪和磁力计等,也 需要进行类似的标定和校准过程。这些传感器通常用于测量运 动和方向,并在许多应用中发挥着关键作用,如导航、运动检 测和游戏开发等。在进行标定和校准时,需要使用已知的标准 源来检查传感器的性能,并确保其在各种工作条件下都能提供 准确和可靠的数据。
读数,可以确定传感器的误差和精度。
温度传感器的校准
校准温度传感器是为了确保其在各种环境和工作条件下都能提供准确的温度读数。这包 括检查传感器的线性度、重复性和迟滞性等性能指标。如果传感器读数与标准温度源存
在偏差,需要进行调整或更换。
位移传感器的标定与校准
要点一
位移传感器的标定
位移传感器的标定涉及到使用已知位移的参考物来检查传 感器的输出。这个过程通常在多个位移点上进行,以覆盖 传感器的工作范围。通过比较标准位移和传感器的实际读 数,可以确定传感器的误差和精度。
延长传感器寿命
通过定期的标定与校准, 可以及时发现并解决传感 器潜伏的问题,从而延长 其使用寿命。
标定与校准的流程
性能测试
对传感器的各项性能指标进行 测试,如线性度、重复性、灵 敏度等。
结果评估
根据测试结果评估传感器的性 能,判断是否符合要求。
准备工作
选择合适的标准设备、搭建标 定与校准环境、准备相关资料 等。
其他误差来源包括电源噪声、电磁干扰等。
详细描述
除了上述常见的误差来源外,电源噪声和电 磁干扰也可能对传感器输出造成影响。为了 减小这些误差,可以采取相应的措施来抑制 电源噪声和电磁干扰,例如使用滤波器、屏 蔽电缆等。同时,在传感器设计和制造过程 中也应充分考虑这些因素的影响,以提高传 感器的性能和稳定性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传感器标定与校准
14.1 测量误差基本概念
仪表精度等级a(去掉仪表误差的“”号和“%”)
a=0.005,0.01,0.02,0.05;0.1, 0.2, ( 0.4),0.5;
Ⅰ级标准表
Ⅱ级标准表
1.0,1.5, 2.5,(4.0);等 工业用表
仪表的基本误差:
max=仪表量程a%
传感器标定与校准
=xxi=xx0 (真值xi一般用相对真值x0代替) 绝对误差是可正可负的,而不是误差的绝对值;绝对误 差还有量纲,它的单位与被测量的单位相同。
传感器标定与校准
14.1 测量误差基本概念
测量误差的分类:
根据引起误差的原因和误差的性质,测量误差可分为 三类:
系统误差,具有确定性,决定测量的准确度,可以进 行修正;
14.1 测量误差基本概念
3.仪表变差(升降变差)
升降变差(又称回程误差或示值变差),是指在相同条件 下,使用同一仪表对某一参数进行正、反行程测量时,对应于 同一测量值所得的仪表示值不等,正、反行程示值之差的绝对 值称为升降变差,即
(升降)变差=正行程示值反行程示值
仪表变差也用最大引用误差表示,即
传感器标定与校准
14.1 测量误差基本概念
2.测量范围和量程
测量范围: 指“测量仪器的误差处在规定极限内的一组 被测量的值”。
量程: 指测量范围的上限值和下限值的代数差。 例如:测量范围为0~100℃时,量程为100℃;
测量范围为20~100℃时,量程为80℃; 测量范围为20~100℃时,量程为120℃。
此精度介于0.5级和1.0级之间,若选择精度等级为1.0级的传 感器,其允许最大绝对误差为10℃,这就超过了工艺要求的 允许误差,故应选择0.5级的精度才能满足工艺要求。
正行程测 反量 行值 程测量值
变 差
量程
ma x10% 0
必须注意,仪表的变差不能超出仪 表的允许误差(或基本误差)。
传感器标定与校准
图14-1 测量仪表的变差
14.1 测量误差基本概念
例14-1 某压力传感器的测量范围为0~10MPa,校验该传感 器时得到的最大绝对误差为0.08MPa,试确定该传感器的精 度等级。
传感器标定与校准
14.1 测量误差基本概念
3.精确度(简称精度)
仪表误差: (仪表)引用误差:
引仪 表量 1程 0% 0
仪表的准确度用仪表的最大引用误差max(即仪表的最大 允许误差允)来表示,即
max量 ma程 x10% 0 式中,max—仪表在测量范围内的最大绝对误差;
仪表误差整体上评价仪表在其测量范围内测量的好坏。
解:该传感器的精度为:
m a量 xm a1 x 程 % 0 1 0 0 .0 0 0 8 1% 0 0 0 .8 %
由于国家规定的精度等级中没有0.8级仪表,而该传感器的 精度又超过了0.5级仪表的允许误差,所以,这只传感器的精 度等级应定为1.0级。
根据仪表校验数据来确定仪表精度等级时,仪表的精度等级 值应选不小于由校验结果所计算的精度值
14.1 测量误差基本概念
14.1.2 仪表误差
1 .仪表误差术语
①测量仪表的示值误差
=仪表示值x-真实值xi =xx0(xi用约定真值x0来代替 ) 相对示值误差
相对
x0
100%
②测量仪表的最大允许误差 定义是“对给定的测量仪
表,规范、规程等所允许的误差极限值”。有时也称为测
量仪表的允许误差限,或简称允许误差(允)。
传感器标定与校准
14.1 测量误差基本概念
2. 测量误差
检测仪表获得的测量值与被测变量的真实值之间存在一定 的差异,这一差异称为测量误差。
误差公理—实验结果都具有误差,误差自始至终存在于 一切科学实验的过程之中。
测量误差有绝对误差和相对误差之分。 (1)绝对误差
绝对误差在理论上是指测量值x与被测量的真值xi之间的 差值,即
传感器标定与校准

14.1 测量误差基本概念
例14-2 某测温传感器的测量范围为0~1000℃,根据工艺要 求,温度指示值的误差不允许超过7℃,试问应如何选择传感 器的精度等级才能满足以上要求?
解:根据工艺要求,传感器的精度应满足:
m a量 x m a1 x 程 % 0 1 0 0 7 0 0 10 % 0 0 0 .7 %
传感器标定与校准
14.1 测量误差基本概念
③测量仪表的固有误差 常称为测量仪表的基本误差。 定义是“在参考条件下确定的测量仪表的误差”。此参考
条 件也称为标准条件,是指为测量仪表的性能试验或为测量 结果的相互比较而规定的使用条件,一般包括作用于测量 仪表的各影响量的参考值或参考范围。
④附加误差 附加误差是指测量仪表在非标准条件时所 增加的误差,它是由于影响量存在和变化而引起的,如温 度附加误差、压力附加误差等等。
静态标定—标定静态特性:灵敏度,线性度,
传感器的标定
精度…;
动态标定—动态特性参数(;n,)测试; 动态标定信号:阶跃信号或正弦信号。
传感器的标定与校准的目的:保正测量的准确、统一和法
制性。
传感器标定与校准
14.1 测量误差基本概念
14.1.1 测量与测量误差
1.测量 “测量是以确定量值为目的的一种操作”。这种“操作” 就是测量中的比较过程——将被测参数与其相应的测量单 位进行比较的过程。实现比较的工具就是测量仪器仪表 (简称仪表)。 检测是意义更为广泛的测量,它包含测量和检验的双 重含义。工程参数检测就是用专门的技术工具(仪表), 依靠能量的变换、实验和计算找到被测量的值。一个完整 检测过程应包括: 信息的获取—传感器(一次仪表); 信号的调理—变送器(二次仪表) ; 信号的显示与记录—显示、记录仪(二次仪表) 。
第14章 传感器的标定与校准
传感器的标定与校准:通过试验,建立传感器的输出-输
入特性及其误差关系。
传感器的标定与校准方法:标准设备产生已知非电量—
输入量,测试被标定传感器相应的输出量,并与输入量比较,
作出标定图表。
传感器的标定系统:被测非电量的标准发生器与标准测
试系统;待标传感器与配接的信号调理和显示、记录器等。
随机误差,具有偶然性,决定测量的精密度,利用误 差理论进行处理;
粗大误差,是错误,应剔除。
传感器标定与校准
14.1 测量误差基本概念
(2)相对误差
实际相对误差:

xi
100%
标称相对误差(或示值相对误差)

x0
1
00%
测量误差是对某一次具体测量好坏的评价。
(14-3) (14-4)
传感器标定与校准
相关文档
最新文档