旋转机械常见故障总结

合集下载

旋转机械故障诊断

旋转机械故障诊断

旋转机械故障诊断
旋转机械故障诊断主要是通过观察和分析机械运行过程中
的异常现象来判断故障原因。

以下是一些常见的旋转机械
故障诊断方法:
1. 震动分析:通过测量机械运行时的振动幅值和频率,分
析振动的特点和变化趋势,判断故障位置和类型。

常见的
故障类型包括不平衡、轴承损坏和轴承松动等。

2. 温度监测:通过测量机械的各个部件的温度,判断是否
存在过热的情况。

过高的温度可能是由于摩擦、润滑不良
或散热不良等原因引起的故障。

3. 声音分析:通过对机械工作过程中产生的声音进行分析,判断是否存在异响或噪音。

噪音可以是由于轴承损坏、齿
轮磨损或螺栓松动等引起的。

4. 润滑油分析:通过对机械润滑油的化学成分和物理性质
进行分析,判断是否存在金属粉末、水分或杂质等异常。

这些异常可能是由于零件磨损或润滑油质量不佳引起的故障。

5. 可视检查:通过对机械各个部件的外观进行检查,观察
是否存在磨损、裂纹或松动等现象。

这可以帮助诊断轴承、齿轮和联接件等部件的故障。

以上是常见的旋转机械故障诊断方法,诊断时可以结合多
种方法综合分析,准确判断和定位故障原因,以便及时进
行修复或更换有问题的部件。

5 旋转机械常见故障特征

5 旋转机械常见故障特征

特征频 常伴 振动稳 振动 相位 轴心 时域 率 频率 定性 方向 特征 轨迹 波形 1× 简谐 稳定 径向 稳定 椭圆 波形
转子不平衡振动敏感参数
1 振动 随转 速变 化 明显 2 振动 随负 荷变 化 不明 显 3 振动 随油 温变 化 不变 4 振动 随流 量变 化 不变 5 振动 随压 力变 化 不变 6 其它 识别 方法 低速 时趋 于零
转子不平衡产生的原因
转子不平衡产生的原因
转子不平衡类型
力不平衡
力偶不平衡
转子不平衡类型
动不平衡
悬臂转子不平衡
转子不平衡动力学特性
x = Acos(Ωt +θ )
me λ2 A= • M (1− λ2 )2 + 4ζ 2 λ2
2ζλ tanθ = 1− λ2
转子不平衡振动特征
1 2 3 4 5 6 7
转子不对中故障形式
轴线平行不对中
角度不对中
综合不对中
转子不对中故障轴心轨迹
∆α
∆y Z
∆α / 2
Z
∆L
(b)
Z
∆y
∆L
(a)
∆L
(c)
轴线平行不对中
角度不对中
综合不对中
转子不对中故障特征
1)齿式联轴器不对中故障的特征频率为轴转 角频率的2 角频率的2倍。 由不对中故障产生的对转子的激振力幅, 2)由不对中故障产生的对转子的激振力幅, 随转速的升高而加大,因此, 随转速的升高而加大,因此,高速旋转机 械应更加注重转子的对中要求。 械应更加注重转子的对中要求。 激励力幅与不对中量成正比, 3)激励力幅与不对中量成正比,随不对中量 的增加,激励力幅呈线性加大。 的增加,激励力幅呈线性加大。

总结旋转机械经常出现的故障有哪些

总结旋转机械经常出现的故障有哪些

旋转机械是主要依靠旋转动作来实现特定功能的机械设备,典型的旋转机械包括汽轮机、燃气轮机、离心式和轴流式压缩机等,这类机械在电力、石化、冶金和航空航天等部门都有着广泛的应用。

常见的旋转机械故障包括不平衡、不对中、轴弯曲以及油膜涡动和油膜振荡,下面我们对其作一个详细的介绍。

转子不平衡:转子不平衡是旋转机械最常发生的故障。

这一故障的产生原因是多方面的,包括转子本身的原因,如结构设计不合理、材料材质不均匀、机械加工质量没有达到要求、装配存在误差、动平衡精度差、零部件缺损等;也包括联轴器的原因,如运行中联轴器相对位置的改变等,这些原因都会造成转子旋转不平衡。

转子不对中:转子不对中指的是相邻两个转子的轴心线与轴承中心线发生了倾斜或者偏移。

具体来说又分为联轴器不对中和轴承不对中两种情况。

联轴器不对中又包括平行不对中、偏角不对中和平行偏角不对中三种情况。

平行不对中时,转子振动频率是工频的两倍。

偏角不对中会导致联轴器附加一个弯矩,以减小两个轴中心线的偏角。

轴每旋转一周,弯矩作用方向都会改变两次,这大大增加了转子的轴向力,使转子在轴向产生工频振动。

而平行偏角不对中是以上两种情况的综合,转子既发生径向振动又发生轴向振动。

轴承不对中实际上是由于轴承座标高和轴中心位置之间的偏差造成的,这回导致轴系的载荷重新进行分配。

负荷较大的轴承可能会出现高次谐波振动,负荷较轻的轴承则容易偏离稳定状态,同时还使轴系的临界转速发生改变。

转子轴弯曲:转子的中心线发生弯曲称为轴弯曲,会造成与质量偏心情况相类似的旋转矢量激振力。

轴弯曲分为永久性和临时性两种类型。

转子永久性弯曲是由转子结构不合理、加工误差大、材质不均匀、长期存放不当等因素造成的转子轴永久性的弯曲变形。

也有可能是由于热态停车时未及时盘车或盘车不当、转子的热稳定性差、长期运行后轴的自然弯曲加大等原因造成的。

转子临时性弯曲是因转子上存在较大预负荷、开机运行时的暖机操作不当、升速过快、转轴热变形不均匀等原因造成的,可以通过停止加工使转子回复正常。

第六章 旋转机械的故障诊断(第一讲)1

第六章  旋转机械的故障诊断(第一讲)1

1.1 转子不平衡概念
转子不平衡:设计错误、材料质量、加工、装配以及运行多因
素影响,转子质心与旋转中心之间存在一定的偏心距, 转子
工作时周期性受离心力干扰,轴承产生动载荷引起机器振动。 不平衡原因:旋转体质量沿旋转中心线分布不均匀。
转子不平衡产生的离心力
以带薄圆盘的刚性转子为例, 两轴承支承跨度为l, 转子质量 为m,质心M距旋转中心O偏心距为e,旋转角速度为。 假定 转子系统无阻尼,则转子产生的离心力为:
平衡质量 双面动平衡技术
(2)转子运行中的不平衡 ① 转子弯曲
临时性弯曲:转子受外部影响或外力作用引起,不需动平衡 ,采用简单措施,如盘车或调整操作方式即可恢复,主要由 转子受热不均,转子自重,气流冲击, 温度突变以及负荷变 化快等因素引起。
永久性弯曲:转子慢转无法恢复,需要热处理校直或精加工 消除。
止推轴承设计:承载面积、压缩机超压、密封损坏,轴向力 大,瓦块磨烧。
供油系统:润滑油量、供油清洁、油温度、油黏度、供油压 力、滤清滤网、油孔堵塞、轴承磨损,油冷效果、润滑油水 分, 更换过滤器,更换润滑。
(3)轴承疲劳
原因: ① 轴承过载:油膜破裂,应力集中,局部裂纹,裂纹扩展
② 轴瓦松动:轴承间隙,机器振动,轴承交变载荷,裂纹 扩展,瓦块表面开裂与松脱。 ③ 轴承摩擦和咬粘:表面高温,材料热应力和热裂纹 ④ 巴氏合金过厚:疲劳敏感,疲劳破坏
旋转轴线 质心 轴承中心 线
转子几种不平衡状态
1.2 临界转速对不平衡振动的影响
(1)临界转速的动力特性 临界转速现象:不平衡离心力引起共振现象。临界转速时, 转 子产生较大的弯曲变形,做弓状回旋运动(“涡动”或“进动 ”),转子质心远离轴承中心线,离心力剧增,转子产生更大 变形,离心力进一步放大,机器剧烈振动。 临界转速:一阶临界转速ncr1,多阶临界转速ncri (阶数i) 设计要求:工作转速n避开临界转速ncr。 一般规定:工作转速n<一阶临界转速ncr1,n 0.75 ncr1 工作转速n>一阶临界转速ncr1,1.4ncri<n <0.7ncr(i+1)

旋转机械常见振动故障及原因分析

旋转机械常见振动故障及原因分析

旋转机械常见振动故障及原因分析旋转机械是指主要依靠旋转动作完成特定功能的机械,典型的旋转机械有汽轮机、燃气轮机、离心式和轴流式压缩机、风机、泵、水轮机、发电机和航空发动机等,广泛应用于电力、石化、冶金和航空航天等部门。

大型旋转机械一般安装有振动监测保护和故障诊断系统,旋转机械主要的振动故障有不平衡、不对中、碰摩和松动等,但诱发因素多样。

本文就旋转设备中,常见的振动故障原因进行分析,与大家共同分享。

一、旋转机械运转产生的振动机械振动中包含着从低频到高频各种频率成分的振动,旋转机械运转时产生的振动也是同样的。

轴系异常(包括转子部件)所产生的振动频率特征如表1。

二、振动故障原因分析1、旋转失速旋转失速是压缩机中最常见的一种不稳定现象。

当压缩机流量减少时,由于冲角增大,叶栅背面将发生边界层分离,流道将部分或全部被堵塞。

这样失速区会以某速度向叶栅运动的反方向传播。

实验表明,失速区的相对速度低于叶栅转动的绝对速度,失速区沿转子的转动方向以低于工频的速度移动,这种相对叶栅的旋转运动即为旋转失速。

旋转失速使压缩机中的流动情况恶化,压比下降,流量及压力随时间波动。

在一定转速下,当入口流量减少到某一值时,机组会产生强烈的旋转失速。

强烈的旋转失速会进一步引起整个压缩机组系统产生危险性更大的不稳定气动现象,即喘振。

此外,旋转失速时压缩机叶片受到一种周期性的激振力,如旋转失速的频率与叶片的固有频率相吻合,将会引起强烈振动,使叶片疲劳损坏造成事故。

旋转失速故障的识别特征:1)振动发生在流量减小时,且随着流量的减小而增大;2)振动频率与工频之比为小于1X的常值;3)转子的轴向振动对转速和流量十分敏感;4)排气压力有波动现象;5)流量指示有波动现象;6)机组的压比有所下降,严重时压比可能会突降;7)分子量较大或压缩比较高的机组比较容易发生。

2、喘振旋转失速严重时可以导致喘振。

喘振除了与压缩机内部的气体流动情况有关,还同与之相连的管道网络系统的工作特性有密切的联系。

机械故障诊断—第四章 旋转机械故障诊断

机械故障诊断—第四章 旋转机械故障诊断

2
制造原因
1制造误差大 2材质不均匀 3动平衡精度低 1转子上零部件安装错误 2零件漏装
3
安装维修
1转子有较大预负荷
4
操作运行
1介质带液,造成腐蚀 2介质脏,造成结垢
1超速、超负荷运行 2入口阻力大,导致部件损坏,进人 流道松动
1转子回转体结垢 2转子腐蚀
图4.1 转子力学模型
由于有偏心质量m和偏心距e的存在,当转子转动 时将产生离心力、离心力矩或两者兼而有之。离心 力的大小与偏心质量m、偏心距e及旋转角速度ω有 F me 2 。众所周知,交变的力(方向、大小 关,即 均周期性变化)会引起振动,这就是不平衡引起振动 的原因。转子转动一周,离心力方向改变一次,因 此不平衡振动的频率与转速相一致。
例2:某52万吨/年尿素装置CO2压缩机组低压缸转子,大修后开车振动值 正常,但在线监测系统发现其振动值有逐步增大的趋势。其时域波形为 正弦波,分析其频谱,以1×频为主,分析其矢量域图,相位有一个缓慢 的变化。如图4.7所示。
(a)时域波形
(b)幅值谱
(c)振动趋势
(d)矢量域图
图4.7 CO2压缩机渐变不平衡振动特征
3.非定常强迫振动 非定常强迫振动是由外来扰动力而引起的一种强迫振动。其特点是 与扰动力具有相同的频率;振动本身反过来会影响扰动力的大小与相 位;振动的幅值和相位都是变化的。比如转子轴上某一部位出现不均 匀的热变形,就相当于给转子增加了不平衡质量,它将会使振动的幅 值和相位都发生变化。反过来,振动幅值和相位的变化又影响不均匀 热变形的大小与部位,从而使强迫振动连续不断地发生变化。 二、旋转机械常见故障及其特点 1.不平衡 转子不平衡是旋转机械的常见故障之一。在制造与维修过程中,虽 都要对转子作仔细平衡,使不平衡量小于限定值。但经过一段时间的 运行,不平衡量会逐渐增大。由于转子处于高速运行状态,偏心量的 少许增加,都会使惯性离心力剧增,使机器的功能下降,甚至无法继 续运行。 转子不平衡引起的振动有以下特点: 1. 振幅随转速的上升而增加; 2. 振动的频率与转子的旋转频率相同; 3. 振动方向以径向为主; 4. 振动相位常保持一定角度。 当不平衡重量只存在于一个平面内时,这种不平衡称为静不平衡;而当 在多个平面内有不平衡情况时,就是动不平衡。

旋转机械碰摩故障的诊断案例分析综

旋转机械碰摩故障的诊断案例分析综

旋转机械碰摩故障的诊断案例分析综旋转机械碰摩故障的诊断案例分析综述【引言】旋转机械在工业生产中起着重要作用,然而由于长期运转和各种原因,旋转机械碰摩故障时有发生。

碰摩故障会导致机械的性能下降、寿命缩短甚至完全失效。

因此,对旋转机械碰摩故障的诊断和分析具有重要意义。

本文将通过分析多个案例,总结旋转机械碰摩故障的常见原因、诊断方法和解决方案,以期为相关行业提供参考。

【案例一:轴承碰摩故障】案例描述:某工厂的离心泵在运行过程中出现异常噪音和振动,经过检查发现是轴承碰摩故障导致的。

1. 碰摩故障原因分析:a) 润滑不良:轴承润滑油不足、油质污染等;b) 轴承过载:泵的工作负荷超过轴承额定负荷;c) 轴承损坏:轴承内外圈间隙过大、轴承疲劳等。

2. 碰摩故障诊断方法:a) 振动分析:通过振动传感器采集振动信号,分析频谱特征;b) 温度检测:测量轴承温度,异常升高可能表示碰摩故障;c) 润滑油分析:检测润滑油中的金属颗粒和污染物。

3. 碰摩故障解决方案:a) 更换润滑油并保持良好的润滑状态;b) 调整工作负荷,避免轴承过载;c) 定期检查轴承状态,及时更换疲劳损坏的轴承。

【案例二:齿轮碰摩故障】案例描述:一台工厂的传动装置在运行时出现异常噪音和振动,经过检查发现是齿轮碰摩故障导致的。

1. 碰摩故障原因分析:a) 齿轮配合间隙过大或过小;b) 齿轮润滑不良;c) 齿轮磨损严重。

2. 碰摩故障诊断方法:a) 声音分析:通过声音传感器采集齿轮工作时的声音特征;b) 振动分析:分析齿轮工作时的振动频谱;c) 润滑油分析:检测润滑油中的金属颗粒和污染物。

3. 碰摩故障解决方案:a) 调整齿轮配合间隙,确保正常工作;b) 更换润滑油并保持良好的润滑状态;c) 定期检查齿轮磨损情况,及时更换磨损严重的齿轮。

【案例三:轴承与齿轮共同碰摩故障】案例描述:某设备在运行时出现异常噪音和振动,经过检查发现是轴承与齿轮共同碰摩故障导致的。

旋转机械常见的种故障原因

旋转机械常见的种故障原因

旋转机械常见的种故障原因旋转机械是指利用电能、燃料能、气压、水力等能源驱动转子进行动力传递和工作的机械装置。

由于旋转机械在长时间的运行中承受了较大的负荷和压力,因此容易出现各种故障。

以下是旋转机械常见的11种故障原因:1.润滑不良:润滑油的不足或质量不达标,会导致机械零件之间的摩擦增加,进而引发故障。

2.摩擦材料磨损:旋转机械中的摩擦材料,如轴承、齿轮、轮毂等,长时间的工作会造成磨损,从而降低机械的效率和寿命。

3.过载运行:过载运行会导致机械零件受力过大,容易引起机械结构的破坏。

4.裂纹和断裂:机械零件在长时间的运行或是受到冲击等外力作用后,容易出现裂纹和断裂,从而造成机械的故障。

5.动平衡不良:机械转子的不平衡会引起振动,使机械零件磨损加剧,并可能导致机械的进一步破坏。

6.轴承故障:轴承是旋转机械中重要的部件,承受了很大的压力和摩擦。

当轴承出现故障时,会导致机械的轴承磨损、失效及震动等问题。

7.齿轮啮合不良:旋转机械中的齿轮啮合不良会增加齿轮的磨损和噪音,甚至导致齿轮脱落,造成严重故障。

8.水质不良:旋转机械中的水泵、水轮机等设备在水质不良的环境中运行,会造成机械部件腐蚀、结垢及阻塞等故障。

9.温度过高:旋转机械长时间工作会产生热量,如果散热不良或系统冷却不足,会导致温度过高,进而引发各种故障。

10.缺乏维护:长期缺乏维护和保养,机械中的零部件容易老化、劣化,并且可能出现严重的故障。

11.设计和安装问题:旋转机械在设计和安装过程中存在问题,可能导致机械的运行不稳定、故障频发。

为避免以上故障,必须加强机械的维护、保养和定期检修,提高机械的可靠性和稳定性。

同时,在设计和安装过程中也要注意各个部件的匹配和安装准确性,以确保机械的正常运行和长久运行。

旋转机械的故障诊断

旋转机械的故障诊断

旋转机械的故障诊断1.不平衡不平衡是各种旋转机械中最普遍存在的故障。

引起转子不平衡的原因是多方面的,如转子的结构设计不合理、机械加工质量偏差、装配误差、材质不均匀、动平衡精度差;运行中联轴器相对位置的改变;转子部件缺损,如:运行中由于腐蚀、磨损、介质不均匀结垢、脱落;转子受疲劳应力作用造成转子的零部件(如叶轮、叶片、围带、拉筋等)局部损坏、脱落,产生碎块飞出等。

2.不对xx转子不对中通常是指相邻两转子的轴心线与轴承中心线的倾斜或偏移程度。

转子不对中可分为联轴器不对中和轴承不对中。

联轴器不对中又可分为平行不对中、偏角不对中和平行偏角不对中三种情况。

平行不对中时振动频率为转子工频的两倍。

偏角不对中使联轴器附加一个弯矩,以力图减小两个轴中心线的偏角。

轴每旋转一周,弯矩作用方向就交变一次,因此,偏角不对中增加了转子的轴向力,使转子在轴向产生工频振动。

平行偏角不对中是以上两种情况的综合,使转子发生径向和轴向振动。

轴承不对中实际上反映的是轴承座标高和轴中心位置的偏差。

轴承不对中使轴系的载荷重新分配。

负荷较大的轴承可能会出现高次谐波振动,负荷较轻的轴承容易失稳,同时还使轴系的临界转速发生改变。

3.轴弯曲和热弯曲轴弯曲是指转子的中心线处于不直状态。

转子弯曲分为永久性弯曲和临时性弯曲两种类型。

转子永久性弯曲是指转子的轴呈永久性的弓形,它是由于转子结构不合理、制造误差大、材质不均匀、转子长期存放不当而发生永久性的弯曲变形,或是热态停车时未及时盘车或盘车不当、转子的热稳定性差、长期运行后轴的自然弯曲加大等原因所造成。

转子临时性弯曲是指转子上有较大预负荷、开机运行时的暖机操作不当、升速过快、转轴热变形不均匀等原因造成。

转子永久性弯曲与临时性弯曲是两种不同的故障,但其故障的机理是相同的。

转子不论发生永久性弯曲还是临时性弯曲,都会产生与质量偏心情况相类似的旋转矢量激振力。

4.油膜涡动和油膜振荡油膜涡动和油膜振荡是滑动轴承中由于油膜的动力学特性而引起的一种自激振动。

转动机械常见故障的频率特征

转动机械常见故障的频率特征

PO 1X 频率 2X 频率 叶片通 过频率
出现 2X 频率成分。 轴心轨迹成香蕉形或8字形。 轴向振动一般较大。 本例中,出现叶片通过频率。
水泵
MO
PI
MI
电机
转子不对中的类型
综合不对中 e 0, 0
平行不对中 e 0, = 0
正确对中 e = 0, = 0
角度不对中 e = 0, 0
转动机械常见故障的频率特征
转子不平衡故障的频谱
波形为简谐波,少毛刺。 轴心轨迹为圆或椭圆。 1X频率为主。 轴向振动不大。 振幅随转速升高而增大。 过临界转速有共振峰。
透平
风机
TO
TI
齿轮箱
1X频率(水平)
1X频率(水平)
1X频率(铅垂)
1X频率(铅垂)
轴向很小
轴向很小
转子不平衡的类型
转子不对中故障的频谱
输入轴
啮合频率 GMF
上边频
下边频
2X
根据相应的国际标准、国家标准、行业标准等, 如: ISO, GB, API 等。
以机器正常状态的振动值作为基数,自己和自己比。
与同类机器的振动值作比较。
相对法
类比法
确定报警值和危险值的方法
转机振动标准举例(轴承振动) I测量频率范围 10~1000Hz
电机
离心泵
PI
PO
1X 2X 频率
故障基本 频率6.71X
基本频率的 四个谐波
带滚动轴承的机械的频谱特点
不平衡
不对中
松动
滚动轴承故障频率
0 5 10 15 20 25 30 35 40 45 50×R Frequency in order
mm/s pk

旋转机械的常见故障

旋转机械的常见故障

旋转机械的常见故障旋转机械的常见故障有很多,包括不平衡、不对中、轴弯曲和热弯曲、油膜涡动和油膜振荡、蒸汽激振、机械松动、转子断叶片与脱落、摩擦、轴裂纹、旋转失速与喘振、机械偏差和电气偏差等。

1、不平衡是各种旋转机械中最普遍存在的故障引起转子不平衡的原因是多方面的,如转子的结构设计不合理、机械加工质量偏差、装配误差、材质不均匀、动平衡精度差;运行中联轴器相对位置的改变;转子部件缺损,如:运行中由于腐蚀、磨损、介质不均匀结垢、脱落;转子受疲劳应力作用造成转子的零部件(如叶轮、叶片、围带、拉筋等)局部损坏、脱落,产生碎块飞出等。

2、转子不对中通常是指相邻两转子的轴心线与轴承中心线的倾斜或偏移程度。

转子不对中可分为联轴器不对中和轴承不对中。

联轴器不对中又可分为平行不对中、偏角不对中和平行偏角不对中三种情况。

平行不对中时振动频率为转子工频的两倍。

偏角不对中使联轴器附加一个弯矩,以力图减小两个轴中心线的偏角。

轴每旋转一周,弯矩作用方向就交变一次,因此,偏角不对中增加了转子的轴向力,使转子在轴向产生工频振动。

平行偏角不对中是以上两种情况的综合,使转子发生径向和轴向振动。

轴承不对中实际上反映的是轴承座标高和轴中心位置的偏差。

轴承不对中使轴系的载荷重新分配。

负荷较大的轴承可能会出现高次谐波振动,负荷较轻的轴承容易失稳,同时还会使轴系的临界转速发生改变。

3、轴弯曲是指转子的中心线处于不直状态。

转子弯曲分为永久性弯曲和临时性弯曲两种类型。

转子永久性弯曲是指转子的轴呈永久性的弓形,它是由于转子结构不合理、制造误差大、材质不均匀、转子长期存放不当而发生永久性的弯曲变形,或是热态停车时未及时盘车或盘车不当、转子的热稳定性差、长期运行后轴的自然弯曲加大等原因所造成。

转子临时性弯曲是指转子上有较大预负荷、开机运行时的暖机操作不当、升速过快、转轴热变形不均匀等原因造成。

转子永久性弯曲与临时性弯曲是两种不同的故障,但其故障的机理是相同的。

旋转机械振动故障诊断及分析

旋转机械振动故障诊断及分析
★ 影响旋转机械振动的因素
★ 汽轮发电机组的振源分析
★ 旋转机械的故障诊断
★ 旋转机械振动故障的处理方法
★ 旋转机械振动故障诊断及处理实例
一、影响旋转机械振动的因素 旋转机械,尤其是大型汽轮发电机组轴系的振 动十分复杂,影响因素较多,不但有静态的,而 且有动态的,并且这些因素往往综合作用,相互 影响。影响旋转机械(及其轴系)振动的主要因 素主要包括: 1、临界转速 当转子的工作转速接近其临界转速时,就要发 生共振,这是产生极大振动的主要原因之一。因 此,在转子设计时,应保证工作转速相对于其临 界转速有足够的避开率。
7各种转动机械一般振动故障分类机械种类部件一般故障原因转子机械部件主要用于机械功能冷却支承密封流体传输的旋转机械部件弯曲断裂裂纹摩擦不合适间隙腐蚀积垢共振密封松动弯曲断裂裂纹摩擦不合适间隙叶轮弯曲断裂裂纹摩擦不合适间隙汽蚀腐蚀积垢共振转轴热弯曲机械弯曲裂纹轴颈伤痕晃度超标圆盘轮盘耸起刮伤松动齿轮磨损裂纹表面剥落麻点断裂推力盘耸起刮伤裂纹断裂摩擦机械种类部件一般故障原因转子机械部件主要用于机械功能冷却支承密封流体传输的旋转机械部联轴器连接不良磨损断裂冷却风扇弯曲断裂裂纹摩擦不合适间隙腐蚀积垢共振活塞裂纹断裂松动曲轴弯曲断裂裂纹刮伤不合适间隙转子特性不平衡临界转速油膜涡动振荡气动液力电气部分的旋转机械部件转子线圈断裂短路集电环工作不正常转子定子间隙偏心间隙太大或过小机械种类部件一般故障原因轴承滚动轴承伤痕麻点松动龟裂表面剥落润滑不足滑动轴承刮伤磨损伤痕松动不对中推力轴承刮伤磨损伤痕松动不对中定子机械部件主要用于机械功能冷却支承密封流体传输的定子机械部轴承座共振松动裂纹机壳共振弯曲断裂裂纹不合适间隙松动积垢腐蚀气蚀阻塞隔板共振弯曲断裂裂纹不合适间隙松动积垢腐蚀阻塞喷嘴阻塞断裂密封松动弯曲断裂摩擦裂纹不合适间隙汽缸变形偏斜孔径偏斜共振裂纹机械种类部件一般故障原因定子电气部件电力机械转换电力传输的定子部件定子铁芯松动变形失园度大不对中定子线圈断裂短路发热端部线圈断裂短路共振定转子轴颈向间隙间隙过大非对称间隙电刷断裂打开结构支承用于支持机器的钢和混凝土结固定螺栓松动断裂基础共振变形刚度不足脱空松动共振变形刚度不够变形三旋转机械的故障诊断旋转机械的振动各种类型原因均有其固有属性

旋转机械故障诊断

旋转机械故障诊断

旋转机械故障诊断旋转机械故障指的是各种旋转设备在使用中出现的故障,例如电机、风扇、泵等。

为了确保机械设备的正常运转,需要及时检修旋转机械故障。

本文介绍了旋转机械故障的基本知识和常见故障处理方法。

旋转机械故障的基本知识旋转机械故障包括机械故障和电气故障两种。

机械故障主要指机械部分的损坏,例如轴承损坏、磨损、过热等;电气故障主要指电路部分的故障,例如电机烧毁、线路短路等。

为了保障机械设备的安全运行,需要及时检查机械设备中存在的故障并进行有效的处理。

常见的旋转机械故障1. 轴承故障轴承故障是旋转机械故障中最常见的一种故障。

轴承损坏的原因有很多,例如使用时间过长、润滑脂不足、使用温度过高等。

轴承受到过大的负荷或不正确的安装方式也会导致轴承故障。

轴承故障通常会导致机械设备的振动、噪音和温度升高等现象。

轴承故障的处理方法一般包括更换轴承、加强润滑等。

在更换轴承时,需要选择与原轴承参数相同的新轴承,并且必须正确安装、调整轴承预紧力和润滑方式。

2. 汽蚀汽蚀是液体在高速旋转设备内形成的气蚀现象。

汽蚀会导致机械设备的泵体、叶轮、轴承等部件受到损坏。

汽蚀的主要原因是设计不合理、液位过低、磨损等。

汽蚀的处理方法一般包括更换设备、改善设计、加大进口直管长度等。

在更换设备时,需要选择与原设备相同参数的新设备,并且必须正确安装。

3. 电气故障电气故障主要包括电机烧蚀、电路短路、线路老化等。

电气故障通常会造成设备的停止运转,需要及时检查机械设备中电气部分的故障。

电气故障的处理方法一般包括更换电机、修复电路等。

在更换电机时,需要选择与原电机参数相同的新电机,并且必须正确安装并接好电源。

检修旋转机械设备的步骤1. 确定故障部位在进行旋转机械设备的检修时,需要先确定故障部位。

通过观察、听到故障声音和故障所引起的振动等现象,可以初步判断故障部位。

2. 检查机械设备检查机械设备包括拆卸、清洁机械部件和更换损坏部件等。

在拆卸时,需要根据机械设备的结构图和工作原理,按照规范的步骤拆卸。

转动机械常见故障及其频率特征资料重点

转动机械常见故障及其频率特征资料重点

转动机械常见故障及其频率特征资料重点转动机械是指依靠旋转运动来完成工作的机械设备,包括电机、风机、泵等。

这些机械设备在长时间运行的过程中,常常会遇到一些故障。

了解并掌握这些故障及其频率特征,对于提高设备的可靠性和运行效率具有重要意义。

以下是一些转动机械常见故障及其频率特征的重点概述:1.轴承故障:轴承故障是转动机械中最常见的故障之一、轴承故障的频率特征包括频谱分析中的频谱峰值,通常以倍频为特征。

其他可能的特征包括振动加速度、速度和位移等参数的变化。

2.不平衡故障:不平衡是指转动机械在运行过程中由于质量不均匀分布导致的问题。

不平衡故障的频率特征主要包括由于不平衡引起的径向振动频率。

此外,还应注意检查频谱中的谐波振动频率,这些频率通常会出现在不平衡故障的频谱中。

3.错位故障:错位故障是指转动机械中轴心与旋转件中心不重合的问题。

错位故障的频率特征主要表现为以旋转频率为中心的低频分量。

同时,对于大型机械设备,还可能会出现由于错位引起的回转频率。

4.轮齿故障:对于齿轮传动的转动机械,轮齿故障是常见的问题之一、轮齿故障的频率特征主要包括齿轮传动频率及其倍频,以及其谐波振动频率。

5.润滑故障:润滑故障包括油液流量问题、油液质量问题和油温过高等。

润滑故障的频率特征主要体现在振动和声音信号中的周期性模式变化上。

以上仅是一些转动机械常见故障及其频率特征的重点概述。

在实际应用过程中,具体的故障和频率特征可能会有所不同,需要根据具体设备的特点进行分析和判断。

对于转动机械的故障诊断和预防,可以借助振动分析、声学分析、热成像等技术手段来进行监测和判断。

及早发现并处理这些故障,可以提高设备的可靠性和运行效率,减少意外停机和维修成本。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

旋转机械常见故障总结旋转机械的常见故障有很多,包括不平衡、不对中、轴弯曲和热弯曲、油膜涡动和油膜振荡、蒸汽激振、机械松动、转子断叶片与脱落、摩擦、轴裂纹、旋转失速与喘振、机械偏差和电气偏差等。

1不平衡不平衡是各种旋转机械中最普遍存在的故障。

引起转子不平衡的原因是多方面的,如转子的结构设计不合理、机械加工质量偏差、装配误差、材质不均匀、动平衡精度差;运行中联轴器相对位置的改变;转子部件缺损,如:运行中由于腐蚀、磨损、介质不均匀结垢、脱落;转子受疲劳应力作用造成转子的零部件(如叶轮、叶片、围带、拉筋等)局部损坏、脱落,产生碎块飞出等。

2不对中转子不对中通常是指相邻两转子的轴心线与轴承中心线的倾斜或偏移程度。

转子不对中可分为联轴器不对中和轴承不对中。

联轴器不对中又可分为平行不对中、偏角不对中和平行偏角不对中三种情况。

平行不对中时振动频率为转子工频的两倍。

偏角不对中使联轴器附加一个弯矩,以力图减小两个轴中心线的偏角。

轴每旋转一周,弯矩作用方向就交变一次,因此,偏角不对中增加了转子的轴向力,使转子在轴向产生工频振动。

平行偏角不对中是以上两种情况的综合,使转子发生径向和轴向振动。

轴承不对中实际上反映的是轴承座标高和轴中心位置的偏差。

轴承不对中使轴系的载荷重新分配。

负荷较大的轴承可能会出现高次谐波振动,负荷较轻的轴承容易失稳,同时还会使轴系的临界转速发生改变。

3轴弯曲和热弯曲轴弯曲是指转子的中心线处于不直状态。

转子弯曲分为永久性弯曲和临时性弯曲两种类型。

转子永久性弯曲是指转子的轴呈永久性的弓形,它是由于转子结构不合理、制造误差大、材质不均匀、转子长期存放不当而发生永久性的弯曲变形,或是热态停车时未及时盘车或盘车不当、转子的热稳定性差、长期运行后轴的自然弯曲加大等原因所造成。

转子临时性弯曲是指转子上有较大预负荷、开机运行时的暖机操作不当、升速过快、转轴热变形不均匀等原因造成。

转子永久性弯曲与临时性弯曲是两种不同的故障,但其故障的机理是相同的。

转子不论发生永久性弯曲还是临时性弯曲,都会产生与质量偏心情况相类似的旋转矢量激振力。

4油膜涡动和油膜振荡油膜涡动和油膜振荡是滑动轴承中由于油膜的动力学特性而引起的一种自激振动。

油膜涡动一般是由于过大的轴承磨损或间隙、不合适的轴承设计、润滑油参数的改变等因素引起的。

根据振动频谱很容易识别油膜涡动,其出现时的振动频率接近转速频率的一半,随着转速的提高,油膜涡动的故障特征频率与转速频率之比也保持在一个定值上始终不变,常称为半速涡动。

油膜涡动和油膜振荡是两个不同的概念,它们之间既有区别,又有着密切的联系。

当机器出现油膜涡动,而且油膜涡动频率等于系统的固有频率时就会发生油膜振荡。

油膜振荡只有在机器运行转速大于二倍转子临界转速的情况下才可能发生。

当转速升至二倍临界转速时,涡动频率非常接近转子临界转速,因此产生共振而引起很大的振动。

通常一旦发生油膜振荡,无论转速继续升至多少,涡动频率将总保持为转子一阶临界转速频率。

转子发生油膜振荡时一般具有以下特征:①时间波形发生畸变,表现为不规则的周期信号,通常是在工频的波形上面叠加了幅值很大的低频信号;②在频谱图中,转子的固有频率ω0处的频率分量的幅值最为突出;③油膜振荡发生在工作转速大于二倍一阶临界转速的时候,在这之后,即使工作转速继续升高,其振荡的特征频率基本不变;④油膜振荡的发生和消失具有突然性,并带有惯性效应,也就是说,升速时产生油膜振荡的转速要高于降速时油膜振荡消失的转速;⑤油膜振荡时,转子的涡动方向与转子转动的方向相同,为正进动;⑥油膜振荡剧烈时,随着油膜的破坏,振荡停止,油膜恢复后,振荡又再次发生。

如此持续下去,轴颈与轴承会不断碰摩,产生撞击声,轴承内的油膜压力有较大的波动;⑦油膜振荡时,其轴心轨迹呈不规则的发散状态,若发生碰摩,则轴心轨迹呈花瓣状;⑧轴承载荷越小或偏心率越小,就越容易发生油膜振荡;⑨油膜振荡时,转子两端轴承振动相位基本相同。

5蒸汽激振蒸汽激振产生的原因通常有两个,一是由于调节阀开启顺序的原因,高压蒸汽产生了一个向上抬起转子的力,从而减少了轴承比压,因而使轴承失稳;二是由于叶顶径向间隙不均匀,产生切向分力,以及端部轴封内气体流动时所产生的切向分力,使转子产生了自激振动。

蒸汽激振一般发生在大功率汽轮机的高压转子上,当发生蒸汽振荡时,振动的主要特点是振动对负荷非常敏感,而且振动的频率与转子一阶临界转速频率相吻合。

在绝大多数情况下(蒸汽激振不太严重)振动频率以半频分量为主。

在发生蒸汽振荡时,有时改变轴承设计是没有用的,只有改进汽封通流部分的设计、调整安装间隙、较大幅度地降低负荷或改变主蒸汽进汽调节汽阀的开启顺序等才能解决问题。

6机械松动通常有三种类型的机械松动。

第一种类型的松动是指机器的底座、台板和基础存在结构松动,或水泥灌浆不实以及结构或基础的变形。

第二种类型的松动主要是由于机器底座固定螺栓的松动或轴承座出现裂纹引起。

第三种类型的松动是由于部件间不合适的配合引起的,这时的松动通常是轴承盖里轴承瓦枕的松动、过大的轴承间隙或者转轴上的叶轮存在松动。

这种松动的振动相位很不稳定,变化范围很大。

松动时的振动具有方向性,在松动方向上,由于约束力的下降,将引起振动幅度加大。

7转子断叶片与脱落转子断叶片、零部件或垢层脱落的故障机理与动平衡故障是相同的。

其特征如下:①振动的通频振幅在瞬间突然升高;②振动的特征频率为转子的工作频率;③工频振动的相位也会发生突变。

8摩擦当旋转机械的旋转部件和固定部件接触时,就会发生动、静部分的径向摩擦或轴向碰摩。

这是一个严重的故障,它可能会导致机器整个损坏。

在摩擦产生时通常分为两种情况:第一种是部分摩擦,此时转子仅偶然接触静止部分,同时维持接触仅在转子进动整周期的一个分数部分,这通常对于机器的整体来说,它的破坏性和危险性相对比较小;第二种,特别是对于机器的破坏性效果和危险性来说就是更为严重的情况了,这就是整周的环状摩擦,有时候也称为“全摩擦”或“干摩擦”,它们大都在密封中产生。

在整周环状摩擦发生时,转子维持与密封的接触是连续的,产生在接触处的摩擦力能够导致转子进动方向的剧烈改变,从原本是向前的正进动变成向后的反进动。

摩擦的危害性很大,即使转轴和轴瓦短时间摩擦也会造成严重后果。

9轴裂纹转子裂纹产生的原因多是疲劳损伤。

旋转机械的转子如果设计不当(包括选材不当或结构不合理)或者加工方法不妥,或者是运行时间超长的老旧机组,由于应力腐蚀、疲劳、蠕变等,会在转子原本存在诱发点的位置产生微裂纹,再加上由于较大而且变化的扭矩和径向载荷的持续作用,微裂纹逐渐扩展,最终发展成为宏观裂纹。

原始的诱发点通常出现在应力高而且材料有缺陷的地方,如轴上应力集中点、加工时留下的刀痕、划伤处、材质存在微小缺陷(如夹渣等)的部位等。

在转子出现裂纹的初期,其扩展的速度比较慢,径向振动的幅值增长也比较小。

但裂纹的扩展速度会随着裂纹深度的加深而加速,相应的会出现振幅迅速增大的现象。

尤其是二倍频幅值的迅速上升和其相位的变化往往可以提供裂纹的诊断信息,因此可以利用二倍频幅值和相位的变化趋势来诊断转子裂纹。

10旋转失速与喘振旋转失速是压缩机中最常见的一种不稳定现象。

当压缩机流量减少时,由于冲角增大,叶栅背面将发生边界层分离,流道将部分或全部被堵塞。

这样失速区会以某速度向叶栅运动的反方向传播。

实验表明,失速区的相对速度低于叶栅转动的绝对速度。

因此,我们可以观察到失速区沿转子的转动方向以低于工频的速度移动,故称分离区这种相对叶栅的旋转运动为旋转失速。

旋转失速使压缩机中的流动情况恶化,压比下降,流量及压力随时间波动。

在一定转速下,当入口流量减少到某一值时,机组会产生强烈的旋转失速。

强烈的旋转失速会进一步引起整个压缩机组系统的一种危险性更大的不稳定的气动现象,即喘振。

此外,旋转失速时压缩机叶片受到一种周期性的激振力,如旋转失速的频率与叶片的固有频率相吻合,则将引起强烈振动,使叶片疲劳损坏造成事故。

旋转失速严重时可以导致喘振,但二者并不是一回事。

喘振除了与压缩机内部的气体流动情况有关之外,还同与之相连的管道网络系统的工作特性有密切的联系。

压缩机总是和管网联合工作的,为了保证一定的流量通过管网,必须维持一定压力,用来克服管网的阻力。

机组正常工作时的出口压力是与管网阻力相平衡的。

但当压缩机的流量减少到某一值时,出口压力会很快下降,然而由于管网的容量较大,管网中的压力并不马上降低,于是,管网中的气体压力反而大于压缩机的出口压力,因此,管网中的气体就倒流回压缩机,一直到管网中的压力下降到低于压缩机出口压力为止。

这时,压缩机又开始向管网供气,压缩机的流量增大,恢复到正常的工作状态。

但当管网中的压力又回到原来的压力时,压缩机的流量又减少,系统中的流体又倒流。

如此周而复始产生了气体强烈的低频脉动现象——喘振。

喘振故障的识别特征:①产生喘振故障的对象为气体压缩机组或其它带长管道、容器的气体动力机械;②喘振发生时,机组的入口流量小于相应转速下的最小流量;③喘振时,振动的幅值会大幅度波动;④喘振时,振动的特征频率一般在1~15Hz之内;与压缩机后面相联的管网及容器的容积大小成反比;⑤机组及与之相连的管道等附着物及地面都发生强烈振动;⑥出口压力呈大幅度的波动;⑦压缩机的流量呈大幅度的波动;⑧电机驱动的压缩机组的电机电流呈周期性的变化;⑨喘振时伴有周期性的吼叫声,吼叫声的大小与所压缩气体的分子量和压缩比成正比。

11机械偏差和电气偏差在振动信号中,之所以会出现机械偏差和电气偏差的问题,这是由非接触式电涡流传感器的工作原理所决定的。

切削加工不完善的轴表面(椭圆形或不同轴)会产生一种正弦动态运动的指示,其频率与旋转部件的旋转频率相一致。

不完善的切削表面的原因通常是由于最后加工的机床的轴承磨损、刀具变钝、进给太快或机床其它缺陷产生的,或者是车床顶针的磨损造成的。

轴颈表面上的不光滑或其它缺陷,如划痕、凹坑、毛刺、锈疤等也将会产生偏差输出。

检验这种误差状态的最简单的方法是用百分表检查轴颈的跳动值。

百分表的波动值将确认非接触式电涡流传感器所观察到被测表面的误差存在的情况。

轴颈的被测表面应该像滑动轴承的轴颈表面那样精心地保护,在吊装时,所采用的缆绳要避开传感器测量的表面区域,存放转子的支撑架应保证不会引起轴颈表面的划痕、凹陷等。

一般来说,只要磁场是均匀的或对称的,电涡流传感器在所存在的磁场中都能令人满意地工作。

如果轴上某一表面区域有很高的磁性,而其余的表面是非磁性的或者只有很低的磁性,这就可能会出现电气偏差。

这是由于来自电涡流传感器的磁场作用到这种轴颈表面上时,引起了传感器灵敏度的改变。

另外,镀层的不均匀、转子材料的不均匀等也会引起电气偏差,而电气偏差是无法用百分表来测量和确认的。

相关文档
最新文档