数学模型第十章插值与拟合方法建模--101数据插值方法及应用
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.12.2020
课件
11
凸轮高度的数据(单位:mm)
i 0 和 18
yi 502.8
i
6
yi 92.2
i
12
yi 236.0
1 525.0
7 59.6 13 280.5
2 514.3
8 62.2 14 324.9
3 451.0
9 102.7
15 369.4
4 326.5
10 147.1
16 413.8
13.12.2020
课件
6
根据地图的比例,18 mm 相当于 40 km。
根据测量数据,利用 MATLAB 软件对上下边界
进行线性多项式插值,分别求出上边界函数 f2 (x) ,
下边界函数 f1(x) ,利用求平面图形面积的数值积分 方法—将该面积近似分成若干个小长方形,分别求
出这些长方形的面积后相加即为该面积的近似解。
课件
16
3、样条插值
这是最常用的插值方法。数学上所说的样条,实质上
是指分段多项式的光滑连接。设有
a x0 x1 xn b
称分段函数 S(x) 为 k 次样条函数,若它满足
(1) S(x) 在每个小区间上是次数不超过 k 次的多项式;
(2) S(x) 在[a,b] 上具有直到 k 1阶的连续导数。 用样条函数作出的插值称为样条插值。工程上广泛采用三
124 121 121 121 122 116 83 81 82 86 85 68];
newx=7:0.1:158;
newy1=interp1(x,y1,newx,’linear’);
newy2=interp1(x,y2,newx,’linear’);
源自文库
Area=sum((newy2- newy1)*0.1/18^2*1600)
n
S
lim
n
[
i 1
f 2 (i )
f1 (i )]xi
式中,i [xi1, xi ] 。
这里13.12线.2020性插值和面积计算课源件 程序如下:
7
clear all
x=[7.0 10.5 13.0 17.5 34.0 40.5 44.5 48.0 56.0 61.0 68.5 76.5
80.5 91.0 96.0 101.0 104.0 106.5 111.5 118.0 123.5 136.5 142.0
次多项式(如 m>7)插值。
13.12.2020
课件
10
例 2、在万能拉拨机中有一个园柱形凸轮,其底园半 径 R=300mm,凸轮的上端面不在同一平面上,而要 根据动杆位移变化的需要进行设计制造。按设计要 求,将底园周 18 等分,旋转一周。第 i 个分点对应柱 高 yi (i 0,1,2,,18) ,数据见下表。为了数控加工,需要 计算出园周上任一点的柱高。
可以证明当 m n 且 x0 x1 xn 时,这样的多项式 存在且唯一。若要求得到函数表达式,可直接解上 面方程组。
13.12.2020
课件
9
若只要求得函数在插值点处数值,可用下列
Lagrange 插值公式
Pn (x)
n i0
n
yi (
j0, ji
x xj ) xi x j
多项式插值光滑但不具有收敛性,一般不宜采用高
146.0 150.0 157.0 158.0];
y1=[44 45 47 50 50 38 30 30 34 36 34 41 45 46 43 37 33 28 32
65 55 54 52 50 66 66 68];
y2=[44 59 70 72 93 100 110 110 110 117 118 116 118 118 121
5 188.6
11 191.6
17 458.3
13.12.2020
课件
12
我们将园周展开,借助 MATLAB 软件画出对应的 柱高曲线散点图(下图)。 clear;close; x=linspace(0,2*pi*300,19); y=[502.8 ,525.0,514.3,451.0,326.5,188.6,92.2, 59.6,62.2,102.7,147.1,191.6,236.0,280.5,324.9 ,369.4,413.8,458.3,502.8]; plot(x,y,’o’); axis([0,2000,0,550]);
次样条插值。
13.12.2020
课件
17
例 3、某居民区的自来水是由一个园柱形的水塔提供。 水塔高 12.2 米,直径 17.4 米。水塔由水泵根据塔中水 位高低自动加水,一般每天水泵工作两次。按照设计, 当水塔内的水位降至约 8.2 米时,水泵自动启动加水; 当水位升至约 10.8 米时,水泵停止工作。现在需要了 解该居民区用水规律,这可以通过用水率(单位时间 的用水量)来反映。通过间隔一段时间测量水塔中的 水位来估算用水率。
13.12.2020
课件
13
13.12.2020
课件
14
可见,可以用三次多项式插值,下面给出借助
MATLAB 软件画出的柱高插值曲线图(下图)。 xi=0:2*pi*300; yi=interp1(x,y,xi,’cubic’); plot(xi,yi);
13.12.2020
课件
15
13.12.2020
x 7.0 10.5 13.0 17.5 34.0 40.5 44.5 48.0 56.0 y1 44 45 47 50 50 38 30 30 34 y2 44 59 70 72 93 100 110 110 110 x 61.0 68.5 76.5 80.5 91.0 96.0 101.0 104.0 106.5 y1 36 34 41 45 46 43 37 33 28 y2 117 118 116 118 118 121 124 121 121 x 111.5 118.0 123.5 136.5 142.0 146.0 150.0 157.0 158.0 y1 32 65 55 54 52 50 66 66 68 y2 121 122 116 83 81 82 86 85 68
最后计算的面积约为 13.12.2020
424课1件4
平方公里。
8
2、多项式插值
设有 m 次多项式
P(x) a0 x m a1x m1 am1x am
通过所有 n 1个点 (x0 , y0 ), (x1, y1),, (xn , yn ) ,那么就有
a0 xi m a1xi m1 am1xi am yi , i 0,1,, n