§4.常见的数学建模方法(1)---数据拟合(曲线拟合)法
数据拟合方法
’.第二讲 数据拟合方法在实验中,实验和戡测常常会产生大量的数据。
为了解释这些数据或者根据这些数据做出预测、判断,给决策者提供重要的依据。
需要对测量数据进行拟合,寻找一个反映数据变化规律的函数。
数据拟合方法与数据插值方法不同,它所处理的数据量大而且不能保证每一个数据没有误差,所以要求一个函数严格通过每一个数据点是不合理的。
数据拟合方法求拟合函数,插值方法求插值函数。
这两类函数最大的不同之处是,对拟合函数不要求它通过所给的数据点,而插值函数则必须通过每一个数据点。
例如,在某化学反应中,测得生成物的质量浓度y (10 –3 g/cm 3)与时间t (min )的关系如表所示t1 2 3 4 6 8 10 12 14 16 y4.00 6.41 8.01 8.79 9.53 9.86 10.33 10.42 10.53 10.61 显然,连续函数关系y (t )是客观存在的。
但是通过表中的数据不可能确切地得到这种关系。
何况,由于仪器和环境的影响,测量数据难免有误差。
因此只能寻求一个近拟表达式y = ϕ(t )寻求合理的近拟表达式,以反映数据变化的规律,这种方法就是数据拟合方法。
数据拟合需要解决两个问题:第一,选择什么类型的函数)(t ϕ作为拟合函数(数学模型);第二,对于选定的拟合函数,如何确定拟合函数中的参数。
数学模型应建立在合理假设的基础上,假设的合理性首先体现在选择某种类型的拟合函数使之符合数据变化的趋势(总体的变化规律)。
拟合函数的选择比较灵活,可以选择线性函数、多项式函数、指数函数、三角函数或其它函数,这应根据数据分布的趋势作出选择。
为了问题叙述的方便,将例1的数据表写成一般的形式 t x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 y y 1 y 2 y 3 y 4 y 5 y 6 y 7 y 8 y 9 y 10 一.线性拟合(线性模型)假设拟合函数是线性函数,即拟合函数的图形是一条平面上的直线。
数据拟合曲线算法
数据拟合曲线算法
在数据拟合中,常用的曲线拟合算法有多种,具体选择哪一种算法取决于数据的特点以及我们希望达到的拟合效果。
以下是几种常见的数据拟合曲线算法:
1. 线性回归(Linear Regression):线性回归是一种基本的拟合算法,在数据中用一条直线来拟合数据点的分布。
通过使得拟合直线和实际数据点之间的误差最小,来找到最佳的拟合直线。
2. 多项式拟合(Polynomial Fitting):多项式拟合是一种可以拟合非线性关系的方法。
通过增加模型的多项式次数,使得模型能够更好地拟合复杂的数据分布。
3. 基于最小二乘法的拟合(Least Squares Fitting):最小二乘法是一种常见的拟合方法,旨在找到即使误差最小化的拟合曲线。
该方法可用于拟合线性模型、非线性模型等。
4. 样条插值(Spline Interpolation):样条插值是一种基于分段多项式的拟合方法。
通过将数据点之间的曲线段拟合为多项式曲线,使得整个曲线在数据点处连续,并最小化整体曲线的误差。
5. 非参数拟合(Nonparametric Fitting):非参数拟合不依赖于特定的函数形式,而是根据数据的分布来构建拟合模型。
常见的非参数拟合算法包括局部加权回归(Locally Weighted Regression)和核函数回归(Kernel Regression)等。
需要注意的是,选择拟合算法时需要根据实际情况评估算法的适用性及效果,以及避免过拟合或欠拟合问题。
同时,针对不同的数据类型和拟合目标,还有其他更为专门的拟合算法可供选择。
数学建模Matlab数据拟合详解
刀具厚度 y/cm 26.8 26.5 26.3 26.1 25.7 25.3 24.8 24.0 拟合曲线为: 拟合曲线为 y=-0.3012t+29.3804
一个15.4cm×30.48cm的混凝土柱在加压实验中的 例3 一个 × 的混凝土柱在加压实验中的 应力-应变关系测试点的数据如表所示 应力 应变关系测试点的数据如表所示
用切削机床进行金属品加工时, 例2 用切削机床进行金属品加工时 为了适当地调整 机床, 需要测定刀具的磨损速度. 机床 需要测定刀具的磨损速度 在一定的时间测量刀 具的厚度, 得数据如表所示: 具的厚度 得数据如表所示 切削时间 t/h
0 1 2 3 4 5 6 7 8
刀具厚度 y/cm 30.0 29.1 28.4 28.1 28.0 27.7 27.5 27.2 27.0 切削时间 t/h
已知应力-应变关系可以用一条指数曲线来描述 已知应力 应变关系可以用一条指数曲线来描述, 即假设 应变关系可以用一条指数曲线来描述
σ = k1ε e
k 2ε
式中, 表示应力, 表示应变. 式中 σ 表示应力 单位是 N/m2; ε 表示应变
σ 令 z = ln , a0 = k2 , a1 = ln k1 , 则 z = a0ε + a1 ε
σ = k1ε e
k 2ε
式中, 表示应力, 表示应变. 式中 σ 表示应力 单位是 N/m2; ε 表示应变 选取指数函数作拟合时, 在拟合前需作变量代换, 指数函数作拟合时 解 选取指数函数作拟合时 在拟合前需作变量代换 化为 k1, k2 的线性函数 的线性函数.
σ 于是, 于是 ln = ln k1 k2ε ε σ 令 z = ln , a0 = k2 , a1 = ln k1 ε
数学建模方法大汇总
数学建模方法大汇总数学建模是数学与实际问题相结合,通过建立数学模型来解决实际问题的一种方法。
在数学建模中,常用的方法有很多种,下面将对常见的数学建模方法进行大汇总。
1.描述性统计法:通过总结、归纳和分析数据来描述现象和问题,常用的统计学方法有平均值、标准差、频率分布等。
2.数据拟合法:通过寻找最佳拟合曲线或函数来描述和预测数据的规律,常用的方法有最小二乘法、非线性优化等。
3.数理统计法:通过样本数据对总体参数进行估计和推断,常用的方法有参数估计、假设检验、方差分析等。
4.线性规划法:建立线性模型,通过线性规划方法求解最优解,常用的方法有单纯形法、对偶理论等。
5.整数规划法:在线性规划的基础上考虑决策变量为整数或约束条件为整数的情况,常用的方法有分支定界法、割平面法等。
6.动态规划法:通过递推关系和最优子结构性质建立动态规划模型,通过计算子问题的最优解来求解原问题的最优解,常用的方法有最短路径算法、最优二叉查找树等。
7.图论方法:通过图的模型来描述和求解问题,常用的方法有最小生成树、最短路径、网络流等。
8.模糊数学法:通过模糊集合和隶属函数来描述问题,常用的方法有模糊综合评价、模糊决策等。
9.随机过程法:通过概率论和随机过程来描述和求解问题,常用的方法有马尔可夫过程、排队论等。
10.模拟仿真法:通过构建系统的数学模型,并使用计算机进行模拟和仿真来分析问题,常用的方法有蒙特卡洛方法、事件驱动仿真等。
11.统计回归分析法:通过建立自变量与因变量之间的关系来分析问题,常用的方法有线性回归、非线性回归等。
12.优化方法:通过求解函数的最大值或最小值来求解问题,常用的方法有迭代法、梯度下降法、遗传算法等。
13.系统动力学方法:通过建立动力学模型来分析系统的演化过程,常用的方法有积分方程、差分方程等。
14.图像处理方法:通过数学模型和算法来处理和分析图像,常用的方法有小波变换、边缘检测等。
15.知识图谱方法:通过构建知识图谱来描述和分析知识之间的关系,常用的方法有图论、语义分析等。
《数据拟合方法》PPT课件
n
n
记 J(a1,a2,am)
2 i
[f(xi)yi]2
i1
i1
nm
[ akrk(xi)yi]2 (2) i1 k1
问题归结为,求 a1,a2, …am 使 J(a1,a2, …am) 最小。
最小二乘法的求解:预备知识
超定方程组:方程个数大于未知量个数的方程组
r11a1r12a2 r1mamy1 (nm) rn1a1rn2a2rnmamyn
第一步:先选定一组函数 r1(x), r2(x), …rm(x), m<n, 令
f(x)=a1r1(x)+a2r2(x)+ …+amrm(x)
(1)
其中 a1,a2, …am 为待定系数。
第二步: 确定a1,a2, …am 的准则(最小二乘准则):
使n个点(xi,yi) 与曲线 y=f(x) 的距离i 的平方和最小 。
即 Ra=y
其中
r11 r12 r1m
a1
y1
R ,
a
,
y
rn1 rn2 rnm
am
yn
超定方程一般是不存在解的矛盾方程组。
n
如果有向量a使得
(ri1a1ri2a2 rim amyi)2达到最小,
i1
则称a为上述超定方程的最小二乘解。
最小二乘法的求解
所以,曲线拟合的最小二乘法要解决的问题,实际上就是 求以下超定方程组的最小二乘解的问题。
(x)
( x ) ...
(x)
0
0
11
n
n
a a a y y ( , ,...,
0
1
m
*
) (
数模培训_数据拟合方法
(5)
可以看出,只要f(x)关于待定系数a1,…,am线性,在最小二乘准则 (2)下得到的方程组(3)关于a1,a2,…,am也一定是线性的,故称线 性最小二乘法。
线性最小二乘法原理
2.理论______函数rk(x)的选取
对数据(xi,yi)用线性最小二乘法作拟合时,首要的、也是关键的一步是 恰当地选取r1(x),r2(x),…,rm(x)。 n 如果通过机理分析,能够知道y与x之间应该有什么样的函数关系, 则r1(x),…,rm(x)容易确定。 n 若无法知道y与x之间的关系,可以将数据(xi,yi),i=1,2,…,n作图, 直观地判断应该用什么样的曲线去作拟合。常用的曲线有
g(x)=1/(0.27139-0.07768x)。
算例
l 指数曲线模型 y=aebx
选择y=aebx,取对数lny=lna+bx,令Y=lny,A=lna,取r1(x)=1,r2(x)=x,
要求Y=A+bx与(xi,Yi),i=0,1,2,3,4,做最小二乘拟合,Yi=lnf(xi)。计算结果 如下:
得到关于a1,…,am的线性方程组
in1
r1
(x
i
m
)[ akrk
k 1
(xi
)
y
i
]
0
... ... ... ...
(3)
n
m
i 1
rm
(xi
)[ akrk
k 1
(xi
)
yi
]
0
线性最小二乘法原理
r1(x1 ) ... rm (x1 )
记
...
2.00
曲线拟合
数模俱乐部
曲线拟合
现在我们使用上面求得的系数产生 y: y = (0.1032)x - 28.4909 图像为如图:
如何改善这种状况呢?我 们可以尝试拟合更高阶的多项式。让我们使用一个二次多项式看看。
数模俱乐部
曲线拟合
使用下面的步骤来做: >> p = polyfit(sqft,price,2); 这次有三个系数产生。次数设为 2的 polyfit 函数使用下面的形式给我们返 回系数: y = p1x + p2x + p3 我们把它们提取出来放进变量中并绘图: >> a = p(1); >> b = p(2); >> c = p(3); >> x = [1200:10:4000]; >> y = a*x^2+ b*x + c; >> plot(x,y,sqft,price,'o'), xlabel('房子平方英尺数'),ylabel('平均售价'), ... title('欢乐谷的房子平均售价与平方英尺数的关系'), axis([1200 4000 135 450])
数模俱乐部
曲线拟合
图象如图 所示。 虽然 4000 平方英尺的 房子的价格看起来有点 偏离正常,其它的数据 还是基本上一个直线的 周围的,让我们找出这 条最拟合这些数据的直线。 在我们尝试求出 y = mx + b 的过程中, 房子的 SQFT(平方英尺数)充当 x的角色而平均售价充当 y 的角色。使用 polyfit 找出我们需要的系数,我们只需把数据传递给它并告知它我们在求一 次的多项式。
曲线拟合
数学建模中的参数拟合方法
数学建模中的参数拟合方法数学建模是研究实际问题时运用数学方法建立模型,分析和预测问题的一种方法。
在建立模型的过程中,参数拟合是非常重要的一环。
所谓参数拟合,就是通过已知数据来推算模型中的未知参数,使模型更加精准地描述现实情况。
本文将介绍数学建模中常用的参数拟合方法。
一、最小二乘法最小二乘法是一种常用的线性和非线性回归方法。
该方法通过最小化误差的平方和来估计模型参数。
同时该方法的优点在于可以使用简单的数学公式解决问题。
最小二乘法的基本思想可以简单地表示如下:对于给定的数据集合,设其对应的观测值集合为y,$y_1,y_2,...,y_n$,对应的自变量集合为x,$x_1,x_2,...,x_n$,则目标是找到一组系数使得拟合曲线最接近实际数据点。
通常拟合曲线可以用如下所示的线性方程表示:$$f(x)=a_0+a_1x+a_2x^2+...+a_kx^k$$其中,k为拟合曲线的阶数,$a_i$表示第i个系数。
最小二乘法的目标即为找到一组系数${a_0,a_1,...,a_k}$,使得曲线拟合残差平方和最小:$$S=\sum_{i=1}^{n}(y_i-f(x_i))^2$$则称此时求得的拟合数学模型为最小二乘拟合模型。
最小二乘法在实际问题中应用广泛,如线性回归分析、非线性回归分析、多项式拟合、模拟建模等领域。
对于非线性模型,最小二乘法的数学公式比较复杂,需要使用计算机编程实现。
二、梯度下降法梯度下降法是一种优化算法,通过求解函数的导数,从而找到函数的最小值点。
在数学建模中,梯度下降法可以用于非线性回归分析,最小化误差函数。
梯度下降法的基本思想为:在小区间范围内,将函数$f(x)$视为线性的,取其一阶泰勒展开式,在此基础上进行优化。
由于$f(x)$的导数表示$f(x)$函数值增大最快的方向,因此梯度下降法可以通过调整参数的值,逐渐朝向函数的最小值点移动。
具体地,对于给定的数据集合,设其对应的观测值集合为y,$y_1,y_2,...,y_n$,对应的自变量集合为x,$x_1,x_2,...,x_n$,则目标是找到一组系数使得拟合曲线最接近实际数据点。
拟合曲线的方法(一)
拟合曲线的方法(一)拟合曲线拟合曲线是一种数据分析方法,用于找到最符合给定数据的函数曲线。
在实际应用中,拟合曲线广泛应用于计算机图形学、统计学和机器学习等领域。
不同的方法可以应用于不同类型的数据和问题,下面将介绍几种常见的拟合曲线方法。
线性拟合线性拟合是最简单也是最常见的拟合曲线方法之一。
其基本思想是通过一条直线来拟合数据点。
线性拟合常用于描述两个变量之间的线性关系。
线性拟合的数学模型可以表示为:y=a+bx,其中y是因变量,x是自变量,a是截距,b是斜率。
线性拟合的目标是通过最小化实际数据点和拟合直线之间的误差来确定最佳的a和b。
多项式拟合多项式拟合是一种通过多项式函数来拟合数据点的方法。
多项式函数是由多个幂函数组成的函数,可以适应各种形状的数据。
多项式拟合的数学模型可以表示为:y=a0+a1x+a2x2+⋯+a n x n,其中y是因变量,x是自变量,a0,a1,…,a n是拟合函数的系数。
多项式拟合的目标是通过最小化实际数据点和拟合曲线之间的误差来确定最佳的系数。
曲线拟合曲线拟合是一种通过曲线函数来拟合数据点的方法。
曲线函数可以是任意形状的函数,可以适应各种复杂的数据。
常见的曲线拟合方法包括:贝塞尔曲线拟合贝塞尔曲线拟合是一种用于拟合平滑曲线的方法。
贝塞尔曲线由控制点和节点构成,通过调整控制点的位置来改变曲线的形状。
贝塞尔曲线拟合的目标是通过最小化实际数据点和贝塞尔曲线之间的误差来确定最佳的控制点和节点。
样条曲线拟合样条曲线拟合是一种用于拟合光滑曲线的方法。
样条曲线由多个局部曲线段组成,每个曲线段由一组控制点和节点定义。
样条曲线拟合的目标是通过最小化实际数据点和样条曲线之间的误差来确定最佳的控制点和节点。
非线性拟合非线性拟合是一种用于拟合非线性关系的方法。
非线性关系在现实世界中很常见,例如指数函数、对数函数等。
非线性拟合的数学模型可以表示为:y=f(x,θ),其中y是因变量,x是自变量,θ是模型的参数。
数学建模常见的一些方法【04拟合算法】
数学建模常见的⼀些⽅法【04拟合算法】@⽬录数学建模常见的⼀些⽅法1. 拟合算法与插值问题不同,在拟合问题中不需要曲线⼀定经过给定的点。
拟合问题的⽬标是寻求⼀个函数(曲线),使得该曲线在某种准则下与所有的数据点最为接近,即曲线拟合的最好(最⼩化损失函数)。
1.1 插值和拟合的区别 插值算法中,得到的多项式f(x)要经过所有样本点。
但是如果样本点太多,那么这个多项式次数过⾼,会造成。
尽管我们可以选择分段的⽅法避免这种现象,但是更多时候我们更倾向于得到⼀个确定的曲线,尽管这条曲线不能经过每⼀个样本点,但只要保证误差⾜够⼩即可,这就是拟合的思想。
(拟合的结果是得到⼀个确定的曲线)1.2 求解最⼩⼆乘法1.3 Matlab求解最⼩⼆乘测试数据:x =4.20005.90002.70003.80003.80005.60006.90003.50003.60002.90004.20006.10005.50006.60002.90003.30005.90006.00005.6000>> yy =8.400011.70004.20006.10007.900010.200013.20006.60006.00004.60008.400012.000010.300013.30004.60006.700010.800011.50009.9000计算代码:>> plot(x,y,'o')>> % 给x和y轴加上标签>> xlabel('x的值')>> ylabel('y的值')>> n = size(x,1);>> k = (n*sum(x.*y)-sum(x)*sum(y))/(n*sum(x.*x)-sum(x)*sum(x))>> b = (sum(x.*x)*sum(y)-sum(x)*sum(x.*y))/(n*sum(x.*x)-sum(x)*sum(x))>> hold on % 继续在之前的图形上来画图形>> grid on % 显⽰⽹格线>> f=@(x) k*x+b; % 函数线>> fplot(f,[2.5,7]); % 设置显⽰范围>> legend('样本数据','拟合函数','location','SouthEast')计算过程:>> plot(x,y,'o')>> % 给x和y轴加上标签>> xlabel('x的值')>> ylabel('y的值')>> n = size(x,1);>> n*sum(x.*y)-sum(x)*sum(y)ans = 1.3710e+03>> n*sum(x.*x)-sum(x)*sum(x)ans = 654.4600>> k = (n*sum(x.*y)-sum(x)*sum(y))/(n*sum(x.*x)-sum(x)*sum(x))k = 2.0948>> b = (sum(x.*x)*sum(y)-sum(x)*sum(x.*y))/(n*sum(x.*x)-sum(x)*sum(x))b = -1.0548>> hold on>> grid on>> f=@(x) k*x+b;>> fplot(f,[2.5,7]);>> legend('样本数据','拟合函数','location','SouthEast')1.4 如何评价拟合的好坏线性函数是指对参数为线性(线性于参数)在函数中,参数仅以⼀次⽅出现,且不能乘以或除以其他任何的参数,并不能出现参数的复合函数形式。
数学建模曲线的拟合
0 3.19
0.1 3.22
0.2 3.26
0.3 3.25
0.4 3.23
0.5 3.19
0.6 3.20
0.7 3.13
0.8 3.06
0.9 2.98
程序设计: 程序设计: x0=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9]; y0=[3.19 3.22 3.26 3.25 3.23 3.19 3.20 3.13 3.06 2.98]; a=polyfit(x0,y0,2) %二次多项式为拟合函数 二次多项式为拟合函数 x=0:0.1:0.9; y=polyval(a,x); %计算拟合多项式在 的值 计算拟合多项式在x的值 计算拟合多项式在 plot(x0,y0,'*',x,y)
有时候,问题本身不要求构造的函数过所有的节点。 有时候,问题本身不要求构造的函数过所有的节点。 个风景点, 使得S为直线 如:5个风景点,要修一条公路 使得 为直线,且到所有风景点的 个风景点 要修一条公路S使得 为直线, 距离和最小。 距离和最小。
二、常见的解决做法
总体上尽可能小 尽可能小” “p(xi) − yi 总体上尽可能小”,有不同的准则
显然, 要设计给药方案, 显然, 要设计给药方案, 必须知道给药后血药浓度随时间变化的 规律. 为此, 实验和理论两方面着手 在实验方面, 两方面着手. 规律. 为此, 从实验和理论两方面着手. 在实验方面, 对某人用 快速静脉注射方式一次注入该药物300mg 300mg后 (小 快速静脉注射方式一次注入该药物300mg后, 在一定时刻 t (小 采集血样, 测得血药浓度c. 如表: 血药浓度c(t) 时)采集血样, 测得血药浓度c. 如表: 血药浓度c(t) 的测试数 据
数学建模常用的十种方法
数学建模常用的十种方法
1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,是比赛时必用的方法)
2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)
3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)
4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)
5、动态规划、回溯搜索、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)
7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)
8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)
10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)。
数学建模常用的十种解题方法
数学建模常用的十种解题方法 摘要当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。
这个建立数学模型的全过程就称为数学建模。
数学建模的十种常用方法有蒙特卡罗算法;数据拟合、参数估计、插值等数据处理算法;解决线性规划、整数规划、多元规划、二次规划等规划类问题的数学规划算法;图论算法;动态规划、回溯搜索、分治算法、分支定界等计算机算法;最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法;网格算法和穷举法;一些连续离散化方法;数值分析算法;图象处理算法。
关键词:数学建模;蒙特卡罗算法;数据处理算法;数学规划算法;图论算法 一、蒙特卡罗算法蒙特卡罗算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。
在工程、通讯、金融等技术问题中, 实验数据很难获取, 或实验数据的获取需耗费很多的人力、物力, 对此, 用计算机随机模拟就是最简单、经济、实用的方法; 此外, 对一些复杂的计算问题, 如非线性议程组求解、最优化、积分微分方程及一些偏微分方程的解⑿, 蒙特卡罗方法也是非常有效的。
一般情况下, 蒙特卜罗算法在二重积分中用均匀随机数计算积分比较简单, 但精度不太理想。
通过方差分析, 论证了利用有利随机数, 可以使积分计算的精度达到最优。
本文给出算例, 并用MA TA LA B 实现。
1蒙特卡罗计算重积分的最简算法-------均匀随机数法二重积分的蒙特卡罗方法(均匀随机数)实际计算中常常要遇到如的()dxdy y x f D ⎰⎰,二重积分, 也常常发现许多时候被积函数的原函数很难求出, 或者原函数根本就不是初等函数, 对于这样的重积分, 可以设计一种蒙特卡罗的方法计算。
数学建模曲线拟合
使误差的平方和 E 2 最小, E 2 pX i Yi 2 。从几何意义上讲,就是寻求与
给定点 X i ,Yi (i 0,1,, m) 的距离平方和为最小的曲线 y px。函数 px称 为拟合函数或最小二乘解,求拟合函数 px的方法称为曲线拟合的最小二乘法。
1、问题的重述
已知一个量 y 依赖于另一个量 x ,现收集有数据如下:
x 0.0 0.5 1.0 1.5 1.9 2.5 3.0 3.5 4.0 4.5 y 1.0 0.9 0.7 1.5 2.0 2.4 3.2 2.0 2.7 3.5 x 5.0 5.5 6.0 6.6 7.0 7.6 8.5 9.0 10.0 y 1.0 4.0 7.6 2.7 5.7 4.6 6.0 6.8 12.3
3.问题三 利用 MATLAB 中的 fminsearch 函数,在题目要求的约束条件使 y 的各个观察
值同按直线关系所预期的值的最大偏差为最小下进行曲线拟合,得到目标函数 如下:
y -1.8790 1.1300 x 函数图像如下:
4.问题四 (1)问题一
同问题一相似,只是拟合的曲线为二阶多项式,利用 MATLAB 中 lsqcurvefit 的函数进行曲线拟合,得到目标函数如下:
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
数学建模的主要建模方法
主要建模方法1、类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系,在不同的对象或完全不相关的对象中找出同样的或相似的关系,用已知模型的某些结论类比得到解决该“类似”问题的数学方法,最终建立起解决问题的模型2、量纲分析是在经验和实验的基础上,利用物理定律的量纲齐次性,确定各物理量之间的关系。
它是一种数学分析方法,通过量纲分析,可以正确地分析各变量之间的关系,简化实验和便于成果整理。
在国际单位制中,有七个基本量:质量、长度、时间、电流、温度、光强度和物质的量,它们的量纲分别为M、L、T、I、H、J和N,称为基本量纲。
量纲分析法常常用于定性地研究某些关系和性质,利用量纲齐次原则寻求物理量之间的关系,在数学建模过程中常常进行无量纲化,无量纲化是根据量纲分析思想,恰当地选择特征尺度将有量纲量化为无量纲量,从而达到减少参数、简化模型的效果。
3.差分法差分法的数学思想是通过taylor级数展开等方法把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的方程组,将微分问题转化为代数问题,是建立离散动态系统数学模型的有效方法。
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有以下几种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
差分法的解题步骤为:建立微分方程;构造差分格式;求解差分方程;精度分析和检验4、变分法较少5、图论法数学建模中的图论方法是一种独特的方法,图论建模是指对一些抽象事物进行抽象、化简,并用图来描述事物特征及内在联系的过程。
图论是研究由线连成的点集的理论。
一个图中的结点表示对象,两点之间的连线表示两对象之间具有某种特定关系(先后关系、胜负关系、传递关系和连接关系等)。
数学建模的主要建模方法
主要建模方法1、类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系,在不同的对象或完全不相关的对象中找出同样的或相似的关系,用已知模型的某些结论类比得到解决该“类似”问题的数学方法,最终建立起解决问题的模型2、量纲分析是在经验和实验的基础上,利用物理定律的量纲齐次性,确定各物理量之间的关系。
它是一种数学分析方法,通过量纲分析,可以正确地分析各变量之间的关系,简化实验和便于成果整理。
在国际单位制中,有七个基本量:质量、长度、时间、电流、温度、光强度和物质的量,它们的量纲分别为M、L、T、I、H、J和N,称为基本量纲。
量纲分析法常常用于定性地研究某些关系和性质,利用量纲齐次原则寻求物理量之间的关系,在数学建模过程中常常进行无量纲化,无量纲化是根据量纲分析思想,恰当地选择特征尺度将有量纲量化为无量纲量,从而达到减少参数、简化模型的效果。
3.差分法差分法的数学思想是通过taylor级数展开等方法把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的方程组,将微分问题转化为代数问题,是建立离散动态系统数学模型的有效方法。
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有以下几种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
差分法的解题步骤为:建立微分方程;构造差分格式;求解差分方程;精度分析和检验4、变分法较少5、图论法数学建模中的图论方法是一种独特的方法,图论建模是指对一些抽象事物进行抽象、化简,并用图来描述事物特征及内在联系的过程。
图论是研究由线连成的点集的理论。
一个图中的结点表示对象,两点之间的连线表示两对象之间具有某种特定关系(先后关系、胜负关系、传递关系和连接关系等)。
数学建模中常用的方法
1:蒙特卡罗算法; 2:数据拟合、参数估计、插值等数据处理算法 (常用matlab实现); 3:线性规划、整数规划、多元规划、二次规划(用 lingo、lingdo、matlab即可实现); 4:图论算法(包括最短路、网络流、二分图); 5:动态规划、回溯搜索、分治算法、分支界定; 6:最优化理论的三大经典算法(模拟退火算法、 神经网络算法、遗传算法); 7:网格算法和穷举法; 8:连续数据离散化; 9:数值分析算法; 10:图象处理算法(常用matlab来实现)。
摘要 关键词 (1)问题重述 (2)模型假设与约定 (3)符号说明及名词定义 (4)问题分析 (5)模型建立(问题分析,公式推导,基本模型,最终或 简化模型等)与求解(包括设计或选择合适的计算方法和算 法,设计算法的实现步骤和计算框图;所采用的软件名称; 引用或建立必要的数学命题和定理; 求解方案及流程 ) (6)进一步讨论 (7)模型检验 (8)模型优缺点 (9)附录 (10)参考文献
在优化方法中,决策变量、目标函数(尽量简
单、光滑)、约束条件、求解方法是四个关键 因素。其中包括无约束规则(用fminserch、 fminbnd实现)线性规则(用linprog实现)非 线性规则、( 用fmincon实现)多目标规划 (有目标加权、效用函数)动态规划(倒向和 正向)整数规划。
时间序列是按时间顺序排列的、随时间变化且
相互关联的数据序列—通过对预测目标自身时 间序列的处理,来研究其变化趋势(长期趋势 变动、季节变动、循环变动、不规则变动)
时间序列建模的基本步骤 数据的预处理:数据的剔取及提取趋势项 取n=1,拟合ARMA(2n,2n-1)(即ARMA(2,1))模型 n=n+1,拟合ARMA(2n,2n-1)模型 用F准则检验模型的适用性。若检验显著,则转入第2步。 若检验不显著,转入第5步。 检查远端时刻的系数值的值是否很小,其置信区间是否 包含零。若不是,则适用的模型就是ARMA(2n,2n-1) 。 若很小,且其置信区间包含零,则拟合ARMA(2n-1,2n2) 。 利用F准则检验模型ARMA(2n,2n-1)和ARMA(2n-1,2n-2) , 若F值不显著,转入第7步;若F值显著,转入第8步。 舍弃小的MA参数,拟合m<2n-2的模型ARMA(2n-1,m) , 并用F准则进行检验。重复这一过程,直到得出具有最 小参数的适用模型为止 舍弃小的MA参数,拟合m<2n-1的模型ARMA(2n,m) , 并用F准则进行检验。重复这一过程,直到得出具有最 小参数的适用模型为止。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实例. 找出基于下列数据的美国马萨诸塞州生产量、劳动力和投资之间变化的经
济增长模型(道格拉斯 Douglas 生产函数模型 )
实例 3. 某研究所为了研究三种肥料氮, 磷, 钾对于土豆和生菜的作
用, 分别对每种作物进行了三组试验. 实验数据如下列表格所示, 其 中 ha 表示公顷 , t 表示吨 , kg 表示千克. 试建立反映施肥量与产量 关系的数学模型. 氮施肥量(公斤/公顷)与土豆产量(吨/公顷)关系的实验数据
4
组数据应服 从的数学模型,如记 l - 1000 = l’ , l0 – 1000 = b, al0 = k , 则有 l’ = b + kt . 可以算得:
t 42.5,
2 ' t 8100 , l i i 1
4
(l 1000)
i 1
4
0.705,
' t l i i 34.6 i 1
§4. 常见的数学建模方法(1) --- 数据拟合(曲线拟合)法
在建立数学模型时,实际问题有时仅给出一组数据. 处理这类问题的 较简单易行的方法是通过数据拟合法求得 “最佳” 的近似函数式 --经验公式. 从几何上看就是找一条 “最佳” 的曲线, 使之和给定的 数 ( 1)决定经验公式的形式 . 根据所描绘的系统固有的特点 ,参照 据点靠得最近 , 即进行曲线拟合 . 根据一组数据来确定其经验公式 , 已知数据的图形和特点或者它应服从的规律来决定经验公式的形式 . 一般可 分为三步进行: 这一步是关键的一步. (2)决定经验公式中的待定参数 . 一般可用线性情况下的最小二 乘法 .它误差较小,适用于测定数据比较精确的情况.在使用最小二 乘法 时,如遇到数学模型是非线性经验公式时其中参数的待定,通
施肥 量 0 34 67 101 135 202 259 336 404 471
产量
15.1 8
21.3 6
25.7 2
32.2 9
34.0 3
39.4 5
43.1 5
43.4 6
40.8 3
30.7 5
磷施肥量(公斤/公顷)与土豆产量(吨/公顷)关系的实验数据
施肥量 产量
0
33.46
24
32.47
模型建立:
dy k ( xm x), y (0) y0 15.18 dx
模型求解: y = ax2 + bx + c 其中 c = y(0) = 15.18 ( 或 11.02 ).
令 x’ = x , y’ = ( y - c ) / x , 可以化为线性模型:y’ = ax’ + b .
49
36.06
73
37.96
98
41.04
147
40.09
196
41.26
245
42.17
294
40.36
342
42.73
钾施肥量(公斤/公顷)与土豆产量(吨/公顷)关系的实验数据
施肥量 产量
0
18.98
47
27.35
93
34.86
140
38.52
186
38.44
279
37.73
372
38.43
465
其中
x
x
i 1
n
i
,y
y
i 1
n
i
.
实例1. 找出基于下列数据的铜棒长度 l 与温度 t 之间关系的经验公
式. 温度 t ( 0C ) 对应长度 l (mm)
20 1000.2 40 1000.65 50 1000.90 60 1001.05
建模过程: 利用已有的物理学固体热胀冷缩定律: l = l0(1+at) 作为该
4
根据最小二乘法公式,
k
t l ' nt l '
i 1 n i i 2 2 t n t i i 1
n
0.0212 , b l 'kt 0.196
可得: l = 999.804( 1 + 0.0000212t ).
最后检验该模型(经验公式): t v2 l (测定值) l*(计算值) v = l - l* 20 1000.22 1000.228 +0.008 0.000064 40 1000.65 1000.652 +0.002 0.00004 50 1000.9 1000.864 -0.036 0.001296 60 1001.05 1001.074 +0.024 0.000576 残差的平方和为: Σv2 = 0.00194 , 这个结果应该说是较好的. 实例2. 找出基于下列数据的油的粘度 y 与温度 x 之间关系的经验 公式 . 温度x 10 20 30 40 50 60 70 80 粘度y 4.24 2.92 2.2 1.81 1.6 1.43 1.32 1.25 建模过程: 无现成机理明确的公式,使用描点比较法 :
i 1
n n (3)进行模型检验 .求得确定的经验公式后,将实际测定值与用公 式算出的理论值进行比较. 在决定经验公式的形式时, 大致思路是: a) 利用所研究系统的有关问题在理论上已有的结论, 来 确定经 验公式的形式 . b) 在无现成理论情况下, 最简单的处理手段是用描图的方法, 将 数据点连成光滑曲线, 把它与已知函数曲线进行比较,找出与之比 较接近的曲线. c) 如要考虑所建立的模型必要的逻辑性与理论价值,可利用合适 的数学方法, 对所研究系统的有关问题进行 定量化的机理分析 , 导出较为严密的数学公式.
相应的统计数据为:
X
Y
1
6.39
1/50
9.48
1/99
12.46
1/148
14.33
1/197
17.1
1/295
21.94
1/392
22.64
1/490
21.34
1/588
22.07
1/686
24.53
根据最小二乘法计算公式和统计数据, 先算得 a 和 k , 然后再算出 y0 .
在建立曲线拟合法的数学模型时,如果能尽量做一些定量 化的机理分析, 然后运用数学手段推导出合理的数学模型, 则建模的效果会 更好一些.
说明: 该例中的变量替换 方法运用,使得线性模型的最小二乘法公式 应用范围大 大扩大. 常见的 非线性模型的变换方式 如下表所列:
曲线 幂函数 y = axb 指数函数 y = aebx 双曲函数 y = x/ (ax+b) 对数函数 y = a + blnx 指数函数 y = aeb/x S型函数y = 1 / ( a+be-x ) 变换 x’=lnx, y’=lny x’=x , y’ = lny x’=1/x, y’= 1/y x’ = lnx, y’ = y x’=1/x, y’=lny x’=e-x, y’=1/y 变换后的线性表示式 y’ = lna +bx’ y’ = lna +bx’ y’ = a + bx’ y’ = a + bx’ y’ = lna +bx’ y’ = a + bx’
施肥量 产量
0
6.39
49
9.48
98
12.46
147
14.33
196
17.10
294
21.94
391
22.64
489
21.34
587
22.07
685
24.53
钾施肥量(公斤/公顷)与生菜产量(吨/公顷)关系的实验数据
施肥量 产量
0
15.75
47
16.76
93
16.89
140
16.24
186
17.56
x
1 y a b e x
作为经验公式 .
1 y 最终的数学模型是: 0.0232 0.0073 e x 根据这个模型, 可以得到土豆的最高极限产量是43吨. 这个结论从定 性角度看, 与农业资料的结论是一致的, 即在一定的范围内磷施肥量 可以使土豆产量增长, 但 过多地施磷肥对土豆产量不起作用. 在这一 点上, 该模型是经得起实际检验的.
2 .磷施肥量 x 关于生菜产量 y 的情况 .
描点图为:
由描点图可知, 在模型建立中应注意以下两个因素: 1) 当磷肥施肥量为零时, 生菜产量并非为零, 这说明土壤中原来就 含有一定量的磷肥成分; (2) 实验数据说明,磷肥施肥量再多不会引起产量明显下降, 而使生 菜产量趋于一个渐近值, 即极限产量. ax y 0 考虑到上面一些分析,可采用双曲线模型: y 1 x 这里 a 为生菜极限产量数 . 为了利用线性模型的最小二乘法 , 令 X = 1 / (1 + x ) , Y = y , k = y0 – a , 化为线性函数模型: Y = a + kX .
由土豆产量 y 依赖于氮施肥量 x 的数学模型 → 0.197 – 0.00068x0= 350 / 0.8 → 对土豆的最佳氮施肥量 x0 = 290.57 kg / ha . 由生菜产量 y 依赖于氮施肥量 x 的数学模型 → 0.101 – 0.00048x = 350 / 0.2 → 对生菜的最佳氮施肥量 x0 = 203.57 kg / ha .
根据所给数据 , 运用线性模型的最小二乘法公式 , 得土豆产量 y 依 赖于氮施肥 量 x 的数学模型: y = - 0.00034x2 + 0.197x + 15.18 ; 生菜产量 y 依赖于氮施肥量 x 的数学模型: y = - 0.00024x2 + 0.101x + 11.02.
模型分析与模型决策: 当下列关系 y’(x0) = Tx / Ty ( Tx ,Ty 分别为