2018二模物理分类:力学压轴题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018二模物理分类:力学压轴题
1.(金山)如图11所示,厚壁柱形容器甲和正方体乙置于水平地面上。
若厚壁柱形容器甲的内外底面积分别为S 1、S 2,外底面积S 2为1.2×10-2
米2
,甲容器盛有一定量的水。
正方体乙的体积为0.5×10-3
米3
,密度为1.2×103
千克/米3。
(1) 求正方体乙的质量m 。
(2)求容器内0.1米深处水的压强p 水。
(3)将正方体乙浸没在水中(无水溢出),水对容器底部的压强p 水、容器对地面的压强p
地
等数据如下表所示。
求容器甲的重力G 。
2.(宝山)如图12所示,均匀立方体A 和薄壁柱形容器B 置于水平地面上,已知A 的体积为1×10-3
米3
,密度为2×103
千克/米3
;B 的底面积为6×10-2
米2
,其内部盛有质量为6千克的某种液体。
⑴求立方体A 的质量m A 。
⑵求液体对容器B 底部的压强p 液。
⑶若从B 容器内抽出2千克液体,求此刻立方体A 对水平地面的压强与液体对B 容器底部压强之比p A ∶p ′液。
3.(长宁)如图11所示,轻质薄壁柱形溢水杯甲和柱形容器乙放在水平桌面上,溢水杯甲和容器乙的底面积分别为2×10-2
米2
和1×10-2
米2。
在溢水杯甲中注入水直到溢水口,此时水的深度为0.2米。
求:
①溢水杯甲底部受到水的压强p 水。
②溢水杯甲对水平地面的压力F 甲。
③若将一个金属球浸没在溢水杯甲中,水通过溢水口流入柱形容器乙中,发现此时溢水杯甲对水平地面的压强增加量等于容器乙对水平地面的压强(乙容器中水未溢出),求放入金属球的密度ρ。
图11
图12
4.(杨浦)如图14所示,轻质薄壁圆柱形容器甲和圆柱体乙置于水平地面上。
甲的底面积为0.01米2
(容器足够高),盛有0.2米深的水;圆柱体乙的底面积为0.005米2
、高为0.8米,密度为2×103
千克/米3。
①求水对甲容器底的压强p 水。
②求乙的质量m 乙。
③若在乙上方沿水平方向切去一部分,并将切去部分竖直放在甲容器内,使甲容器对地面的压力等于乙剩余部分对地面的压力,求甲容器底部受到水的压强变化量Δp 甲。
5.(徐汇)如图11所示,均匀圆柱体甲和盛有液体乙的圆柱形容器分别置于高度差为h 的两个水平面上。
甲物高为5h 、底面积为S 甲;圆柱形容器高度为7h ,液体乙深度为6h 、底面积为S 乙(S 甲=2S 乙)、体积为5×10-3
米3
(ρ乙=0.8×103
千克/米3
)。
求:
①液体乙的质量m 乙。
②距离液面0.1米深处的液体内部压强P 乙。
③如图所示,若沿图示水平面MN 处切去部分甲物,从容器中抽取部分乙液体至水平面MN 处,发现二者质量的变化是一样。
现从甲的上部继续沿水平方向截去高度△h 后,甲对水平地面压强为P’甲;向容器中加入深度为△h 的液体乙后,乙对容器底部的压强为P’乙。
请通过计算比较P’甲和P’乙的大小关系及其对应的△h 取值范围。
6.(松江)如图10所示,置于水平桌面上的A 、B 是两个完全相同的薄壁柱形容器,质量为0.5千克,底面积为0.01米2
,分别装有体积为2.5×10﹣3
米3
的水和深度为0.3米的酒精,(ρ酒精=0.8×103
千克/米3
)。
求:
① 水的质量m 水。
② A 容器对水平桌面的压强p A 。
③ 若在两个容器中抽出相同深度的液体△h 后,两容器中液体对底部的压强相等,请计算出△h 的大小。
图14
图11
图10
B
图
8
7.(青浦)柱形轻质薄壁容器的底面积为1×10-2米2
,如图8所示,内盛2千克的水后置于水平地面上。
① 求容器对水平地面的压强p 。
② 现将一块体积为1×10-3
米3
的物体完全浸没在容器的水中后,测得容器底部受到水的压强为2450帕。
通过计算判断将物体放入容器时是否有水溢出,若有水溢出请求出溢出水的质量m 溢水,若无水溢出请说明理由。
8.(普陀)边长为0.2米和0.1米的甲、乙两个实心正方体放在水平地面,其中甲密度为4×103
千克/米3
,乙的质量为2千克。
① 求甲对地面的压强p 甲; ② 求乙对地面的压力F 乙;
③ 为使甲、乙对地面压强相同,小李设想将甲、乙分别沿水平方向和竖直方向切去相
同厚度h ,请通过计算判断是否可行。
9.(浦东)甲、乙两个完全相同的轻质圆柱形容器放在水平地面上,甲中盛有0.3米深的水,乙中盛有1×10-2
米3
的酒精。
(酒精的密度为0.8×103
千克/米3
)
①求水对甲容器底部的压强p 水; ②求乙容器中酒精的质量m 洒;
③若容器的底面积均为2×10-2
米2
,从两容器中均抽出2×10-3
米3
的液体后,求两容器对水平地面的压强之比p 甲:p 乙。
10.(闵行)如图13所示,薄壁圆柱形容器甲和圆柱体乙均放置在水平地面上。
容器甲底面积为0.02米2
、质量为1千克,内装有2千克的酒精。
圆柱体乙的底面积为0.01米2
,但高度未知。
(ρ酒精=800千克/米3
)
(1)求容器内酒精的体积。
(2)求装有酒精的容器甲对水平地面的压强。
(3)若将装有酒精的容器甲放在圆柱体乙上方中央,则圆柱体乙对地面的压强变化量为ΔP 1;若将圆柱体乙浸没在酒精中(无酒精溢出),则酒精对容器底部变化量为ΔP 2。
已知ΔP 1=6ΔP 2,试通过计算确定圆柱体乙的高度h 。
11.(静安)如图9所示,薄壁圆柱形容器置于水平地面上,容器内盛有质量为6千克、深为0.3米的水。
① 求容器中水的体积V 水。
② 求水对容器底部的压强p 水。
③ 若容器对地面的压强为3920帕,求容器对地面的压力F 容。
12.(黄浦)簿壁圆柱形容器置于水平面上,容器重为0.2牛。
底面积为2×10﹣2
米2
,其内盛有1千克的水。
①求水的体积V 。
②求容器对水平面的压强P 。
③现将一体积为1×10﹣4
米3
的实心均匀小球浸没在该容器的水中,放入前后水对容器底部压强变化量△p 水及容器对水平面的压强变化量△p 液如下表所示,求小球的密度ρ。
△p 水(帕)
△p 液(帕)
196
图9
13.(虹口)如图12(a )所示,薄壁密闭长方体容器置于水平地面上,容器对地面的压强
p 容为245帕。
现在容器中装入深度h 为0.2米的水,如图12(b )所示。
① 求容器底部受到水的压强p 水。
② 若将密闭容器放倒在水平地面上,如图12(c )所示,此时水对容器底部的压强p 水′为784帕,求此时水的深度h 水′和容器对地面的压强p 容′。
14.(奉贤)如图11所示,薄壁轻质圆柱形容器底面积1×10-2
米2
,容器内水的深度为2×10-1
米,静止在水平桌面上。
求:
① 水的质量m 水。
② 水对容器底部的压强p 水。
③ 现有A 、B 两物体,它们的密度、体积的关 系如表所示,当把它们分别浸没在水中时(水不溢出),求水对容器底部压强的增加量∆p 水与水平桌面受到的压强的增加量∆p 桌的比值之差。
(用字
母表示)
15.(崇明)如图12所示,质量为3千克,边长为0.1米、体积为0.001米3
的均匀
正方体甲,和底面积为0.02米3
的薄壁柱形容器乙放在水平地面上,乙容器足够高,内盛有0.1米深的水. (1)求正方体甲的密度; (2)求水对乙容器底部的压强;
(3)现将甲物体水平切去一部分,乙容器中抽取部分水,当甲
物体、乙容器中的水减少体积相同,并使正方体甲对地面 的压强等于水对乙容器底部的压强,求切去部分的体积.
图12
0.(a )
图11
图12。