数据结构单链表及插入删除C语言
链表删除节点的方法c语言
链表删除节点的方法c语言摘要:1.引言2.链表删除节点的原理3.单链表删除节点的实现4.双向链表删除节点的实现5.总结与拓展正文:【1】引言在计算机科学中,链表是一种常见的数据结构。
在实际应用中,链表的删除操作是非常重要的。
本文将介绍如何在C语言中实现链表的删除操作,主要包括单链表和双向链表的删除方法。
【2】链表删除节点的原理链表删除节点的主要原理是通过迭代或直接修改指针来实现。
在删除节点时,需要考虑以下几点:1.确定要删除的节点;2.更新前后相邻节点的指针;3.释放被删除节点的内存。
【3】单链表删除节点的实现单链表删除节点的核心代码如下:```cvoid deleteNode(Node* head, int target) {Node* p = head;Node* prev = NULL;while (p != NULL) {if (p->data == target) {if (prev == NULL) {head = p->next;} else {prev->next = p->next;}free(p);break;}prev = p;p = p->next;}}```这段代码首先定义了一个指向链表头的指针head,以及一个指向要删除节点的指针prev。
在while循环中,遍历链表的每个节点,当找到要删除的节点时,修改其相邻节点的指针,并释放被删除节点的内存。
【4】双向链表删除节点的实现双向链表删除节点的核心代码如下:```cvoid deleteNode(Node* head, int target) { Node* p = head;while (p != NULL) {if (p->data == target) {if (p->prev == NULL) {head = p->next;} else {p->prev->next = p->next;}if (p->next == NULL) {p->prev = NULL;} else {p->next->prev = p->prev;}free(p);break;}p = p->next;}}```这段代码与单链表删除节点的实现类似,主要区别在于双向链表需要维护prev指针,因此在删除节点时需要特别处理。
数据结构单链表插入、删除和修改实验报告
计算机学院实验报告课程名称:数据结构实验名称:单链表学生姓名:***学生学号:***********实验日期:2012一、实验目的1.理解数据结构中带头结点单链表的定义和逻辑图表示方法。
2.掌握单链表中结点结构的C++描述。
3.熟练掌握单链表的插入、删除和查询算法的设计与C++实现。
二、实验内容1.编制一个演示单链表插入、删除、查找等操作的程序。
三、实验步骤1.需求分析本演示程序用C++6.0编写,完成单链表的生成,任意位置的插入、删除,以及确定某一元素在单链表中的位置。
①输入的形式和输入值的范围:插入元素时需要输入插入的位置和元素的值;删除元素时输入删除元素的位置;查找操作时需要输入元素的值。
在所有输入中,元素的值都是整数。
②输出的形式:在所有三种操作中都显示操作是否正确以及操作后单链表的内容。
其中删除操作后显示删除的元素的值,查找操作后显示要查找元素的位置。
③程序所能达到的功能:完成单链表的生成(通过插入操作)、插入、删除、查找操作。
④测试数据:A.插入操作中依次输入11,12,13,14,15,16,生成一个单链表B.查找操作中依次输入12,15,22返回这3个元素在单链表中的位置C.删除操作中依次输入2,5,删除位于2和5的元素2.概要设计1)为了实现上述程序功能,需要定义单链表的抽象数据类型:(1)insert初始化状态:单链表可以不为空集;操作结果:插入一个空的单链表L。
(2)decelt操作结果:删除已有的单链表的某些结点。
(3)display操作结果:将上述输入的元素进行排列显示。
(4)modify操作结果:将上述输入的某些元素进行修改。
(5)save操作结果:对上述所有元素进行保存。
(6)load操作结果:对上述元素进行重新装载。
3.使用说明程序执行后显示======================1.单链表的创建2.单链表的显示3.单链表的长度4.取第i个位置的元素5.修改第i个位置的元素6.插入元素到单链表里7.删除单链表里的元素8.合并两个单链表9.退出系统=======================5.源代码:#include<iostream>using namespace std;#define true 1#define false 0#define ok 1#define error 0#define overflow -2typedef int Status;typedef int ElemType;typedef struct LNode{ ElemType data;struct LNode *next;}LNode,*LinkList;void CreateList(LinkList &L,int n){ LinkList p;L=new LNode;L->next=NULL;LinkList q=L;for(int i=1;i<=n;i++){ p=new LNode;cin>>p->data;p->next=NULL;q->next=p;q=p; }}Status GetElem(LinkList L,int i,ElemType &e){ LinkList p=L->next;int j=1;while(p&&j<i){ p=p->next;++j; }if(!p||j>i) return error;e=p->data;return ok;}Status LinkInsert(LinkList &L,int i,ElemType e) { LinkList p=L;int j=0;while(p&&j<i-1){ p=p->next;++j; }if(!p||j>i-1)return error;LinkList s=new LNode;s->data=e;s->next=p->next;p->next=s;return ok;}Status ListDelete(LinkList &L,int i,ElemType &e){ LinkList p=L;LinkList q;int j=0;while(p->next&&j<i-1){p=p->next;++j; }if(!(p->next)||j>i-1) return error;q=p->next;p->next=q->next;e=q->data;delete(q);return ok;}void MergeList(LinkList &La,LinkList &Lb,LinkList &Lc) {LinkList pa,pc,pb;pa=La->next;pb=Lb->next;Lc=pc=La;while(pa&&pb){ if(pa->data<=pb->data){ pc->next=pa;pc=pa;pa=pa->next; }else{ pc->next=pb;pc=pb;pb=pb->next; }}pc->next=pa?pa:pb;delete(Lb);}void show(LinkList L){ LinkList p;p=L->next;while(p){ cout<<p->data<<"-->";p=p->next; }cout<<endl;}int Length(LinkList L,int i){ i=0;LinkList p=L->next;while(p){ ++i;p=p->next; }return i;}void xiugai(LinkList L){ int i,j=1;ElemType k;ElemType e,m;LinkList p=L->next;cout<<"请输入要修改的元素位置(0<i<length):";cin>>i;GetElem(L,i,e);cout<<"该位置的元素:"<<e<<endl;cout<<"修改后的元素值:";cin>>k;while(p&&j<i){ p=p->next;++j; }m=p->data;p->data=k;cout<<"修改后的单链表显示如下:"<<endl;show(L);}void hebing(){ int a,b;LinkList La,Lb,Lc;cout<<"请输入第一个有序链表的长度:"<<endl;cin>>a;cout<<"请输入第一个有序链表的元素共("<<a<<"个):"<<endl;CreateList(La,a);show(La);cout<<"请输入第二个有序链表的长度:"<<endl;cin>>b;cout<<"请输入第二个有序链表的元素共("<<b<<"个):"<<endl;CreateList(Lb,b);show (Lb);MergeList(La,Lb,Lc);cout<<"合并后的有序链表如下:"<<endl;show(Lc);}void main(){ int select;int x;ElemType y;LinkList list;for(;;){ cout<<" 单链表的基本操作"<<endl;cout<<" 1.单链表的创建"<<endl;cout<<" 2.单链表的显示"<<endl;cout<<" 3.单链表的长度"<<endl;cout<<" 4.取第i个位置的元素"<<endl;cout<<" 5.修改第i个位置的元素"<<endl;cout<<" 6.插入元素到单链表里"<<endl;cout<<" 7.删除单链表里的元素"<<endl;cout<<" 8.合并两个单链表"<<endl;cout<<" 9.退出系统"<<endl;cout<<"请选择:";cin>>select;switch(select){ case 1:cout<<"请输入单链表的长度:"<<endl;cin>>x;cout<<"请输入"<<x<<"个元素"<<endl;CreateList(list,x);break;case 2: cout<<"单链表显示如下:"<<endl;show(list);break;case 3: int s;cout<<"单链表的长度为:"<<Length(list,s)<<endl;break;case 4: cout<<"请选择所要取出元素的位置:";cin>>x;while(x<0||x>Length(list,s)){ cout<<"输入有误,请重新输入"<<endl;cout<<"请选择所要取出元素的位置:";cin>>x; }GetElem(list,x,y);cout<<"该位置的元素为:"<<y<<endl;break;case 5: xiugai(list); break;case 6: cout<<"请选择要插入的位置:"; cin>>x;while(x<0||x>Length(list,s)){ cout<<"输入有误,请重新输入"<<endl;cout<<"请选择所要插入元素的位置:";cin>>x; }cout<<"要插入的元素值:";cin>>y;LinkInsert( list,x,y);cout<<"插入后单链表显示如下:"<<endl;show(list);break;case 7: cout<<"请选择要删除的位置:"; cin>>x;while(x<0||x>Length(list,s)){ cout<<"输入有误,请重新输入"<<endl;cout<<"请选择所要删除元素的位置:";cin>>x; }ListDelete(list,x,y);cout<<"要删除的元素值:"<<y<<endl;cout<<"删除后的单链表显示如下:"<<endl;show(list);break;case 8: hebing();break;case 9: exit(0);break;default : cout<<"输入有误,请重新输入"<<endl;break;}}}6.测试结果四、实验总结(结果分析和体会)单链表的最后一个元素的next为null ,所以,一旦遍历到末尾结点就不能再重新开始;而循环链表的最后一个元素的next为第一个元素地址,可返回头结点进行重新遍历和查找。
c语言单链表头插法实现链表逆置
c语言单链表头插法实现链表逆置链表是一种常用的数据结构,它由一系列节点组成,每个节点包含数据和指向下一个节点的指针。
在C语言中,我们可以使用单链表来实现各种操作,如插入、删除和查找等。
本文将介绍如何使用头插法实现链表的逆置。
首先,我们需要定义一个链表节点的结构体,包含数据和指向下一个节点的指针。
代码如下:```ctypedef struct Node {int data;struct Node* next;} Node;```接下来,我们需要实现链表的创建和逆置函数。
首先,创建一个空链表,并将头节点指针指向NULL。
代码如下:```cNode* createList() {Node* head = NULL;return head;}```然后,我们可以实现链表的插入函数,使用头插法将新节点插入到链表的头部。
代码如下:```cNode* insertNode(Node* head, int data) {Node* newNode = (Node*)malloc(sizeof(Node));newNode->data = data;newNode->next = head;head = newNode;return head;}```接下来,我们可以实现链表的逆置函数,通过遍历链表,将每个节点插入到头部,从而实现链表的逆置。
代码如下:```cNode* reverseList(Node* head) {Node* newHead = NULL;Node* temp = NULL;while (head != NULL) {temp = head->next;head->next = newHead;newHead = head;head = temp;}return newHead;}```最后,我们可以编写主函数,测试链表的逆置功能。
代码如下:```cint main() {Node* head = createList();head = insertNode(head, 1);head = insertNode(head, 2);head = insertNode(head, 3);head = insertNode(head, 4);head = insertNode(head, 5);printf("原链表:");Node* temp = head;while (temp != NULL) {printf("%d ", temp->data);temp = temp->next;}printf("\n");head = reverseList(head);printf("逆置后的链表:");temp = head;while (temp != NULL) {printf("%d ", temp->data);temp = temp->next;}printf("\n");return 0;}```运行以上代码,输出结果如下:```原链表:5 4 3 2 1逆置后的链表:1 2 3 4 5```通过以上代码,我们成功地使用C语言的单链表头插法实现了链表的逆置。
数据结构单链表实验报告
数据结构单链表实验报告一、实验目的本次实验的主要目的是深入理解和掌握数据结构中单链表的基本概念、操作原理和实现方法。
通过实际编程实现单链表的创建、插入、删除、查找等操作,提高对数据结构的应用能力和编程技能。
二、实验环境本次实验使用的编程语言为 C 语言,开发环境为 Visual Studio 2019。
三、实验原理单链表是一种常见的数据结构,它由一系列节点组成,每个节点包含数据域和指针域。
数据域用于存储节点的数据信息,指针域用于指向下一个节点的地址。
通过这种链式结构,可以方便地进行节点的插入、删除和遍历等操作。
四、实验内容与步骤1、单链表节点的定义```ctypedef struct Node {int data;struct Node next;} Node;```2、单链表的创建```cNode createList(){Node head = NULL;Node newNode;int data;printf("请输入节点数据(输入-1 结束):\n");scanf("%d",&data);while (data!=-1) {newNode =(Node)malloc(sizeof(Node));newNode>data = data;newNode>next = NULL;if (head == NULL) {head = newNode;} else {Node temp = head;while (temp>next!= NULL) {temp = temp>next;}temp>next = newNode;}scanf("%d",&data);}return head;}```3、单链表的插入操作```cvoid insertNode(Node head, int position, int data) {Node newNode =(Node)malloc(sizeof(Node));newNode>data = data;newNode>next = NULL;if (position == 1) {newNode>next = head;head = newNode;} else {Node temp = head;int count = 1;while (temp!= NULL && count < position 1) {temp = temp>next;count++;}if (temp!= NULL) {newNode>next = temp>next;temp>next = newNode;} else {printf("插入位置无效!\n");}}}```4、单链表的删除操作```cvoid deleteNode(Node head, int position) {if (head == NULL) {printf("链表为空,无法删除!\n");return;}Node temp = head;if (position == 1) {head = head>next;free(temp);} else {Node prev = NULL;int count = 1;while (temp!= NULL && count < position) {prev = temp;temp = temp>next;count++;}if (temp!= NULL) {prev>next = temp>next;free(temp);} else {printf("删除位置无效!\n");}}}```5、单链表的查找操作```cNode searchNode(Node head, int data) {Node temp = head;while (temp!= NULL) {if (temp>data == data) {return temp;}temp = temp>next;}return NULL;}```6、单链表的遍历打印```cvoid printList(Node head) {Node temp = head;while (temp!= NULL) {printf("%d ", temp>data);temp = temp>next;}printf("\n");}```五、实验结果与分析1、创建单链表输入一系列整数,成功创建了单链表。
单链表数据结构
插入
if (p != NULL && j == i-1) { // 找到第i个结点
s = (LinkList) malloc ( sizeof (LNode)); // 生成新结点
s->data = e;
// 数据域赋值
s->next = p->next; //新结点指针指向后一结点
p->next = s; return OK;
6、销毁
4.6 销毁操作
while(L) { p = L->next; free(L); L=p;
// p指向第一结点(头节点为“哑结点”) // 释放首结点 // L指向p
}
// 销毁完成后,L为空(NULL)
算法的时间复杂度为:O(ListLength(L))
判空 求表长
4.7 其它操作
if(L->next==NULL) return TRUE; // 空
5、清空
4.5 清空操作
while (L->next) { p = L->next; L->next = p->next; free(p);
// p指向当前结点 // 头结点指向当前结点的后结点 // 释放当前结点内存
}
// 清空完成后,仍保留头结点L
算法的时间复杂度为:O(ListLength(L))
点。
5.1.2 逆序建立单链表
①建立一个带头结点的空单链表;
②输入数据元素ai,建立新结点p, 并把p插入在头结点之后成为第一个 结点。
③重复执行②步,直到完成单链表的 建立。
a1
a2 a1
创建出来的链表 点顺序与插入操作
顺序相反。
数据结构单链表实验报告
数据结构单链表实验报告一、实验目的1、深入理解单链表的数据结构及其基本操作。
2、掌握单链表的创建、插入、删除、查找等操作的实现方法。
3、通过实际编程,提高对数据结构和算法的理解和应用能力。
二、实验环境1、操作系统:Windows 102、编程语言:C 语言3、开发工具:Visual Studio 2019三、实验原理单链表是一种常见的数据结构,它由一系列节点组成,每个节点包含数据域和指针域。
指针域用于指向下一个节点,从而形成链表的链式结构。
单链表的基本操作包括:1、创建链表:通过动态分配内存创建链表的头节点,并初始化链表为空。
2、插入节点:可以在链表的头部、尾部或指定位置插入新的节点。
3、删除节点:根据给定的条件删除链表中的节点。
4、查找节点:在链表中查找满足特定条件的节点。
四、实验内容(一)单链表的创建```cinclude <stdioh>include <stdlibh>//定义链表节点结构体typedef struct Node {int data;struct Node next;} Node;//创建单链表Node createList(){Node head =(Node)malloc(sizeof(Node));if (head == NULL) {printf("内存分配失败!\n");return NULL;}head>data = 0;head>next = NULL;return head;}int main(){Node list = createList();//后续操作return 0;}```在创建单链表时,首先为头节点分配内存空间。
若内存分配失败,则提示错误信息并返回`NULL`。
成功分配内存后,初始化头节点的数据域和指针域。
(二)单链表的插入操作插入操作分为三种情况:头部插入、尾部插入和指定位置插入。
1、头部插入```cvoid insertAtHead(Node head, int data) {Node newNode =(Node)malloc(sizeof(Node));if (newNode == NULL) {printf("内存分配失败!\n");return;}newNode>data = data;newNode>next = head>next;head>next = newNode;}```头部插入时,创建新节点,将新节点的数据域赋值,并将其指针域指向原头节点的下一个节点,然后更新头节点的指针域指向新节点。
数据结构C语言版 线性表的单链表存储结构表示和实现
#include 〈stdio.h>#include <malloc。
h>#include 〈stdlib.h>/*数据结构C语言版线性表的单链表存储结构表示和实现P28—31编译环境:Dev-C++ 4。
9。
9。
2日期:2011年2月10日*/typedef int ElemType;// 线性表的单链表存储结构typedef struct LNode{ElemType data; //数据域struct LNode *next;//指针域}LNode, *LinkList;// typedef struct LNode *LinkList;// 另一种定义LinkList的方法// 构造一个空的线性表Lint InitList(LinkList *L){/*产生头结点L,并使L指向此头结点,头节点的数据域为空,不放数据的。
void *malloc(size_t)这里对返回值进行强制类型转换了,返回值是指向空类型的指针类型.*/(*L)= (LinkList)malloc(sizeof(struct LNode) );if( !(*L))exit(0);// 存储分配失败(*L)-〉next = NULL;// 指针域为空return 1;}// 销毁线性表L,将包括头结点在内的所有元素释放其存储空间。
int DestroyList(LinkList *L){LinkList q;// 由于单链表的每一个元素是单独分配的,所以要一个一个的进行释放while(*L ){q = (*L)—〉next;free(*L );//释放*L = q;}return 1;}/*将L重置为空表,即将链表中除头结点外的所有元素释放其存储空间,但是将头结点指针域置空,这和销毁有区别哦。
不改变L,所以不需要用指针。
*/int ClearList( LinkList L ){LinkList p,q;p = L—〉next;// p指向第一个结点while( p ) // 没到表尾则继续循环{q = p—>next;free( p );//释放空间p = q;}L—>next = NULL; // 头结点指针域为空,链表成了一个空表return 1;}// 若L为空表(根据头结点L—〉next来判断,为空则是空表),则返回1,// 否则返回0.int ListEmpty(LinkList L){if(L—>next ) // 非空return 0;elsereturn 1;}// 返回L中数据元素个数。
c语言单链表尾插法
c语言单链表尾插法在C语言中,使用单链表数据结构时,可以使用尾插法来插入新的节点。
尾插法是指在链表的末尾插入新的节点。
下面是一个使用尾插法实现单链表插入节点的示例代码:c#include<stdio.h>#include<stdlib.h>struct node {int data;struct node* next;};void insert_at_end(struct node** head, int data) {// 分配新节点的内存空间struct node* new_node = (struct node*)malloc(sizeof(struct node));new_node->data = data;new_node->next = NULL;// 如果链表为空,将新节点设置为头节点if (*head == NULL) {*head = new_node;return;}// 找到链表的末尾节点struct node* last_node = *head;while (last_node->next != NULL) {last_node = last_node->next;}// 将新节点插入到链表的末尾last_node->next = new_node;}int main() {// 创建一个包含3个节点的单链表:1 -> 2 -> 3struct node* head = NULL;insert_at_end(&head, 1);insert_at_end(&head, 2);insert_at_end(&head, 3);// 输出链表中的所有节点数据struct node* current_node = head;while (current_node != NULL) {printf("%d ", current_node->data);current_node = current_node->next;}printf("\n");// 释放链表中每个节点的内存空间current_node = head;while (current_node != NULL) {struct node* next_node = current_node->next;free(current_node);current_node = next_node;}return0;}在这个示例代码中,我们定义了一个结构体node来表示单链表中的每个节点。
数据结构c语言版课后习题答案
数据结构c语言版课后习题答案数据结构是计算机科学中的一个重要概念,它涉及到组织、管理和存储数据的方式,以便可以有效地访问和修改数据。
C语言是一种广泛使用的编程语言,它提供了丰富的数据结构实现方式。
对于学习数据结构的C语言版课程,课后习题是巩固理论知识和提高实践能力的重要手段。
数据结构C语言版课后习题答案1. 单链表的实现在C语言中,单链表是一种常见的线性数据结构。
它由一系列节点组成,每个节点包含数据部分和指向下一个节点的指针。
实现单链表的基本操作通常包括创建链表、插入节点、删除节点、遍历链表等。
答案:- 创建链表:定义一个链表结构体,然后使用动态内存分配为每个节点分配内存。
- 插入节点:根据插入位置,调整前后节点的指针,并将新节点插入到链表中。
- 删除节点:找到要删除的节点,调整其前后节点的指针,然后释放该节点的内存。
- 遍历链表:从头节点开始,使用指针遍历链表,直到达到链表尾部。
2. 二叉树的遍历二叉树是一种特殊的树形数据结构,其中每个节点最多有两个子节点。
二叉树的遍历是数据结构中的一个重要概念,常见的遍历方式有前序遍历、中序遍历、后序遍历和层序遍历。
答案:- 前序遍历:先访问根节点,然后递归遍历左子树,最后递归遍历右子树。
- 中序遍历:先递归遍历左子树,然后访问根节点,最后递归遍历右子树。
- 后序遍历:先递归遍历左子树,然后递归遍历右子树,最后访问根节点。
- 层序遍历:使用队列,按照从上到下,从左到右的顺序访问每个节点。
3. 哈希表的实现哈希表是一种通过哈希函数将键映射到表中一个位置来访问记录的数据结构。
它提供了快速的数据访问能力,但需要处理哈希冲突。
答案:- 哈希函数:设计一个哈希函数,将键映射到哈希表的索引。
- 哈希冲突:使用链地址法、开放地址法或双重哈希法等解决冲突。
- 插入操作:计算键的哈希值,将其插入到对应的哈希桶中。
- 删除操作:找到键对应的哈希桶,删除相应的键值对。
4. 图的表示和遍历图是一种复杂的非线性数据结构,由顶点(节点)和边组成。
数据结构实验,线性表的插入和删除,单链表操作,Huffman编码树
{ int i,j,k,x1,x2,m1,m2;
for(i=1;i<(2*n);i++)
{ t[i].pa=t[i].lc=t[i].rc=0;
if(i<=n)
t[i].data=w[i];
else
t[i].data=0;
}
for(i=1;i<n;i++)
{ m1=m2=MAX;
x1=x2=0;
for(j=1;j<(n+i);j++)
ListCount=0;
int nOperateState;
while(TRUE)
{
printf( "选择你要操作的方法,1为插入,2为删除,3为查询!4为退出\r\n ");
scanf("%d",&nOperateState);
switch(nOperateState)
{
case 1:
InsertInfo();
{
printf("请不要重复插入相同学号的信息\r\n");
LocalFree(Info);
return;
}
ptemp=ptemp->pNext;
}
}
if (ListHead)
{
if (ListCount==1)
{
ListTail=Info;
ListTail->pNext=NULL;
ListHead->pNext=ListTail;
temp->stu_num,temp->stu_age,temp->stu_english_grade);
单链表的操作实验报告
单链表的操作实验报告单链表的操作实验报告引言:单链表是一种常见的数据结构,它由一系列节点组成,每个节点包含数据和指向下一个节点的指针。
在本次实验中,我们将学习如何使用C语言实现单链表的基本操作,包括插入、删除和查找等。
一、单链表的定义和初始化单链表由节点组成,每个节点包含数据和指向下一个节点的指针。
首先,我们需要定义一个节点的结构体,如下所示:```struct Node {int data; // 节点数据struct Node* next; // 指向下一个节点的指针};```在初始化单链表之前,我们需要创建一个头节点,它不存储任何数据,只用于指向第一个节点。
初始化单链表的代码如下:```struct Node* head = NULL; // 头节点初始化为空```二、单链表的插入操作插入操作是向单链表中添加新节点的过程。
我们可以在链表的头部、尾部或者指定位置插入新节点。
下面以在链表头部插入新节点为例进行说明。
首先,我们需要创建一个新节点,并为其分配内存空间:```struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));```然后,为新节点赋值并将其插入到链表头部:```newNode->data = 10; // 赋值新节点的数据newNode->next = head; // 将新节点的指针指向原头节点head = newNode; // 将头节点指向新节点```三、单链表的删除操作删除操作是从单链表中删除指定节点的过程。
我们可以根据节点的位置或者数据进行删除。
下面以删除链表中指定数据的节点为例进行说明。
首先,我们需要遍历链表找到要删除的节点,并记录其前一个节点的地址:```struct Node* current = head;struct Node* previous = NULL;int targetData = 10; // 要删除的节点数据while (current != NULL && current->data != targetData) {previous = current;current = current->next;}```然后,将前一个节点的指针指向要删除节点的下一个节点,并释放要删除节点的内存空间:```previous->next = current->next;free(current);```四、单链表的查找操作查找操作是在单链表中查找指定数据的节点。
单链表-实验报告
单链表实验报告一、实验目的与要求1、实现单链表的建立;2、掌握单链表的插入、删除和查找运算;3、熟练进行C语言源程序的编辑调试。
二、实验内容(1)建立带表头结点的单链表;首先输入结束标志,然后建立循环逐个输入数据,直到输入结束标志。
数据输入的函数为:LNode *createtail(){LNode *s,*r;int x,tag;printf("input the sign of ending:"); /*输入结束标志*/scanf("%d",&tag);h=(LNode * )malloc(sizeof(LNode)); /*建立表头结点*/h->data=tag;r=h;printf("input the data:");scanf("%d",&x);while(x!=tag) /*建立循环逐个输入数据*/{s=(LNode * )malloc(sizeof(LNode));s->data=x;r->link=s;r=s;scanf("%d",&x);}r->link=NULL;return h;}(2)输出单链表中所有结点的数据域值;首先获得表头结点位置,然后建立循环逐个输出数据,直到位置为空。
数据输出的函数为:void output(LNode *h){LNode *r;int i;r=h;for(i=1;r->link!=NULL;i++){printf("%d.%d\n",i,r->link->data);r=r->link;}}(3)输入x,y在第一个数据域值为x的结点之后插入结点y,若无结点x,则在表尾插入结点y;建立两个结构体指针,一个指向当前结点,另一个指向当前结点的上一结点,建立循环扫描链表。
单链表的运算
一、上机实验的问题和要求:顺序表的查找、插入与删除。
设计算法,实现线性结构上的顺序表的产生以及元素的查找、插入与删除。
具体实现要求:1.从键盘输入10个整数,产生顺序表,并输入结点值。
2.从键盘输入1个整数,在顺序表中查找该结点的位置。
若找到,输出结点的位置;若找不到,则显示“找不到”。
3.从键盘输入2个整数,一个表示欲插入的位置i,另一个表示欲插入的数值x,将x插入在对应位置上,输出顺序表所有结点值,观察输出结果。
4.从键盘输入1个整数,表示欲删除结点的位置,输出顺序表所有结点值,观察输出结果。
二、源程序及注释:#include <stdio.h>#include <stdlib.h>/*单链表的定义*/typedef int DataType; /*DataType可以是任何相应的数据类型如int, float或char*/typedef struct node /*结点类型定义*/{ DataType data; /*结点的数据域*/struct node *next; /*结点的指针域*/}ListNode;typedef ListNode *LinkList;void main(){ int i;DataType key,x;LinkList head;ListNode *p;LinkList CreateList(void);void PrintList(LinkList head);LinkList LocateNode(LinkList head,DataType key);LinkList GetNode(LinkList head,int i);void InsertList(LinkList head,DataType x,int i);void DeleteList(LinkList head,int i);head=CreateList(); /*建立单链表*/PrintList(head); /*打印单链表*/printf("输入要查找的值:");scanf("%d",&key);p=LocateNode(head,key); /*单链表查找*/printf("请输入欲插入元素的位置:");scanf("%d",&i);printf("请输入欲插入的元素:");scanf("%d",&x);InsertList(head,x,i); /*单链表插入*/PrintList(head); /*打印单链表*/printf("请输入欲删除结点的位置:");scanf("%d",&i);DeleteList(head,i); /*单链表删除*/PrintList(head); /*打印单链表*/}/*单链表的建立,从后向前生成*/LinkList CreateList(void){ LinkList p,head=NULL; //定义指针p和头指针int x;scanf("%d",&x);while(x!=0){p=(LinkList) malloc (sizeof(ListNode));//建立单链表p->data=x;p->next=head;head=p;scanf("%d",&x);}return head;//返回头指针}/*单链表的打印*/void PrintList(LinkList head){ LinkList p;//定义指针pp=head;if(p==NULL)printf("单链表为空\n");//判断单链表是否为空while(p!=NULL){printf("%d",p->data);//输出单链表的值p=p->next;}}/*单链表的查找,输入一个整数,显示该结点的位置*/ LinkList LocateNode(LinkList head,DataType key){LinkList p;//定义指针pp=head;while(p!=NULL){if(p->data==key)break;//当找到要查找的数时停止p=p->next;}if(p==NULL){printf("没找到\n");//显示没找到要找的数}else{printf("找到了\n");//显示找到要找的数}return p;}/*单链表的查找2,在不带头结点的单链表head中查找第i个结点*/LinkList GetNode(LinkList head,int i){ LinkList p;//定义指针pint j=0;p=head;if(i<=0){printf("ERROR\n");//判断单链表是否存在exit(1);}while(p!=NULL){j++;if(j==i)break; //找到数后程序停止,并计算结点数p=p->next;}if(p==NULL){printf("没有第i个结点\n");//显示没找到要找的数}return p;}/*单链表的插入*//*将值为x的新结点插入到不带头结点的单链表head的第i个结点的位置上*/void InsertList(LinkList head,DataType x,int i){ListNode *p,*s;p=GetNode(head,i-1); //寻找第i-1个结点if(p==NULL){printf("插入位置非法\n");//单链表为空无法进行操作exit(0);}s=(ListNode *)malloc(sizeof(ListNode)); //插入数值s->data=x;s->next=p->next;p->next=s;}/*单链表的删除,删除不带头结点的单链表中的第i个结点*/void DeleteList(LinkList head,int i){ListNode *p,*r;p=GetNode(head,i-1); //寻找第i-1个结点if(p==NULL||p->next==NULL)exit(0);//判断能否进行删除操作elser=p->next;p->next=r->next;free(r); //释放第i个结点}三、运行输出结果:四、调试和运行程序过程中产生的问题及采取的措施:1、在进行单链表的查找时,总是显示找到了或时找不到,主要原因是在找到要找到的数后没停止运行,而且编程时while和if循环掌握的不是很好;2、插入时会出现符号,原因是在输入数时没打空格,等于只输入一个数,使得不能进行插入操作;3、当删除第i(i>1)个结点时,删除的是地i+1个结点。
数据结构(C语言版)(第2版)课后习题答案
精品文档考试教学资料施工组织设计方案数据结构(C语言版)(第2版)课后习题答案李冬梅2015.3目录第1章绪论 (1)第2章线性表 (5)第3章栈和队列 (13)第4章串、数组和广义表 (26)第5章树和二叉树 (33)第6章图 (42)第7章查找 (54)第8章排序 (65)第1章绪论1.简述下列概念:数据、数据元素、数据项、数据对象、数据结构、逻辑结构、存储结构、抽象数据类型。
答案:数据:是客观事物的符号表示,指所有能输入到计算机中并被计算机程序处理的符号的总称。
如数学计算中用到的整数和实数,文本编辑所用到的字符串,多媒体程序处理的图形、图像、声音、动画等通过特殊编码定义后的数据。
数据元素:是数据的基本单位,在计算机中通常作为一个整体进行考虑和处理。
在有些情况下,数据元素也称为元素、结点、记录等。
数据元素用于完整地描述一个对象,如一个学生记录,树中棋盘的一个格局(状态)、图中的一个顶点等。
数据项:是组成数据元素的、有独立含义的、不可分割的最小单位。
例如,学生基本信息表中的学号、姓名、性别等都是数据项。
数据对象:是性质相同的数据元素的集合,是数据的一个子集。
例如:整数数据对象是集合N={0,±1,±2,…},字母字符数据对象是集合C={‘A’,‘B’,…,‘Z’,‘a’,‘b’,…,‘z’},学生基本信息表也可是一个数据对象。
数据结构:是相互之间存在一种或多种特定关系的数据元素的集合。
换句话说,数据结构是带“结构”的数据元素的集合,“结构”就是指数据元素之间存在的关系。
逻辑结构:从逻辑关系上描述数据,它与数据的存储无关,是独立于计算机的。
因此,数据的逻辑结构可以看作是从具体问题抽象出来的数学模型。
存储结构:数据对象在计算机中的存储表示,也称为物理结构。
抽象数据类型:由用户定义的,表示应用问题的数学模型,以及定义在这个模型上的一组操作的总称。
具体包括三部分:数据对象、数据对象上关系的集合和对数据对象的基本操作的集合。
单链表的基本操作代码
单链表的基本操作代码单链表是一种常用的数据结构,它具有优秀的插入和删除性能,在数据存储和处理方面具有广泛的应用。
单链表的基本操作包含创建链表、插入节点、删除节点、查找节点等,下面是单链表的基本操作代码:1. 定义单链表结构体:typedef struct ListNode {int val;struct ListNode *next;} ListNode;2. 创建单链表:ListNode *createList(int arr[], int n) {ListNode *head = NULL, *tail = NULL, *p = NULL;for(int i = 0; i < n; i++) {p = (ListNode *)malloc(sizeof(ListNode));p->val = arr[i];p->next = NULL;if(head == NULL) {head = tail = p;} else {tail->next = p;tail = p;}}return head;}3. 插入节点:void insertNode(ListNode **head, int val, int pos) {ListNode *p = (ListNode *)malloc(sizeof(ListNode)); p->val = val;p->next = NULL;if(*head == NULL) {if(pos != 0) {printf("Invalid position\n");return;} else {*head = p;return;}}if(pos == 0) {p->next = *head;*head = p;} else {int i = 0;ListNode *q = *head;while(q != NULL && i < pos - 1) {q = q->next;i++;}if(q == NULL || i != pos - 1) {printf("Invalid position\n");return;}p->next = q->next;q->next = p;}}4. 删除节点:void deleteNode(ListNode **head, int pos) {if(*head == NULL) {printf("List is empty\n");return;}if(pos == 0) {ListNode *p = *head;*head = (*head)->next;free(p);} else {int i = 0;ListNode *p = *head, *q = NULL; while(p != NULL && i < pos) { q = p;p = p->next;i++;}if(p == NULL || i != pos) {printf("Invalid position\n");return;}q->next = p->next;free(p);}}5. 查找节点:ListNode *findNode(ListNode *head, int val) {ListNode *p = head;while(p != NULL) {if(p->val == val) {return p;}p = p->next;}return NULL;}单链表的基本操作是数据结构中最基础的部分,掌握好这些代码对于往后的学习和应用都会有很大的帮助。
数据结构单链表实验报告
数据结构单链表实验报告数据结构单链表实验报告1. 引言数据结构是计算机科学中的重要基础,它研究数据的组织、存储和管理方式。
单链表是一种基本的数据结构,它由一系列节点组成,每个节点包含数据和指向下一个节点的指针。
本实验旨在通过实践操作单链表,加深对数据结构的理解。
2. 实验目的本实验的主要目的是掌握单链表的基本操作,包括创建链表、插入节点、删除节点和遍历链表。
通过实践操作,加深对链表的理解,提高编程能力和解决问题的能力。
3. 实验环境和工具本实验使用C语言进行编程实现,可以选择任何C语言开发环境,如Dev-C++、Code::Blocks等。
在编程过程中,可以使用任何文本编辑器编写代码。
4. 实验步骤4.1 创建链表首先,需要定义一个节点结构体,包含数据和指向下一个节点的指针。
然后,通过动态内存分配来创建链表的第一个节点,并将其地址赋给头指针。
接下来,可以通过输入数据的方式,逐个创建链表的其他节点。
4.2 插入节点在链表中插入节点是一种常见的操作。
可以在链表的任意位置插入一个新节点,只需要修改相应节点的指针即可。
首先,需要找到插入位置的前一个节点,然后将新节点的指针指向原来的下一个节点,再将前一个节点的指针指向新节点。
4.3 删除节点删除链表中的节点也是一种常见的操作。
可以根据节点的值或位置来删除节点。
首先,需要找到要删除的节点的前一个节点,然后将前一个节点的指针指向要删除节点的下一个节点,最后释放要删除节点的内存空间。
4.4 遍历链表遍历链表是一种查看链表中所有节点的操作。
可以通过循环遍历链表中的每个节点,输出节点的值或进行其他操作。
需要注意的是,遍历链表时需要使用一个临时指针来指向当前节点,以便于移动到下一个节点。
5. 实验结果与分析通过实验,我们成功实现了单链表的创建、插入、删除和遍历操作。
在实际应用中,单链表可以用于实现各种数据结构和算法,如栈、队列和图等。
它具有灵活性和高效性的特点,可以方便地进行节点的插入和删除操作。
数据结构c语言版单链表心得
数据结构c语言版单链表心得单链表是一种常用的数据结构,它能够以链式的形式存储数据,可以动态的插入、删除等操作,非常适合于需要频繁操作数据的场景。
在C语言中,单链表的实现相对来说比较简单,但是需要掌握一些基本的指针操作技巧。
单链表的结构定义通常包含一个数据域和一个指向下一节点的指针域。
例如:```ctypedef struct Node {int data;struct Node* next;} Node;```这里我们定义了一个名为Node的结构体,其中包括一个int类型的数据域和一个指向下一个Node的指针域。
之所以要使用指针域,是因为链表不像数组那样在内存中连续存储,因此我们必须借助指针来建立节点之间的联系。
创建一个链表可以通过动态分配内存来实现,例如:```cNode* create_list() {Node* head = NULL; //头结点Node* tail = NULL; //尾结点int x;while (scanf("%d", &x) != EOF) { //读取数据直到文件末尾Node* node = (Node*)malloc(sizeof(Node)); //动态分配内存node->data = x;node->next = NULL;if (head == NULL) { //如果链表为空head = node; //头结点指向新节点}else {tail->next = node; //尾节点的指针域指向新节点}tail = node; //重置尾节点}return head;}```该函数通过使用malloc动态分配节点内存空间,然后读取数据并将其添加到链表中。
这里head和tail分别指向链表的头结点和尾结点,并且将尾结点的指针域指向新节点。
如果链表为空,则将头结点指向新节点。
遍历链表可以通过循环链表上的节点来实现,例如:```cvoid traverse_list(Node* head) {Node* node = head;while (node != NULL) { //循环链表printf("%d ", node->data);node = node->next; //指向下一个节点}}```该函数以head为参数,循环链表并输出每个节点的数据域。
单链表尾插法c语言
单链表尾插法c语言单链表是一种常见的数据结构,可用于实现各种算法和数据处理任务。
其中,尾插法是一种常用的单链表构建方法。
本文将介绍如何使用C语言实现单链表尾插法。
单链表尾插法的思路很简单,就是从链表头开始遍历链表,直到找到最后一个节点,然后将新节点插入到尾部。
具体实现步骤如下: 1. 定义一个Node结构体表示单链表的节点,包含两个成员变量:数据和指向下一个节点的指针。
typedef struct Node {int data;struct Node *next;} Node;2. 定义一个函数createNode用于创建单链表节点,并返回指向该节点的指针。
Node *createNode(int data) {Node *node = (Node*)malloc(sizeof(Node)); //动态分配节点空间node->data = data; //设置节点的数据node->next = NULL; //新节点的next指针为空return node; //返回指向新节点的指针}3. 定义一个函数listTailInsert用于实现单链表的尾插法。
该函数接收一个指向单链表头部的指针,以及一个要插入的数据。
函数会遍历链表,找到最后一个节点,然后将新节点插入到尾部。
void listTailInsert(Node *head, int data) {//创建新节点Node *newNode = createNode(data);//遍历链表,找到最后一个节点Node *p = head;while (p->next != NULL) {p = p->next;}//将新节点插入到尾部p->next = newNode;}4. 测试函数。
可以在主函数中新建一个单链表头节点,然后调用listTailInsert函数插入若干个节点,最后遍历输出整个链表。
int main() {//创建单链表头节点Node *head = createNode(-1);//插入节点listTailInsert(head, 1);listTailInsert(head, 2);listTailInsert(head, 3);//遍历输出链表Node *p = head->next;while (p != NULL) {printf('%d ', p->data);p = p->next;}return 0;}以上就是C语言实现单链表尾插法的完整代码。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据结构单链表及插入删除C语言
#include<stdio.h>
#include<stdlib.h>
typedef struct LinkLode{
int data;
struct LinkLode* link;
}LinkLode;
int length;
void show(LinkLode* first)
{
first=first->link;
while(first->link!=NULL)
{
printf("%d ",first->data);
first=first->link;
}
printf("%d\n",first->data);
}
LinkLode* newLode(int data)
{
LinkLode *newLode;
newLode=(LinkLode *)malloc(sizeof(LinkLode));
newLode->data=data;
newLode->link=NULL;
return newLode;
}
void createList(LinkLode* first)
{
LinkLode*s1,*s2;
int i=2;
s2=newLode(1);
first->link=s2;
s1=s2;
for(;i<11;i++)
{
s2=newLode(i);
s1->link=s2;
s1=s2;
}
length=10;
s1=first->link;
while(s1->link!=NULL)
{
printf("%d ",s1->data);
s1=s1->link;
}
printf("%d\n",s1->data);
}
void intList(int i,int data,LinkLode* first)
{
LinkLode *s1=first,*s2;
int i2=0;
s2=newLode(data);
if(i>=0&&i<=length)
{
while(i2<i)
{
s1=s1->link;
i2++;
}
s2->link=s1->link;
s1->link=s2;
length++;
printf("插入成功\n");
show(first);
}
else
printf("插入失败\n");
}
void delList(int i,LinkLode* first)
{
LinkLode* s2=first,*s1;
int i1=0;
if(i>0&&i<=length)
{
while(i1<i)
{
s1=s2;
s2=s2->link;
i1++;
}
printf("删除的数为:%d,地址为%p\n",s2->data,s2);
s1->link=s2->link;
free(s2);
length--;
show(first);
}
else
printf("删除失败\n");
}
int main()
{
LinkLode* first;
char c1=NULL,c2;
int i,data;
first = (LinkLode *)malloc(sizeof(LinkLode));
first->data=-10;
first->link=NULL;
createList(first);
while(c1!='s')
{
printf("插入请输入i,删除输入d,停止输入s\n");
scanf("%c",&c1);
if(c1=='i')
{
printf("请输入插入的数据和插入在第几个数后面,以空格隔开\n");
scanf("%d%d",&data,&i);
intList(i,data,first);
c2=getchar();
}
if(c1=='d')
{
printf("请输入删除第几个数据\n");
scanf("%d",&i);
delList(i,first);
c2=getchar();
}
}
return 0;
}。