(北师大版)六年级下册数学课件_变化的量
(北师大版)六年级下册数学课件_变化的量
你还发现我们学过的 数学知识中有哪些量 之间具有变化的关系?
练一练
1、连一连,把相互变化的量连起来。 路程 正方形周长 边长 购买数量 总价 行驶时间
2、说一说,一个量怎样随另一个量变化。 (1)一种故事书每本3元,买书的总价与书的本数。
(3)体重一直会随年龄的增长而变 化吗?这说明了什么? 体重和年龄是一组相关联的量。 但体重的增长不会随着年龄的 增长而增长。 合理饮食,适当控制体重
2
骆驼被称为“沙漠之舟”,它的体温随时间 的变化而发生较大的变化。
观察下面统计图,回答问题:
1.图中所反映的两个变化的量是哪两个? 2.横轴表示什么?纵轴表示什么? 3.一天中,骆驼的体温最高是多少?最低 是多少? 4.一天中,在什么时间范围内骆驼的体温 在上升?在什么时间范围内骆驼的体温在下 降? 5.第二天8时骆驼的体温与前一天8时的体 温有什么关系? 6.骆驼的体温有什么变化的规律吗?
请说说哪两个变量是互相关联的? 在互相关联的两个量中,哪些可以 用含有字母的式子来表示?
• (1)人的身高与体重 • (2)人的长相与身高 • (3)正方形的边长与周长 • (4)人的身高与跳绳的速度 • (5)每袋米重50千克,米的袋数和重量
观察上表中所反映的内容,搞清 楚表中所涉及的两个量是哪两个 量?观察后请回答。
(1)上表中哪些量在发生变化?
表中年龄和体重都在发生变化:小明 的年龄增长时,体重也在增加。
(2)说一说小明10周岁前的体重是 如何随年龄增长而变化的? 小明的体重随年龄的增长而变 化。2~6岁和6 ~ 10岁是体 重的增长高峰。说明这两个阶 段是孩子成长的重要阶段。
4.一天中,在什么时间范围内骆驼的体温在 上升?在什么时间范围内骆驼的体温在下降?
六年级下册数学教案-4.1 变化的量|北师大版
六年级下册数学教案-4.1 变化的量|北师大版一、教学目标1.理解变化是事物在不同时刻的状态差异。
2.理解“变化量”的概念,能用文字、图形及公式表示一个物体的变化量和平均变化速度。
3.运用所学知识解决生活中的实际问题。
二、教学重难点1.理解“变化量”的概念。
2.能用文字、图形及公式表示变化量和平均变化速度。
三、教学方法1.采用讲授、示例归纳法和练习相结合的教学方法;2.引导学生自发探究,自主发现规律。
四、教学准备1.文具、白板、黑板、彩笔等;2.教学课件、图表等。
五、教学过程1. 导入•教师出示一张照片,让学生描述它变化了什么。
•教师引导学生讨论,在日常生活中有哪些可以观察到的事物是在不断变化的。
2. 提出问题•教师引导学生将物体的变化分为哪几类:速度均匀变化、速度不均匀变化、突然变化和周期性变化。
•教师出示实际问题,引导学生讲解数据变化及速度变化情况。
3. 知识探究1.1 变化的概念•教师引导学生描述变化的概念:事物状态的改变,包括变化的距离和时间以及方向等。
•教师分组让学生探究变化的概念,当其完成探究后,展示其个人想法。
1.2 变化量的概念•教师从样例出发,讲解变化量的概念:在规定的时间、空间等受限条件下,物体状态发生了多少次改变。
•教师引导学生讲解改变时间和改变的物体量之间的关系,此过程步步深入,直至学生掌握为止。
1.3 平均变化速度的概念•教师引导学生描述平均变化速度的概念:物体在一定时间内的速度改变情况。
•教师引导学生计算平均变化速度公式,从公式推导中,学生更能够深入理解其概念。
4. 合作探究•教师让学生分好小组,将速度均匀变化、速度不均匀变化、突然变化和周期性变化进行分类后,每组思考一个与实际相近问题,用所学知识解决问题并展示更好的结果。
5. 总结•教师引导学生完成本节课的总结,理清变化的概念及变化量和平均变化速度。
•要求学生自己编写一组变化量题目,并在下一堂课教学前完成。
六、课堂小结•学生通过这节课的学习,理解了变化的概念及其分类,掌握了变化量和平均变化速度的概念及计算方法。
北师大版六年级数学下册知识点归纳 (4)
北师大版六年级数学下册知识点归纳 (4)第一单元圆1、使学生认识圆的特征:圆的半径、直径、圆心。
认识在同圆内半径和直径的关系。
知道圆是轴对称图形.有无数条对称轴.而这些对称轴都过圆心。
知道生活中有了圆才使我们的生活更美好。
2、认识同心圆、等圆。
知道圆的位置由圆心决定.圆的大小由半径或直径决定。
等圆的半径相等.位置不同;而同心圆的半径不同.位置相同。
3、使学生知道圆的周长和圆周率的含义.掌握圆的周长的计算公式.能够正确地计算圆的周长.介绍祖冲之在圆周率研究上的成就.渗透爱国主义教育。
在运用上.要能根据圆的周长算直径或半径.会算半圆的周长:圆的周长×1/2+直径。
会求组合图形的周长。
4、了解圆的面积的含义.经历圆面积计算公式的推导过程.掌握圆面积计算公式。
5、能正确运用圆的面积公式计算圆的面积.并能运用圆面积知识解决一些简单实际的问题。
会灵活运用圆的面积公式。
已知圆的周长会算圆的面积.会求组合图形的面积。
会算圆环的面积.并且知道在周长相等的情况下.正方形、长方形、圆三种图形中.圆的面积最大。
6、在估一估和探究圆面积公式的活动中.体会“化曲为直”的思想.初步感受极限思想。
第二单元百分数的应用本单元重点讲解百分数在生活中的应用.知识点为:1、知道百分数的意义:表示一个数是另一个数的百分之几的数.叫做百分数。
百分数也叫做百分率或百分比。
百分数通常不写成分数形式.而用百分号“%”表示;百分数有时也定义为分母是100的分数.但百分数与分数是有区别的:分数既可表示具体的量.又可表示两个数量间的倍比关系;然而百分数只能表示两个数量间的倍比关系;所以是不名数.也就是不能带单位的数。
2、在具体情景中理解“增加百分之几”或“减少百分之几”的意义.加深对百分数意义的理解。
3、能解决有关“增加百分之几”或“减少百分之几”的实际问题.提高运用数学解决实际问题的能力.体会百分数与现实生活的密切联系。
4、知道出勤率、出粉率、成活率等百分数的意义及在实际生活中的应用.会计算这种百分数。
六年级下册数学教案-4.1 变化的量 -北师大版
六年级下册数学教案-4.1 变化的量 -北师大版教学目标1.了解什么是变化的量。
2.掌握变化的量的定义及相关概念。
3.能够正确运用变化的量的相关知识解决实际问题。
教学重点1.变化的量的定义及相关概念。
2.能够正确运用变化的量的相关知识解决实际问题。
教学难点1.能够正确解读变化的量的图示。
2.能够正确运用变化的量的相关知识解决实际问题。
教学过程1. 导入新知识教师通过实际生活中变化的例子,如腰围、身高、体重、温度等引入变化的量的概念及定义。
2. 学习变化的量的相关概念通过PPT展示,简单介绍变化的量的相关概念,如变化、变化前后的差、变化的速度等。
3. 深入理解变化的量的相关概念让学生观察图示,理解变化前后的差,强化变化的概念。
4. 学习变化的量的图示表示通过PPT展示,让学生了解变化的量可通过折线图、直方图、曲线图等方式进行表示。
5. 强化变化的量的计算通过解决实际问题,对变化的计算、运用进行强化,如让学生计算小明从家到学校所用时间的变化量等。
教学方法1.演讲式教学2.PPT展示3.课堂讨论教学评价1. 测验通过给学生一个变化的量的例子,让学生进行计算、分析,加深对变化的量相关知识掌握。
2. 作业布置相关作业,留给学生自主学习时间及巩固训练。
教学板书变化前变化后差值腰围60cm65cm5cm身高145cm150cm5cm体重40kg45kg5kg总结通过本次课程,学生对变化的概念、变化的量及其相关概念、图示表示等有了更深入的了解。
同时在解决实际问题的应用中,学生对于变化的计算及应用更加熟练。
北师大版六年级数学下册第4单元正比例与反比例
• 单击此处编辑母版文本样式 淘气和笑笑分别用表格和图表示了妙想6岁前的体重
– 二级
变化情况。 • 三级
– 四级 » 五级
从出生到2 岁,妙想的体 观察表格和图,想一想哪些量 重增长得最快,2~4 岁体 在发生变化,妙想 6岁前的体 重增加得比较快,4~6 岁 重是如何随年龄增长而变化的? 体重增加得相对缓慢。
– 二级
影子长度/m 12.1 10 6 4.3 – 四级 笑笑由此总结:影子会越来越短,也就是从日出到日落,校雕 » 五级 影子由长变短。她的总结对吗?为什么? 不对。因为从早晨到中午,校雕影子逐渐变短;从中午
易错辨析
• 三级
时间/时
7
8
9
10
到傍晚,校雕影子逐渐变长。
易错点拨:如果事物变化具有周期性规律,应对周期内的变化
– 二级
情况如下表。 • 三级
– 四级 » 五级
结合上表的数据,说一说圆柱的体积与高之间的变化 关系。
2019/1/9
8
2.
单击此处编辑母版标题样式 人所在座舱的高度的变化情况可以用下图来表示。 你见过摩天轮吗?
– 二级
• 三级
– 四级 » 五级
• 单击此处编辑母版文本样式
(1)转动过程中,到达的最高点是多少米?最低点时多少米? 到达的最高点是18米,最低点是3米。 (2)转动第一圈的过程中,什么时间范围内高度在增加?什么时间 范围内高度在降低? 转动第一圈的过程中,0分至6分高度在增加,6分至12分高度在降低。
情况做出完整记录。笑笑只记录了上午影子的变化,没有记录
下午影子的变化。
2019/1/9 15
单击此处编辑母版标题样式
• 单击此处编辑母版文本样式
《变化的量》(教案)北师大版六年级下册数学
《变化的量》(教案)北师大版六年级下册数学今天我要为大家分享的教学内容是《变化的量》,这是北师大版六年级下册数学的一节重要课程。
一、教学内容本节课的教学内容主要包括变化的量的概念、图形的放大与缩小、以及比例尺的应用。
我们将通过具体例题和实际问题,让学生理解和掌握这些知识点。
二、教学目标通过本节课的学习,我希望学生能够理解变化的量的含义,掌握图形放大与缩小的方法,以及能够运用比例尺解决实际问题。
三、教学难点与重点本节课的重点是让学生理解和掌握变化的量的概念和图形放大与缩小的方法。
难点则是如何引导学生运用比例尺解决实际问题。
四、教具与学具准备为了帮助学生更好地理解和掌握知识,我准备了一些实际物品,如尺子、图纸等,让学生能够直观地感受图形放大与缩小的过程。
同时,我也准备了一些练习题,帮助学生巩固所学知识。
五、教学过程1. 情景引入:我通过展示一些实际问题,如地图上的距离和实际距离的关系,引出变化量的概念。
2. 知识讲解:我通过具体的例题和图示,讲解图形放大与缩小的方法和比例尺的应用。
3. 随堂练习:我设计了一些练习题,让学生在课堂上进行实际操作和解答,以巩固所学知识。
4. 作业布置:我布置了一些相关的练习题,让学生在课后进行自主学习和巩固。
六、板书设计板书设计主要包括变化的量的概念、图形放大与缩小的方法和比例尺的应用,以便学生能够清晰地理解和掌握。
七、作业设计1. 请解释什么是变化的量?答案:变化的量是指在某一过程中,数值发生变化的量。
2. 请解释什么是图形放大与缩小?答案:图形放大与缩小是指将原图形的每条边按一定比例放大或缩小,得到一个新的图形。
3. 请解释比例尺的应用?答案:比例尺是表示图上距离与实际距离的比例关系,通过比例尺可以计算图上的距离与实际距离的关系。
八、课后反思及拓展延伸本节课通过实际问题引入,让学生理解和掌握变化的量的概念和图形放大与缩小的方法,以及比例尺的应用。
在教学过程中,我注意引导学生进行实际操作和解答练习题,以巩固所学知识。
正比例课件PPT下载北师大版六年级数学下册课件
时间(时) 路程(千米)
1
2
3
4
5 ……
90
180 270 360 450 ……
火车行驶的路程和时间是变化的 时间增加(减少), 路程增加(减少)。
请写出相对应的 路程和时间的比,并求出比值。
= __路__程__ 时间
速度 (一定)
90 =90 1
180 =90
2
270 =90
3
...
你发现了什么?
水不试,不知哪深哪浅,人不交,不知谁好谁坏!
最近很流行的一段话: “如果我用
你待我的方式来待你,恐怕你早已 离去!” 这句ห้องสมุดไป่ตู้,适合任何关系 ! 凡事换个角度,假如你是我,未必 能有我大度。
男人是条狼, 选对了保护你, 选错了折磨你!
女人是条蛇,选对了缠着你, 选错了毒死你!
谁是细心的数学家
表2:买一种苹果,购买苹果的质量和应付的钱数如下:
10 9 8 7 6 …… 购买苹果的总价和质量是变化的量,
质量/千克
质量增加(减少),
应付的钱数/ 元
30
27
24 21 18
…… 总价增加(减少)。
总价
(1 )把表格填完整。
______ 质量
= 单价
(2)写出相对应的总价与质量的比,并求出比值。
总的价钱 份数
=单价(一定)
成正比例
公 正
(2) 商店里每袋面粉质量一定,面粉的总质量和袋数 成正比例
总质量
袋数
=每袋面粉质量(一定)
小 法
(3)农民伯伯每天播种面积一定,播种总面积和播种天数 成正比例
播种总面积 =每天播种面积(一定)
播种天数
北师大版小学六年级数学下册《变化的量》教案设计
北师大版小学六年级数学下册《变化的量》教案设计一、创设情境,提出问题。
在我们的生活中,有很多事物都在不断的发生变化。
如:人的年龄、身高、体重在变化;我国的人均收入、生产总值等也都在变化,象这样会变化的量,我们都称为变量。
而且往往一些量的改变会同时引起另外一些量的改变,比如:身高的改变会引起体重的改变;购物时,单价或数量的改变,会引起总价的改变等;象这样的例子简直是举不胜举,这节课就让我们一起来学习“变化的量”。
板书:变化的量(设计意图:谈话导入新课,让学生从语言上整体感知什么是变量,加深对“变化的量”的认识,寻找生活中的量的认识,引起新课的学习积极性。
本环节的活动是老师讲述,学生用手势表现出到现在体重、身高与年龄的变化。
问题直接由老师提出。
简洁高效。
)二、自主学习,小组探究1、老师提供研究素材。
(1)初次感受两个量的变化。
课件出示表一,某班女生人数始终为20人。
男生/人3031323334……全班人数/人5051525354……请学生观察分析表中有哪些量是在发生变化?它们的变化关系又是如何?(2)感受两个量的变化。
课件出示表二,小明的体重变化情况,年龄出生时6个月1周岁2周岁6周岁10周岁体重/千克3.57.010.514.021.031.51、这是小明的体重变化情况,请你认真的观察并回答后面的问题。
(1)从表中你知道了什么信息?(2)上表中哪些量在发生变化?(3)说一说小明10周岁前的体重是如何随年龄增长而变化的。
(4)体重一直会随年龄的增长而增长吗?今后他的年龄和体重还可能怎么样变化?这说明了什么。
2、学生先独立思考,在小组讨论交流。
3.组内说一说。
()随()的增加而增加。
()随()的减少而减少。
三、汇报交流,评价质疑。
1.班内交流。
哪个小组愿意将您们组的发现与大家分享一下。
2.小组展示汇报,大家分享,互相评价,质疑对话。
(1)从表中知道小明的年龄和体重。
预设回答:①上表中小明的年龄和体重在发生变化.随年龄的增长而增长。
2021年北师大版数学六下第四单元《正比例和反比例》章节知识点、达标训练附解析
北师大版数学六年级下册章节复习知识点、达标训练附解析第四单元《正比例和反比例》知识点一:变化的量1.相互关联的变量在一定条件下的变化是有规律的。
2.列表与画图都可以表示变量之间的变化关系。
分析表格时,要弄清两个变量及相对应的数据;分析图时,要弄清图中横轴、纵轴表示的量的名称,以及图中每一个点所对应的两个量的多少。
3. 一般用含有字母的式子表示有规律的变量的变化规律,应先根据题中的条件写出等量关系式,再将等量关系式用字母表示出来。
知识点二:正比例1.成正比例的量的特征:一个量随着另一个量的变化而变化,在变化过程中这两个量的比值一定。
2.如果用x和y表示两个相关联的量,用k(一定)表示它们的比值,正比例关系可以表示为=k(一定)。
3.判断两个量是否成正比例的方法(1)首先,要确定这两个量是不是相关联的量(其中一个量是否随着另一个量的变化而变化);(2)其次,要根据两个变量之间的数值对应关系,计算出两个变量每一对数值的比值;(3)最后,根据比值是否一定来判断这两个变量是否成正比例。
知识点三:正比例图像1.成正比例的两个量表示的各点在同一条直线上,即正比例图象的特征是一条直线。
2.从正比例图象中可以得出任意一点所表示的意义。
3. 观察正比例图象时,要先明确横轴、纵轴表示的意义,从图象中可以直观地看出两个量的变化情况,不需要计算,由一个量的值可以直接找到与它对应的另一个量的值。
知识点四:反比例1.成反比例的量的特征:一个量随着另一个量的变化而变化,在变化过程中这两个量的积一定。
2.如果用字母x和y表示两个相关联的量,用k(一定)表示它们的乘积,反比例关系可以表示为xy=k(一定)。
3.判断两个量是否成反比例的方法(1)首先,要确定这两个量是不是相关联的量(其中一个量是否随着另一个量的变化而变化);(2)其次,要根据两个变量之间的数值对应关系,计算出两个变量每一对数值的积;(3)最后,根据积是否一定来判断这两个变量是否成反比例。
《正比例与反比例整理和复习》示范教学PPT课件【小学数学北师大版六年级下册】
整理和复习
一知识呢?请你结合 下面的提纲,回忆一下吧?
变化的量
变量的意义
比例
正比例 画一画
什么是正比例 正比例的图形
反比例
什么是反比例
一、复习回顾
一、变化的量
当一个量随着另一个量的变化而发生变化时, 这两个量都叫做变量。
一、复习回顾
每天修的米数/m 10 20 30 40 需要的天数/天 30 15 10 7.5
(2) 20 天
(3)12 m
再见
二、基础练习
1. 在括号里填上“每时生产零件个数”“生产时间”或 “生产零件总数”。 ( 生产零件总数 )一定,(每时生产零件个数)和( 生产时间 )成反比例; ( 生产时间 )一定,( 生产零件总数)和(每时生产零件个数 )成正比例。
二、基础练习
2. 填空。
(1)一个比例的两个外项互为倒数,其中一个内项是3,另一个内
(1)10×80=800(千米) (2)600÷80=7.5(时)
四、拓展练习
2. 修一条水渠,每天修的米数和所需要的天数如下表。 (1)每天修的米数和所需要的天数有什么关系? (2)如果每天修15 m,修完这条水渠共需要多少天? (3)修完这条水渠一共用了25 天,每天修多少米?
(1)每天修的米数和所需 要的天数成反比例。
项是( 1
)。
3
(2)已知A÷B=C(B≠0),当A一定时,B和C成( 反 )比例;当B一
定时,A和C成( 正 )比例;当C一定时,A和B成( 正 )比例。
(3)某地上午10时电线杆的高度与地上留下影子的长度比是4∶3, 已知影子长6米,电线杆的高度是( 8 )米。
二、基础练习
北师大版数学六年级下四单元知识点总结(学生版)
四单元知识点姓名: 学号:1. 变化的量:简称( )。
如果一个量随着另一个量的变化而( ),我们就说这两个量是( )的。
2. 变量:( )和( )都是表示变量关系的常用方法。
3.正比例:像这样,路程和时间两个量,时间变化,路程随着时间的变化而变化,而且路程和时间的( )不变,是一个( )的数,那么我们就说路程和时间成( )。
用字母表示为:y x = k(一定)。
4.判断下面的两个量是否成正比例的方法:①先看两个量是不是( );②再看它们的( )是不是一个固定的数。
5.正比例图像是一条( )。
例:一辆汽车行驶的时间和路程情况如下表:(1)把表格填写完整。
(2)说一说路程和时间有什么关系?(3)根据表中的数据在下图中描点,再依次连接各点。
你有什么发现?6.判断下面的两个量是否成正比例,不成的打×,成正比例的打√并写出算式。
(常考点总结)(1)圆的面积和半径。
()(2)圆的面积和半径的平方。
()(3)圆的周长和直径。
()(4)圆柱高一定,它的底面积和体积。
()(5)圆柱底面积一定,它的高和体积。
()(6)长方形的周长一定,它的长和宽。
()(7)长方形的宽一定,它的面积和长。
()(8)路程一定,时间和速度。
()(8)时间一定,路程和速度。
()(9)海水的含盐率一定,所得的盐和海水的质量。
()(10)一个人的身高和体重。
()(11)爸爸和儿子的年龄。
()(12)如果5a=12b,那么a和b。
()(13)甲数=乙数÷5,那么甲数和乙数。
()(14)等边三角形的周长和边长。
()7.反比例:我知道若两个相关联的量,一个量随着另一个量的变化而变化,且两个量的()是一定的,则这两个量成()。
用字母表示为:xy= k(一定)。
8.判断下面的两个量是否成反比例,不成的打×,成反比例的打√并写出算式。
(常考知识点)(1)互为倒数的两个数。
()(2)一袋米,吃了的部分和剩下的部分。
()(3)长方形面积一定,它的长和宽。
六年级数学下册说课稿《4.1变化的量 》北师大版
六年级数学下册说课稿《4.1变化的量》北师大版一. 教材分析《4.1变化的量》这一节的内容主要是让学生初步理解变量的概念,学会用图形和表示变化中的量,从而培养学生的抽象思维能力和数据处理能力。
北师大版六年级数学下册的教材在内容安排上循序渐进,从生活中的实例引入变量概念,再通过具体的图形和让学生直观地感受变量之间的关系,最后通过练习题巩固所学知识。
二. 学情分析六年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于生活中的变化现象有一定的认识。
但是,对于变量的概念和用图形、表示变化中的量可能还存在一定的困难。
因此,在教学过程中,我需要关注学生的认知水平,通过生动形象的教学手段,帮助学生理解和掌握所学知识。
三. 说教学目标1.知识与技能:学生能够理解变量的概念,学会用图形和表示变化中的量。
2.过程与方法:学生通过观察、操作、思考,培养抽象思维能力和数据处理能力。
3.情感态度与价值观:学生感受数学与生活的紧密联系,培养学习数学的兴趣。
四. 说教学重难点1.教学重点:学生能够理解变量的概念,会用图形和表示变化中的量。
2.教学难点:学生对于变量之间的关系和如何选择合适的图形、表示变化中的量的理解。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、引导发现法等。
2.教学手段:利用多媒体课件、实物模型、练习题等。
六. 说教学过程1.导入:通过生活中的实例,如温度、身高等,引导学生认识变化中的量,引出变量概念。
2.新课讲解:讲解变量的概念,引导学生用图形和表示变化中的量。
在此过程中,可以让学生分组讨论,分享各自的想法和做法。
3.实例分析:分析教材中的实例,让学生直观地感受变量之间的关系,学会如何选择合适的图形和表示变化中的量。
4.练习巩固:布置一些练习题,让学生独立完成,巩固所学知识。
5.课堂小结:总结本节课的主要内容,强调变量的概念和用图形、表示变化中的量的重要性。
七. 说板书设计板书设计要清晰、简洁,能够突出本节课的主要内容。
(完整版)北师大版小学数学六年级下册知识点汇总
北师大版小学数学六年级(下册)知识点第一单元、圆柱和圆锥一、面的旋转1、“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。
2、圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆。
(2)两个底面间的距离叫做圆柱的高。
(3)圆柱有无数条高,且高的长度都相等。
3、圆锥的特征:(1)圆锥的底面是一个圆。
(2)圆锥的侧面是一个曲面。
(3)圆锥只有一条高。
二、圆柱的表面积1、沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)。
(如果不是沿高剪开,有可能还会是平行四边形)2、圆柱的侧面积=底面周长×高,用字母表示为:S 侧=ch 。
3、圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S 侧=ch ;(2)已知底面直径和高,求侧面积,可运用公式:S 侧=πdh ;(3)已知底面半径和高,求侧面积,可运用公式:S 侧=2πrh4、圆柱表面积的计算方法:如果用S 侧表示一个圆柱的侧面积,S 底表示底面积,d 表示底面直径,r 表示底面半径,h 表示高,那么这个圆柱的表面积为:S 表=S 侧+2S 底 或 S 表=πdh+2π)2d (² 或S 表=2πrh+2πr 25、圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。
(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。
三、圆柱的体积1、圆柱的体积:一个圆柱所占空间的大小。
2、圆柱的体积=底面积×高。
如果用V 表示圆柱的体积,S 表示底面积,h 表示高,那么V =Sh 。
3、圆柱体积公式的应用:(1)计算圆柱体积时,如果题中给出了底面积和高,可用公式:V =Sh 。
(2)已知圆柱的底面半径和高,求体积,可用公式:V =πr 2 h ;(3)已知圆柱的底面直径和高,求体积,可用公式:V =π(d ÷2)2 h ;(4)已知圆柱的底面周长和高,求体积,可用公式:V =π(C ÷π÷2)2 h ; 、圆柱形容器的容积=底面积×高,用字母表示是V =Sh 。
北师大版六年级数学下册教案-4.1变化的量
北师大版六年级数学下册教案-4.1变化的量一、教学目标1.了解变化的量的概念及其数学符号。
2.培养学生观察问题、分析问题、解决问题的能力。
3.激发学生学习数学的兴趣。
二、教学重点和难点1.重点:掌握变化的量的概念及其数学符号。
2.难点:能够把所学习的知识应用到实际问题中。
三、教学过程1.导入新知识老师出示一段校园内道路上人的行走速度的视频并介绍视频中拍摄的现象。
让学生通过视频中的人的行走速度来了解变化的量。
2.引入概念1.引入概念“变化的量”及其符号。
2.让学生说说生活中常见的变化的量。
3.概念讲解1.让学生就已经学过的知识,回忆出变化的量的特征。
2.通过校园内道路上人的行走速度的视频来阐述变化的量的概念。
4.练习1.练习板书,规定好变化的量的正负。
以速度的变化作为例。
例如,一辆车以60公里/小时的速度向北行驶,又将速度减小到30公里/小时,这个时候速度的变化量应该为-30公里/小时。
而如果一辆车由60公里/小时的速度加快到90公里/小时,速度的变化量就是30公里/小时。
2.完成练习册中的练习。
5.拓展将视频中校园内道路上人的行走速度的变化场景引用到工艺流程加工工件的例子中,并让学生谈谈变化的量的正负及其意义。
6.小结1.询问学生学习变化的量后的感悟。
2.总结变化的量的概念及其数学符号。
3.让学生给出所学知识在现实中的其他应用场景。
四、教师评价本课时教学内容新颖并且充满趣味性,让学生在观察问题、分析问题、解决问题中逐渐掌握了变化的量的概念及其数学符号。
在教学过程中,也发现一些问题:有些学生在完成作业时常常忽略符号的正负,因此在日后的实践中,需要注意对学生符号的正负认识的纠正。
六年级下册数学教案-4.1变化的量 北师大版
六年级下册数学教案-4.1变化的量一、教学目标1. 知识目标•掌握变化的概念,能够理解和描述变化量的大小和方向;•理解变化量的计算方式及其在实际问题中的应用;•掌握增量和减量的概念,能够进行增量和减量的计算。
2. 能力目标•培养学生观察问题、提出问题、解决问题的能力;•提高学生分析和解决实际问题的能力。
3. 情感目标•培养学生认真负责的态度;•培养学生团结合作、积极参与课堂活动的精神。
二、教学重点•变化的概念和计算方式;•增量和减量的概念和计算方法。
三、教学难点•将变化抽象化,从实际问题中抽象出变化的概念;•通过实际问题引导学生进行变化量的计算,加深对变化的理解。
四、教学方法•案例教学法;•课堂讲解法;•问题解决法。
五、教学过程1. 导入环节•向学生介绍变化的概念:变化是指某个物体或事物的量在时间或空间上发生的不同状态,包括增和减两种情况。
2. 讲解环节•让学生观察实际问题并提出问题,引导学生分析并提出假设;•通过对问题的分析和假设的验证,引导学生理解变化量的计算方式;•引导学生理解增量和减量的概念,逐步掌握增量和减量的计算方法。
3. 练习环节•让学生根据实际情况进行增量和减量的计算练习;•让学生自主设计实际问题,进行变化量的计算。
4. 课堂总结•对本节课的知识点进行总结;•对学生练习中常出现的错误进行纠正和指导。
六、课后作业•练习册上的相关练习题;•自主设计实际问题,进行变化量的计算。
七、教学反思本节课通过对实际问题的引导,让学生了解变化的概念和计算方法,并通过实例让学生深入理解增量和减量的概念和计算方法。
同时,让学生自主设计实际问题,进行变化量的计算,提高了学生的自主学习能力和解决问题的能力。
但是在授课过程中,还需要更多思考如何在知识点的讲解中加入生动有趣的案例,使学生更容易理解和接受知识。
(北师大版)小学六年级数学下册第四单元《正比例与反比例》教学详案设计(附设计意图和板书设计)
(北师大版)小学六年级数学下册第四单元《正比例与反比例》教学详案设计(附设计意图和板书设计)第一课时变化的量执教老师:上课时间:年月日教学内容:北师大版小学六年级数学下册第39-40页教材分析:本节课是学习正比例与反比例的起始课。
教材设计了系列情境,结合日常生活中的问题,鼓励学生在观察、思考、讨论和交流的过程中,体会在具体生活情境中存在着许多相互关联的变量。
这几个情境用表格、图象和关系式呈现变量之间的关系,让学生体会可以用多种形式表示变量之间的关系,并尝试用自己的语言描述两个变量之间的变化,这为后面学习正比例、反比例打下了基础,同时让学生初步体会函数思想。
学情分析:学生在学习本单元之前已经学习了比和比例的有关知识,并在学习生活中积累了许多关于变量的经验,但对于变量这个抽象的概念还是比较难理解,在描述方面可能会存在一定的困难。
教学目标:1.结合具体的数学情境认识“变化的量”,并通过描述活动,了解其中一个变量是怎样随着另一个变量而变化的,知道列表与画图都是表示变量关系常用的方法,积累表征变量的数学活动经验。
2.通过举例与交流活动,体会生活中存在着大量互相依存的变量,了解日常生活中一个变量随着另一个变量而变化是普遍存在的现象。
教学重点:了解并描述其中一个变量是怎样随着另一个变量而变化的。
教学难点:了解并描述其中一个变量是怎样随着另一个变量而变化的。
教学准备:多媒体课件教法:谈话法、演示法、讨论法学法:自主学习法、探究学习法教学过程:一、课前3分钟练1.根据条件计算圆的周长。
(1)直径3厘米(2)直径8厘米(3)直径15厘米1.通过刚才的计算,你发现了什么?(设计意图:通过课前三分钟练习,提高学生计算能力,并让学生感受直径变化,圆的周长也发生变化。
)二、创设情境,导入新课生活中的事物总是在不停变化着,如:人的年龄、身高、体重在变,气温在变,我国的人均收入、生产总值等都在变化,像这样会变化的量,我们称为变量。
北师大版小学6年级数学下册第四单元正比例与反比例( 正比例(1~2)+画一画)PPT教学课件
和剩下的水。
喝掉的水+剩下的水
=整瓶矿泉水(和一定)
整瓶矿泉水总量不变的情况下,喝掉
的水与剩下的水不是比值一定,而是
和一定,因此它们不成正比例关系。
返回
正比例与反比例 正比例(1)
光照角度一样
学校科学小组在同一时间、同一地点进行观察实
验,测得竹竿的高与竿影的长如下表。
竹竿的高/m
返回
正比例与反比例 正比例(2)
乐乐和爸爸的年龄变化情况如下,把表填写完整。
乐乐的年龄/岁
6
7
8
9
10
11
爸爸的年龄/岁
32
33
34
35
36
37
他们的年龄成正比例吗?为什么?
乐乐的年龄与爸爸年龄差一定,
但它们的比值不是一个确定的值,
所以他们的年龄不成正比例。
返回
正比例与反比例 正比例(2)
课堂练习
0.4
0.8
1.2
1.6
2
2.4
弹簧伸长的长度
=0.4(一定)
物体质量
弹簧伸长的长度和物体质量成正比例
返回
正比例与反比例 画一画
3.根据图像回答问题。
圆的周长与直径成正比例吗?为
什么?
圆的周
= (一定)
长直径
圆的周长和直径成正比例
返回
正比例与反比例 画一画
3.根据图像估计并计算。
直径为5cm的圆的周长约15cm,计
和( 半径 )的关系。
12.56
6.28
0
1
(2) ( 周长 )随着(半径 )
的变化和变化,它们的( 比值 )
北师大版六年级数学下册课堂笔记《4.1变化的量》
北师大版六年级数学下册课堂笔记《4.1变化的量》一、知识回顾在数学中,我们学习了很多不同的概念和知识点,其中有一个非常重要的概念就是变量。
变量是指在数学问题中,可以取不同数值的量。
在本节课中,我们将进一步学习变量,特别是变化的量。
二、新课导入生活中的事物总是在不停变化着。
比如:人的年龄、身高、体重在变,我国的人均收入、生产总值等等都在变化,像这样变化的量,我们称为变量。
往往一些量的改变会引起其他量的改变,比如:身高的改变会引起体重的改变;购物时,单价或数量的改变,会引起总价的改变。
这些都是变化的量,像这样的例子很多,今天我们就来学习变化的量。
三、观察图表,感知变量为了更好地理解变化的量,我们需要观察一些图表。
这些图表能够帮助我们直观地看出变量之间的关系。
例如,我们可以观察一张记录了两个同学从出生到现在身高变化的图表。
通过观察这张图表,我们可以发现,随着年份的增加,这两个同学的身高也在不断增长。
这说明身高是一个随时间变化的变量。
同样,我们还可以观察一张记录了两个同学从出生到现在体重变化的图表。
通过观察这张图表,我们可以发现,随着年份的增加,这两个同学的体重也在不断变化。
这说明体重也是一个随时间变化的变量。
四、自主探究,总结规律通过观察图表,我们可以发现,在许多情况下,一个变量的变化会引起另一个变量的变化。
接下来,我们将通过自主探究,总结出这些变量之间的关系。
例如,我们可以思考这样一个问题:如果一个人的身高增加了,那么他的体重会增加吗?答案是肯定的。
因为身高增加,意味着身体的体积增加,从而导致体重增加。
这说明身高和体重之间存在正相关关系。
再例如,我们可以思考这样一个问题:如果商品的单价降低了,那么购买这件商品所需的总价会发生什么变化?答案是,总价会降低。
因为单价降低,意味着购买同样数量的商品所需的钱减少了。
这说明单价和总价之间存在反相关关系。
通过以上自主探究,我们可以总结出一些变量之间的关系,如正相关、反相关等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
XX小学 刘钟老师
老师从家到学校的路程大约6000 米
速度 (米/分)
时间 (分)
400
500 600
…… ……
15
12 10
活动一:下表是小明的体重变化情况:
1、上表中哪些量在发生变化? 年龄和体重
活动一:下表是小明的体重变化情况:
2、说一说小明10周岁前的体重是如 何随年龄增长而变化的?
小明的体重随年龄的增长而变化,2~6 岁,6~10岁是体重增长的高峰,说明这 两个阶段是孩子成长的重要阶段。
活动一:下表是小明的体重变化情况:
3、体重会一直随年龄的增长而变化吗?
体重和年龄是一组相关联的量。但体 重的增长是随着人的生长规律而确定 的。(合理饮食,适当控制体重)
活动二:骆驼被称为“沙漠之舟”,它的体温随时间的变化而 发生较大的变化。
相同
活动二:骆驼被称为“沙漠之舟”,它的体温随时间的变化而 发生较大的变化。
6、骆驼的体温有什么变化的规律吗? 骆驼的体温每一天的同一时刻的体温相 同,它的体温是以一天为周期在变化。
一辆汽车行驶的速度为90千米/小时
时间/ 1 时 路程/ 90 千米 2 180 3 270 4 360 5 450 6 540 7 630 …… ……
正方形的边长和周长如下表
正方形边长 (厘米) 正方形周长 (厘米) 1 4 2 8 3 12 4 16 …… ……
说一说
你还发现生活中有哪两个 量之间具有变化的关系? 它们之间是怎样变化的?
练一练
1、连一连,把相互变化的量连起来。 路程 正方形周长 边长 购买数量 总价 行驶时间
活动二:骆驼被称为“沙漠之舟”,它的体温随时间的变化而 发生较大的变化。
4、一天中,在什么时间范围内骆驼的体 温在上升?在什么时间范围内骆驼的体 温在下降? 4时到16时,体温上升, 0时到4时,16时到24时,体温下降。
活动二:骆驼被称为“沙漠之舟”,它的体温随时间的变化而 发生较大的变化。
5、第二天8时骆驼的体温与前一天8时 的体温有什么关系?
2、说一说,一个量怎样随另一个量变化。 (1)一种故事书每本3元,买书的总价与书的本数。 (2)一个长方形的面积是12平方厘米,长方形的长与宽。
3、小明到商店买练习簿,每本单价2元,
购买的总数x(本)与总金额y(元)的
关系式,可以表示为:
y =2x
其中y随x的变化而变化。
4、某地的一位学生发现蟋蟀叫的次数与 气温之间有如下的近似关系。
1、图中所反映的两个变化的量是 哪两个?
骆驼的体温和时间
活动二:骆驼被称为“沙漠之舟”,它的体温随时间的变化而 发生较大的变化。
2、横轴表示什么?纵轴表示什么?
横轴表示时间,纵轴表示骆驼的体温
活动二:骆驼被称为“沙漠之舟”,它的体温随时多 少?最低是多少? 最高是40摄氏度,最低35摄氏度