第8章MCS-51单片机并行扩展技术总结
项目 一 汽车单片机原理应用(任务五 MCS-51单片机系统扩展)
(3) MCS-51单片机系统地址空间的分配 系统空间分配:通过适当的地址线产生各外部扩展器件的片 选/使能等信号就是系统空间分配。
编址:编址就是利用系统提供的地址总线,通过适当的连接, 实现一个编址惟一地对应系统中的一个外围芯片的过程。编 址就是研究系统地址空间的分配问题。
片内寻址:若某芯片内部还有多个可寻址单元,则称为片内 寻址。
2)全地址译码法
利用译码器对系统地址总线中未被外扩芯片用到的高位 地址线进行译码,以译码器的输出作为外围芯片的片选信 号。常用的译码器有:74LS139,74LS138,74LS154等。 优点是存储器的每个存储单元只有惟一的一个系统空间地 址,不存在地址重叠现象;对存储空间的使用是连续的, 能有效地利用系统的存储空间。缺点是所需地址译码电路 较多,。全地址译码法是单片机应用系统设计中经常采用 的方法。
1。程序和数据之和不大于 存储器总容量。 2。程序必须存放在低地址,
数据存放在高地址。
三、并行I/O口扩展 MCS-51单片机具有四个并行8位I/O口原理均可用做双向并行 I/O接口,但在实际应用中,可提供给用户使用的I/O口只有P1 口和部分P3口线及作为数据总线用的P0口。在单片机的I/O口 线不够用的情况下,可以借助外部器件对I/O口进行扩展 (1)概述 1)单片机I/O口扩展方法 并行I/O口扩展的目的:为外围设备提供一个输入输出通道。 ①并行总线扩展的方法 ②串行口扩展方法(只介绍总线扩展方式下I/O接口扩展方法) ③I/O端口模拟串行方法
二、存储器的扩展 存储器是计算机系统中的记忆装置,用来存放要运行的程 序和程序运行所需要的数据。单片机系统扩展的存储器可分为 程序存储器和数据存储器两种类型。
(1)MCS-51单片机对外部存储器的扩展应考虑的问题
3.1MCS-51单片机的并行IO口
一、并行I/O口的功能结构
2、接口功能 (2)通用I/O接口
(四)P0口
此时“控制”信号为“0”,多路开关 MUX向下,输出驱动器处于开漏状态,故需 外接上拉电阻,这种情况下,电路结构与P1 相同,所以也是一个准双向口,当要作为输 入时,必须先向口锁存器写“1”。
一、并行I/O口的功能结构
(四)P0口
这是由接口的特殊结构所决定的。每一个 口都包含一个锁存器,一个输出驱动器和两 个(P3口为3个)输入缓冲器。各口的结构也 P 3 有些差异,下面分别介绍。
一、并行I/O口的功能结构
1、接口结构
(一)P1口
P1口一位的结构如下图所示:
图2.15
一、并行I/O口的功能结构
1、接口结构
(一)P1口
接口结构中锁存器起输出锁存作用, 8位锁存器组成特殊功能寄存器P1,场 效应管和上拉电阻组成输出驱动器,以 增大负载能力,三态门1和三态门2分别 用于控制输入引脚和锁存器的状态。
作为I/O口应用的一个实例,下面介绍 8031单片机的最小应用系统如下图所示
二、产生接口控制信号的指令
(四)P0口
8051指令系统中能与接口打交道的指令 大体可分两类 1.一般的输入/输出指令 2.“读-修改-写”指 令
二、产生接口控制信号的指令
1.一般的输入输出指令
(四)P0口
输入指令执行时,内部产生“读引脚”信号, 直接从口线读入,亦称“读引脚”指令。 下面是属于这种指令的各种实例:
二、产生接口控制信号的指令
(四)P0口 2.“读-修改-写”指令 INC P2 接口锁存器加1 DEC P1 接口锁存器内容减1 DJNZ P3,LOOP 减1后不为零则跳转 还有三条虽不明显,但也属此列: MOV P1.1,C CLR P1.1 SETB P1.1 将进位位送接口的某位 清接口的某一位 接口的某一位置位
MCS-51单片机并行口的结构与操作
华中科技大学光学与电子信息学院单片机( 2015 -- 2016学年度第一学期)题目:MCS-51单片机并行端口结构与操作院系:光学与电子信息学院班级:学号:学生姓名:指导教师:成绩:日期: 2015年 9月 21日MCS—51单片机并行口的结构与操作一、MCS—51单片机简介MCS—51单片机是美国INTE公司于1980年推出的产品,与MCS-48单片机相比,它的结构更先进,功能更强,在原来的基础上增加了更多的电路单元和指令,指令数达111条,MCS-51单片机可以算是相当成功的产品,一直到现在,MCS-51系列或其兼容的单片机仍是应用的主流产品,各高校及专业学校的培训教材仍与MCS—51单片机作为代表进行理论基础学习.MCS-51系列单片机主要包括8031、8051和8751等通用产品,其主要功能如下:8位CPU、4kbytes 程序存储器(ROM)、128bytes的数据存储器(RAM)、32条I/O口线、111条指令,大部分为单字节指令、21个专用寄存器、2个可编程定时/计数器、5个中断源,2个优先级、一个全双工串行通信口、外部数据存储器寻址空间为64kB、外部程序存储器寻址空间为64kB、逻辑操作位寻址功能、双列直插40PinDIP封装、单一+5V电源供电。
如图所示:1。
结构(1)中央处理单元(8位)数据处理、测试位,置位,复位位操作(2)只读存储器(4KB或8KB)永久性存储应用程序,掩模ROM、EPROM、EEPROM(3)随机存取内存(128B、128B SFR)在程序运行时存储工作变量和资料(4)并行输入/输出口(I / O)(32条)作系统总线、扩展外存、I / O接口芯片(5)串行输入/输出口(2条)串行通信、扩展I / O接口芯片(6)定时/计数器(16位、加1计数)计满溢出、中断标志置位、向CPU提出中断请求,与CPU之间独立工作(7)时钟电路内振、外振。
(8)中断系统五个中断源、2级优先。
MCS51单片机总线系统与IO口扩展
6.2.2 单片机总线扩展的编址技术
OE
LE
Dn
Qn
L
H
H
H
L
H
L
L
L
L
L
Qn-1
L
L
H
Qn-1
H
×
×
Z
地址锁存器74LS373
CLR D0-D7Q0-Q7 4 6 2 6 74LS24474LS273 E 0123456789E GG 12Q0-Q7CLKD0-D7AAAAAAAAAAA10A11A12I/O0I/O1I/O2I/O3I/O4I/O5I/O6I/O7OWCE1CE2 56? UUU P0.0-P0.7P0.0-P0.7 +5V 11 01234567 E >> QQQQQQQQ O 01234567 E DDDDDDDDL 2 U74LS373 012 YYY ABC 3 U74LS138 R AD E R P20P07P21P06P22P05P23P04P24P03P25P02P26P01P27P00 W ALE 89C51 1 U
MOV
DPTR,#0FEFFH ;确定扩展芯片地址
MOVX
A,@DPTR
;将扩展输入口内容读入累加器A
当与74LS244相连的按键都没有按下时,输入全为1,若按下某键,则所在线 输入为0。
6.2.1 单片机I/O口扩展
输出控制信号由P2.0和相“或”后形成。当二者都为0后,74LS273的控制端 有效,选通74LS273, P0上的数据锁存到74LS273的输出端,控制发光二极管 LED , 芯 片 地 址 与 74LS244 的 选 通 地 址 相 同 ( 都 是 ×××× ×××0 ×××× ××××B,通常取为FEFFH)。当某线输出为0时,相应的LED发 光。
第8章作业-单片机原理与应用及C51程序设计(第4版)-谢维成-清华大学出版社
;查表取得段选码
3
MOV P0,A
;字段码从 P0 口输出
ACALL DL1
;调用 1ms 延时子程序
DEC R0
;指向缓冲区下一单元
MOV A,R3
;位选码送累加器 A
JNB ACC.0,LD1 ;判断 8 位是否显示完毕,显示完返回
RR A
;未显示完,把位选字变为下一位选字
MOV R3,A
;修改后的位选字送 R3
LOOP: MOV @R0,A
INC R0
INC A
DJNZ R2,LOOP
MOV TMOD , #10H
MOV TH1 , #(65536-20000)/256
MOV TL1 , #(65536-20000)%256
SETB EA
SETB ET1
SETB TR1
LOOP1作于方式 1 实现 20ms 周期性定时,20ms 定时到调用显示函数一 遍,定时器方式控制字为 10H,系统时钟为 12MHz,初值为:65536-20000
;设 8 个数码管的从左到右显示缓冲区为片内 RAM 的 50H~57H 单元)
ORG 0000H LJMP MAIN
2
工作过程可分为两步:第一步是 CPU 首先检测键盘上是否有键按下;第二步是识别哪 一个键按下。
(1) 检测键盘上是否有键按下的处理方法是:将列线送入全扫描字,读入行线的状态 来判别。
(2) 识别键盘中哪一个键按下的处理方法是:将列线逐列置成低电平,检查行输入状 态,称为逐列扫描。
10. 对于数码管动态显示,在很多实际的单片机应用系统中,为了实现较好的显示效 果,通常是把动态显示过程用定时扫描方式来实现,处理思想如下:用定时器实现 20ms 周 期性定时,定时时间到动态显示一遍。参照书上图 8.9 的电路和内容,把数码管显示改成 定时扫描方式,用汇编语言编写相应程序。
51系列单片机教程(共15章) 第8章
在大多数应用的场合,还是并行扩展占主导地位。
8.3 读写控制、地址空间分配和外部地址锁存器 8.3.1 存储器扩展的读写控制 RAM芯片:读写控制引脚,记为OE*和WE* ,与MCS-51 的RD*和WR*相连。 EPROM芯片:只能读出,故只有读出引脚,记为OE* , 该引脚与MCS-51的PSEN*相连。 8.3.2 存储器地址空间分配
口部件的扩展下一章介绍。
系统扩展结构如下图:
MCS-51单片机外部存储器结构:哈佛结构 。 MCS-96单片机的存储器结构:普林斯顿结构。 MCS-51数据存储器和程序存储器的最大扩展空间各为 64KB。 系统扩展首先要构造系统总线。 8.2 系统总线及总线构造 8.2.1 系统总线 按其功能通常把系统总线分为三组: 1.地址总线(Adress Bus,简写AB) 2.数据总线(Data Bus,简写DB) 3.控制总线(Control Bus,简写CB) 8.2.2 构造系统总线
地址锁存器一般采用74LS373,采用74LS373的地址总 线的扩展电路如下图(图8-3)。
1.以P0口作为低8位地址/数据总线。 2.以P2口的口线作高位地址线。 3.控制信号线。 *使用ALE信号作为低8位地址的锁存控制信号。 *以PSEN*信号作为扩展程序存储器的读选通信号。 *以EA*信号作为内外程序存储器的选择控制信号。 *由RD*和WR*信号作为扩展数据存储器和I/O口的 读选通、写选通信号。 尽管MCS-51有4个并行I/O口,共32条口线,但由于系 统扩展需要,真正作为数据I/O使用的,就剩下P1 口和P3口的部分口线。 8.2.3 单片机系统的串行扩展技术
8.3.3 外部地址锁存器
常用的地址锁存器芯片有: 74LS373、8282、74LS573 等。 1. 锁存器74LS373 带有三态门的8D锁存器,其引脚其内部结构如下图。
微机原理与单片机接口技术(第2版)李精华 第8章 微处理器控制系统的接口扩展
8.1.2 编址技术
所谓编址,就是通过51单片机地址总线,使片外扩展的存 储器和I/O口中的每个存储单元或元器件,在51单片机的寻址 范围内均有独立的地址,以便51单片机使用该地址能唯一地选 中该单元。51单片机对外部扩展的存储器和I/O设备进行编址 的方法有两种:线选法和译码法。 1、线选法
所谓线选法,就是直接选定单片机的某根空闲地址线作为 存储芯片的片选信号。 2、译码法
由P0口作为地址线低8位,P2口作为地址线高8位,构 成16位地址,寻址范围为64KB。由于P0口分时复用为 地址总线和数据总线,除提供低8位地址之外,又要 作为数据口,地址和数据分时控制输出。为避免地址 和数据的冲突,低8位地址必须用锁存器锁存。也就 是在P0口外加一个锁存器,当ALE为下降沿时,将低8 位地址锁存。
位(LSB)所对应的输入模拟电压的变化量。分辨率定义 为转换器的满刻度电压(基准电压)VFSR与2n的比值,即
分辨率= VFSR 式中,n为A/D转2换n器输出的二进制位数,n越大,分
辨率越高。分辨率取决于A/D转换器的位数,所以习惯上 用输出的二进制位数或BCD码位数表示。
8.2 A/D转换器与D/A转换器简介
2.A/D转换器的主要技术指标 • (2)量化误差:模拟量是连续的,而数字量是断续
的,当A/D转换器的位数固定后,数字量不能把模拟 量所有的值都精确地表示出来,这种由A/D转换器有 限分辨率所造成的真实值与转换值之间的误差称为量 化误差。一般量化误差为数字量的最低有效位所表示 的模拟量,理想的量化误差容限是±1/2LSB。
三、教学难点
I2C总线接口的程序设计。
四、教学方式
8.1 单片机的外部并行总线
8.1.1 并行总线结构 51单片机具有外部并行总线,分为地址总线(AB)
第8章 单片机系统扩展_练习
第8章单片机系统扩展1. 什么是AT89C51单片机的最小应用系统?答:所谓最小应用系统是指能维持单片机运行的最简单配置系统。
AT89C51芯片外加晶振电路和复位电路就构成了一个简单可靠的最小应用系统。
其在简单应用场合,可满足用户的要求。
2. 在AT89C51扩展系统中,程序存储器与数据存储器共用16位地址线和8位数据线,为什么两个存储空间不会冲突?答:AT89C51在片外扩展RAM的地址空间为0000H~FFFFH,共64KB,与ROM地址空间重叠。
但因各自使用不同的指令和控制信号,因而不会“撞车”。
读ROM时用MOVC指令,由PSEN选通ROM的OE端;读/写片外RAM时用MOVX指令,用RD选通RAM的OE端,用WR选通RAM的WE端。
但扩展RAM与扩展I/O 口是统一编址的,使用相同的指令和控制信号。
这在设计硬件系统和编制软件程序时应注意统筹安排。
3. 利用一片74LS138,用全译码方法,设计一个外部扩展8片6116的扩展电路。
写出各芯片的地址空间。
解:(图7.2 74LS138译码片选8片6116(2K×8)存储电路图(2)各芯片地址空间为:(假定无关位取1)芯片(1):1000 0000 0000 0000B~1000 0111 1111 1111B=8000H~87FFH芯片(2):1000 1000 0000 0000B~1000 1111 1111 1111B=8800H~8FFFH芯片(3):1001 0000 0000 0000B~1001 0111 1111 1111B=9000H~97FFH芯片(4):1001 1000 0000 0000B~1001 1111 1111 1111B=9800H~9FFFH芯片(5):1010 0000 0000 0000B~1010 0111 1111 1111B=A000H~A7FFH芯片(6):1010 1000 0000 0000B~1010 1111 1111 1111B=A800H~AFFFH芯片(7):1011 0000 0000 0000B~1011 0111 1111 1111B=B000H~B7FFH芯片(8):1011 1000 0000 0000B~1011 1111 1111 1111B=B800H~BFFFH4.用串行传送方式,在AT89C51上扩展2片AT24C01A,画出硬件连接图,编程向每片传送100个数据。
单片机课件8 单片机的存储器的扩展
MCS-51单片机的地址总线为16位,它的存储器最大的 扩展容量为216,即64K个单元。
2013-6-27
单片机原理及其应用
20
8.3 程序存储器扩展
8.3.2 外部程序存储器扩展原理及时序
(一) 外部程序存储器扩展使用的控制信号
(1)EA——用于片内、片外程序存储器配置, 输入信号。当EA=0时,单片机的程序存储器全部为扩 展的片外程序存储器;当EA=1 时,单片机的程序存 储器可由片内程序存储器和片外程序存储器构成,当 访问的空间超过片内程序存储器的地址范围时,单片 机的CPU自动从片外程序存储器取指令。 (2)ALE——用于锁存P0口输出的低8位地址。 (3)PSEN ——单片机的输出信号,低电平时, 单片机从片外程序存储器取指令;在单片机访问片内 2013-6-27 单片机原理及其应用 程序存储器时,该引脚输出高电平。
2013-6-27 单片机原理及其应用 11
8.2 半导体存储器
8.2.2 只读存储器 只读存储器(Read Only Memory,ROM),ROM 一般用来存储程序和常数。ROM是采用特殊方式写入 的,一旦写入,在使用过程中不能随机地修改,只能从 其中读出信息。与RAM不同,当电源掉电时,ROM 仍 能保持内容不变。在读取该存储单元内容方面,ROM 和RAM相似。只读存储器有掩膜ROM、PROM、EPROM、 E2PROM(也称EEPROM)、Flash ROM等。它们的区 别在于写入信息和擦除存储信息的方式不同。
单片机IO口扩展技术
单片机IO口扩展技术] 0 引言在单片机家族的众多成员中,MCS-51系列单片机以其优越的性能、成熟的技术、高可靠性和高性价比,占领了工业测控和自动化工程应用的主要市场,并成为国内单片机应用领域中的主流机型。
MCS-51单片机的并行口有P0、P1、P2和P3,由于P0口是地址/数据总线口,P2口是高8位地址线,P3口具有第二功能,这样,真正可以作为双向I/O口应用的就只有P1口了。
这在大多数应用中是不够的,因此,大部分MCS-51单片机应用系统设计都不可避免的需要对P0口进行扩展。
由于MCS-51单片机的外部RAM和I/O口是统一编址的,因此,可以把单片机外部64K字节RAM空间的一部分作为扩展外围I/O口的地址空间。
这样,单片机就可以像访问外部RAM存储器单元那样访问外部的P0口接口芯片,以对P0口进行读/写操作。
用于P0口扩展的专用芯片很多。
如8255可编程并行P0口扩展芯片、8155可编程并行P0口扩展芯片等。
本文重点介绍采用具有三态缓冲的74HC244芯片和输出带锁存的74HC377芯片对P0口进行的并行扩展的具体方法。
1 输入接口的扩展MCS-51单片机的数据总线是一种公用总线,不能被独占使用,这就要求接在上面的芯片必须具备“三态”功能,因此扩展输入接口实际上就是要找一个能够用于控制且具备三态输出的芯片。
以便在输入设备被选通时,它能使输入设备的数据线和单片机的数据总线直接接通;而当输入设备没有被选通时,它又能隔离数据源和数据总线(即三态缓冲器为高阻抗状态)。
1.1 74HC2244芯片的功能如果输入的数据可以保持比较长的时间(比如键盘),简单输入接口扩展通常使用的典型芯片为74HC244,由该芯片可构成三态数据缓冲器。
74HC244芯片的引脚排列如图1所示。
74HC244芯片内部共有两个四位三态缓冲器,使用时可分别以1C和2G作为它们的选通工作信号。
当1 C和2G都为低电平时,输出端Y和输入端A状态相同;当1G和2G都为高电平时,输出呈高阻态。
大学51系列单片机第八章习题及参考答案
大学51系列单片机第八章习题及参考答案一、填空题1、MCS-51外扩ROM、RAM或I/O时,它的地址总线是P0、P2 口。
2、12根地址线可寻址 4 KB存储单元。
3、微机与外设间传送数据有程序传送、中断传送和DMA传送三种传送方式。
4、74LS138是具有3个输入的译码器芯片,其输出作为片选信号时,最多可以选中8 块芯片。
5、74LS273通常用来作简单输出接口扩展;而74LS244则常用来作简单输入接口扩展。
6、并行扩展存储器,产生片选信号的方式有线选法和译码法两种。
7、在存储器扩展中,无论是线选法还是译码法,最终都是为了扩展芯片的片选端提供信号。
8、起止范围为0000H-3FFFH的存储器的容量是16 KB。
9、11根地址线可选2KB 个存储单元,16KB存储单元需要14 根地址线。
10、32KB RAM存储器的首地址若为2000H,则末地址为9FFF H。
11、假定一个存储器有4096个存储单元,其首地址为0,则末地址为0FFFH 。
12、除地线公用外,6根地址线可选64 个地址,11根地址线可选2048 个地址。
13、单片机扩展的内容有程序存储器扩展、数据存储器扩展及I/O口的扩展等。
二、选择题1、当8031外扩程序存储器8KB时,需使用EPROM2716( C )A、2片B、3片C、4片D、5片2、某种存储器芯片是8KB*4/片,那么它的地址线根数是( C )A、11根B、12根C、13根D、14根3、74LS138芯片是( B )A、驱动器B、译码器C、锁存器D、编码器4、MCS-51外扩ROM、RAM和I/O口时,它的数据总线是( A )A、P0B、P1C、P2D、P35、6264芯片是( B )A、E2PROMB、RAMC、Flash ROMD、EPROM6、一个EPROM的地址有A0----A11引脚,它的容量为( B )。
A、2KBB、4KBC、11KBD、12KB7、单片机要扩展一片EPROM2764需占用( C )条P2口线。
《新编MCS-51单片机应用设计》第三版 (张毅刚 彭喜元 著)-阳光大学生网
欢迎光临阳光大学生网,提供最全面的大学生课后习题答案和复习试题免费下载,/阳光大学生网我们希望呵护您的眼睛,关注您的成长,给您一片绿色的环境,欢迎加入我们,一起分享大学里的学习和生活感悟,免费提供:大学生课后答案,大学考试题及答案,大学生励志书籍。
第一章单片机概述1.2除了单片机这一名称之外,单片机还可称为(微控制器)和(嵌入式控制器)。
1.3单片机与普通计算机的不同之处在于其将(微处理器)、(存储器)和(各种输入输出接口)三部分集成于一块芯片上。
4、单片机的发展大致分为哪几个阶段?答:单片机的发展历史可分为四个阶段:第一阶段(1974年----1976年):单片机初级阶段。
第二阶段(1976年----1978年):低性能单片机阶段。
第三阶段(1978年----现在):高性能单片机阶段。
第四阶段(1982年----现在):8位单片机巩固发展及16位单片机、32位单片机推出阶段1.5单片机根据其基本操作处理的位数可分为哪几种类型?答:单片机根据其基本操作处理的位数可分为:1位单片机、4位单片机、8位单片机、16位单片机和32位单片机。
1.6MCS-51系列单片机的基本芯片分别为哪几种?它们的差别是什么?答:基本芯片为8031、8051、8751。
8031内部包括1个8位cpu、128BRAM,21个特殊功能寄存器(SFR)、4个8位并行I/O 口、1个全双工串行口,2个16位定时器/计数器,但片内无程序存储器,需外扩EPROM芯片。
8051是在8031的基础上,片内又集成有4KBROM,作为程序存储器,是1个程序不超过4KB的小系统。
8751是在8031的基础上,增加了4KB的EPROM,它构成了1个程序小于4KB的小系统。
用户可以将程序固化在EPROM中,可以反复修改程序。
1.7MCS-51系列单片机与80C51系列单片机的异同点是什么?答:共同点为它们的指令系统相互兼容。
不同点在于MCS-51是基本型,而80C51采用CMOS 工艺,功耗很低,有两种掉电工作方式,一种是CPU停止工作,其它部分仍继续工作;另一种是,除片内RAM继续保持数据外,其它部分都停止工作。
51单片机外部存储器的扩展
一、地址线的译码
存储器芯片的选择有两种方法:线选法和译码法。
1、线选法。所谓线选法,就是直接以系统的地址线作为 存储器芯片的片选信号,为此只需把用到的地址线与存储 器芯片的片选端直接相连即可。 2、译码法。所谓译码法,就是使用地址译码器对系统的 片外地址进行译码,以其译码输出作为存储器芯片的片选 信号。译码法又分为完全译码和部分译码两种。
MCS-51系列单片机片内外程序存储器的空 间可达64KB,而片内程序存储器的空间只有 4KB。如果片内的程序存储器不够用时,则需 进行程序存储器的扩展。
MCS-51存储器的扩展
存储器扩展的核心问题是存储器的编址 问题。所谓编址就是给存储单元分配地址。
由于存储器通常由多个芯片组成,为此 存储器的编址分为两个层次:
扩展数据存储器常用静态RAM 芯片: 6264(8K×8位)、62256(32K×8位)、 628128(128K×8位)等。
MCS-51存储器的扩展
P2.7~P2.0
ALE P0.0~P0.7 8031
EA PSEN
A15~A8 高8位地址
CLK Q7~Q0 A7~A0 I0~I7 地址锁存器
D0~D 7
二、以P2口作为高8位的地址总线
P0口的低8位地址加上P2的高8位地址就可以形成16位的 地址总线,达到64KB的寻址能力。
实际应用中,往往不需要扩展那么多地址,扩展多少用 多少口线,剩余的口线仍可作一般I/O口来使用。
三、控制信号线 ALE:地址锁存信号,用以实现对低8位地址的锁存。 PSEN:片外程序存储器读选通信号。 EA:程序存储器选择信号。为低电平时,访问外部程序存储 器;为高电平时,访问内部程序存储器。
第八章 单片机应用系统扩展
(2).锁存器74LS573 输入的D端和输出的Q端依次排在芯片的两侧,为绘制印刷电 路板时的布线提供了方便。
D7~D0:8位数据输入线。 Q7~Q0:8位数据输出线。 G :数据输入锁存选通信号,该引 脚与74LS373的G端功能相同。 /OE:数据输出允许信号,低电平 有效。
8.1 程序存储器扩展
A7 A6 A5 A4 A3 A2 A1 A0
74LS373
2716(2k) EPROM
51单片机
PSEN
2716(2kx8)的地址范围为0000H ~ 07FFH。
例:扩展4KB程序存储器。
+5V VCC PGM VPP P2.4 P2.3 P2.2 P2.1 P2.0 EA P0.7 P0.6 P0.5 P0.4 P0.3 P0.2 P0.1 P0.0 ALE D7 D6 D5 D4 D3 D2 D1 D0 OE CE GND D7 D6 D5 D4 D3 D2 D1 D0 G OE Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 A11 A10 A9 A8
2.译码法
使用译码器对89C51的高位地址进行译码,将译码
器的译码输出作为存储器芯片的片选信号。是最 常用的地址空间分配的方法,它能有效地利用存 储器空间,适用于多芯片的存储器扩展。 常用的译码器芯片有74LS138(3-8译码器) 74LS139(双2-4译码器)74LS154(4-16译码器)。
表8.1 2716(2K)/2732(4KB)的引脚
VCC PGM VPP A10 A9 A8
A7 A6 A5 A4 A3 A2 A1 A0
A0~A10 (2716) A0~A11 (2732) D0~D7 CE PGM
地址线 数据输出线 片选 程脉冲输入
《单片机微型计算机原理与接口技术》第八章 80C51单片微机的系统扩展原理与接口技术
②开始数据传送 在串行时钟线(SCL)保持高电平的情况下,串行数据线(SDA )上发生一个由高电平到低电平的变化作为起始信号(START) ,启动I2C 总线。I2C总线所有命令必须在起始信号以后进行。 ③停止数据传送 在串行时钟线(SCL)保持高电平的情况下,串行数据线 (SDA)上发生一个由低电平到高电平的变化,称为停止信号( STOP)。这时将停止I2C 总线上的数据传送。 ④数据有效性 在开始信号以后,串行时钟线(SCL)保持高电平的周期 期间,当串行数据线(SDA)稳定时.串行数据线的状态表示数 据线是有效的。需要一个时钟脉冲。 每次数据传送在起始信号(START)下启动,在停止信号 (STOP)下结束。 在I2C总线上数据传送方式有两种,主发送到从接收和从发 送到主接收。它们由起始信号(START)后的第一个字节的最低 位(即方向位R/W)决定。
①串行数据线(MISO、MOSI) 主机输入/从机输出数据线(MISO)和主机输出/ 从机输入数据线(MOSI),用于串行数据的发送和接收。 数据发送时.先传送MSB(高位),后传送LSB(低位)。 在SPI设置为主机方式时,MISO线是从机数据输入线 ,MOSI是主机数据输出线;在SPI设置为从机方式时, MISO线是从机数据输出线,MOSI是从机数据输入线。
8.1.1外部并行扩展原理
单片微机是通过芯片的引脚进行系统扩展的。 80C51系列带总线的单片微机芯片引脚可以构成图8-1所 示的三总线结构.即地址总线(AB)数据总线(DB)和控制总 线(CB)。具有总线的外部芯片都通过这三组总线进行扩展。 (1)地址总线(AB) 地址总线由单片微机P0口提供 低8位地址A0~A7,P2口提 供高8位地址A8~A15。P0口是地址总线低8位和8位数据总线复 用口,只能分时用作地址线。故P0口输出的低8位地址A0~A7必 须用锁存器锁存。 锁存器的锁存控制信号为单片微机ALE引脚输出的控制信 号。在ALE的下降沿将P0口输出的地址A0~A7锁存。P0、P2口 在系统扩展中用做地址线后便不能作为一般I/O口使用。 由于地址总线宽度为16位,故可寻址范围为64 KB。 (2)数据总线(DB) 数据总线由P0口提供,用D0~D7表示。P0口为三态双向
第8章 单片机小系统及片外扩展
扩展的并行三总线结构
1. 以P0口作低位地址/数据总线 低位地址总线是指系统的低8位地址线。 因为P0口线既用作地址线,又用作数据线(分 时使用),因此,需要加一个8位锁存器。 2. 以P2口的口线作高位地址线 如果使用P2口的全部8位口线,再加上P0口提 供的低8位地址,便可形成完整的16位地址总 线,使单片机系统的寻址范围达到64 KB。 但实际应用系统中,高位地址线并不固定为8 位,需要用几位就从P2口中引出几条口线。
2. 译码法 最常用的译码器芯片: 74LS138 ( 3-8 译码器)、 74LS139 (双 2-4 译码器)、 74LS154 ( 4-16 译码器)。可根据设 计任务的要求,产生片选信号。
全译码:全部高位地址线都参加译码;
部分译码:仅部分高位地址线参加译码。 (1)74LS138(3~8译码器)
1
0 1 0 1 0 1
1
1 1 1 1 1 0
1
1 1 1 1 0 1
1
1 1 1 0 1 1
1
1 1 0 1 1 1
1
1 0 1 1 1 1
1
0 1 1 1 1 1
0
1 1 1 1 1 1
1
1 1 1 1 1 1
其它状态
x
x
x
1
1
1
1
1
1
1
1
下面以74LS138为例,学习外部存储的地址分配
• 例:要扩8片8KB的RAM 6264,如何通过74LS138把 64KB空间分配给各个芯片?
一、并行扩展三总线
• • • • 片外三总线的产生 数据存储器的扩展 存储器地址空间分配 逐次逼近型并行输出A/D转换器及接口设计
单片机的系统扩展原理及接口技术 第8章习题答案 高锋第二版
第8章思考与练习题解析【8—1】简述单片机系统扩展的基本原则和实现方法。
【答】系统扩展是单片机应用系统硬件设计中最常遇到的问题。
系统扩展是指单片机内部各功能部件不能满足应用系统要求时,在片外连接相应的外围芯片以满足应用系统要求。
80C5 1系列单片机有很强的外部扩展能力,外围扩展电路芯片大多是一些常规芯片,扩展电路及扩展方法较为典型、规范。
用户很容易通过标准扩展电路来构成较大规模的应用系统。
对于单片机系统扩展的基本方法有并行扩展法和串行扩展法两种。
并行扩展法是指利用单片机的三组总线(地址总线AB、数据总线DB和控制总线CB)进行的系统扩展;串行扩展法是指利用SPI三线总线和12C双线总线的串行系统扩展。
1.外部并行扩展单片机是通过芯片的引脚进行系统扩展的。
为了满足系统扩展要求,80C51系列单片机芯片引脚可以构成图8-1所示的三总线结构,即地址总线AB、数据总线DB和控制总线CB。
单片机所有的外部芯片都通过这三组总线进行扩展。
2.外部串行扩展80C51.系列单片机的串行扩展包括:SPI(Serial Peripheral Interface)三线总线和12C双总线两种。
在单片机内部不具有串行总线时,可利用单片机的两根或三根I/O引脚甩软件来虚拟串行总线的功能。
12C总线系统示意图如图8—2所示。
【8—2】如何构造80C51单片机并行扩展的系统总线?【答】80C51并行扩展的系统总线有三组。
①地址总线(A0~A15):由P0口提供低8位地址A0~A7,P0 口输出的低8位地址A0~A7必须用锁存器锁存,锁存器的锁存控制信号为单片机引脚ALE输出的控制信号。
由P2口提供高8位地址A8~A1 5。
②数据总线(DO~D7):由P0 口提供,其宽度为8位,数据总线要连到多个外围芯片上,而在同一时间里只能够有一个是有效的数据传送通道。
哪个芯片的数据通道有效则由地址线控制各个芯片的片选线来选择。
③控制总线(CB):包括片外系统扩展用控制线和片外信号对单片机的控制线。
MCS-51单片机原理及接口技术
2 5 6 9 12 15 16 19
19 18 9 12 13 14 15 1 2 3 4 5 6 7 8
1Q 2Q 3Q 4Q 5Q 6Q 7Q 8Q
MCS-51
A 1 3 2 74LS32
RD WR PSEN ALE/P TXD RXD
74LS273引脚封装图 引脚封装图
MCS-51与74LS273的接口电路图 与 的接口电路图
ห้องสมุดไป่ตู้
4.3.1简单I/O接口芯片的扩展 4.3.1简单I/O接口芯片的扩展 简单I/O
简单的I/O口扩展通常是采用 电路锁存器、 简单的 口扩展通常是采用TTL或CMOS电路锁存器、三 口扩展通常是采用 或 电路锁存器 态门等作为扩展芯片( 态门等作为扩展芯片(74LS244、74LS245、74LS273、 、 、 、 74LS373、 74LS377等 ) , 通过P0口来实现扩展的一种 、 等 通过 口来实现扩展的一种 方案。它具有电路简单、成本低、配置灵活的特点。 方案。它具有电路简单、成本低、配置灵活的特点。 简单的I/O口扩展主要包括: 简单的 口扩展主要包括: 口扩展主要包括 缓冲器扩展输入口(三态门: 缓冲器扩展输入口(三态门: 74LS244、74LS245等) 、 等 锁存器扩展输出口(锁存器: 锁存器扩展输出口(锁存器: 74LS273、74LS373、 、 、 74LS377等) 等
4.3 输入 输出接口扩展 输入/输出接口扩展
• MCS-51系列单片机内部有4个双向的8位并行I/O端 MCS-51系列单片机内部有4个双向的8位并行I/O端 系列单片机内部有 I/O P0、P1、P2和P3口 口:P0、P1、P2和P3口。 • 在实际的应用系统中,P0口分时地作为低8位地址 在实际的应用系统中,P0口分时地作为低 口分时地作为低8 线和数据线,P2口作为高 位地址线。这时,P0口 口作为高8 线和数据线,P2口作为高8位地址线。这时,P0口 和部分或全部的P2口无法再作通用I/O P2口无法再作通用I/O口 和部分或全部的P2口无法再作通用I/O口。 • P3口的一些口线首先要满足第二功能的要求。这 P3口的一些口线首先要满足第二功能的要求 口的一些口线首先要满足第二功能的要求。 时就需要进行单片机I/O口的扩展。 I/O口的扩展 时就需要进行单片机I/O口的扩展。 常用的I/O扩展有以下两种形式: I/O扩展有以下两种形式 常用的I/O扩展有以下两种形式: 简单I/O I/O接口芯片的扩展 简单I/O接口芯片的扩展 可编程I/O接口电路的扩展 可编程I/O接口电路的扩展 I/O
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子与信息工程学院单片机原理及应用第八章MCS-51单片机并行扩展技术dada哈尔滨工业大学电子与信息工程学院2015 .春季学期2015/1/111第八章MCS-51单片机并行扩展技术MCS-51单片机并行扩展技术【学习目的和要求】•了解MCS-51单片机数据总线、地址总线和控制总线的构成。
•掌握片外扩展程序存储器和数据存储器的方法,及扩展存储单元的地址分析方法。
•掌握MCS-51单片机基本I/O口的应用与扩展,可编程I/O接口芯片8255和8155的性能特点和使用方法。
第八章MCS-51单片机并行扩展技术8.1并行扩展方式8.2程序存储器扩展8.3 数据存储器扩展8.4存储器的综合扩展8.5简单并行I/O接口扩展8.68255A可编程并行接口扩展8.78155可编程并行接口扩展单片机构成的最小应用系统扩展概述典型的单片机应用系统第八章内部数据存储器(a )8031/51系列外部数据存储器(b )MCS-51单片机存储器空间分配特殊功能寄存器00H 1FH 20H2FH30H7FH80HFFH80H 88H 90H 98H A0H A8H B0H B8H D0H E0H F0H 特殊功能寄存器中位寻址外部ROM 内部ROM (EA=1)外部ROM (EA=0)0000H 0000H 0FFFH 0FFFH 1000H FFFFH 外部RAM (I/O 口地址)0000HFFFFH 程序存储器(c )工作寄存器区位寻址区通用RAM 区位寻址区通用RAM 区特殊功能寄存器扩展概述在由单片机构成的实际测控系统中,最小应用系统往往不能满足要求,因此在系统设计时首先要解决系统扩展问题。
系统扩展问题,内容主要有:1 外部存储器的扩展(1)外部程序存储器(ROM)(2)外部数据存储器(RAM)2 I/O接口部件的扩展。
单片机的系统扩展方法主要有:并行扩展和串行扩展按其功能通常把系统总线分为三组: 1.地址总线(Adress Bus,简写AB)2.数据总线(Data Bus,简写DB)3.控制总线(Control Bus,简写CB )系统扩展结构图:单片机的并行扩展是指单片机与外围扩展单元采用并行接口的连接方式,数据传输为并行传送方式。
第八章MCS-51单片机并行扩展技术8.1并行扩展方式11P0.0-0.7:8位数据和低8位地址信号,复用总线AD0-7。
P2.0-2.7:高8位地址信号AB8~15ALE :地址锁存允许控制信号(P0口锁存)EA :片内、片外ROM 选择PSEN :外扩ROM 的读选通控制信号RD :外扩RAM 和I/O的读选通控制信号。
WR :外扩RAM 和I/O的写选通控制信号MCS-51用于扩展存储器的外部总线信号:第八章MCS-51单片机并行扩展技术8.1并行扩展方式8.2程序存储器扩展8.3 数据存储器扩展8.4存储器的综合扩展并行扩展存储器的寻址过程分为两个步骤:1. 存储器芯片的寻址选择存储器2. 芯片内部存储单元的寻址系统地址总线与该存储器芯片的地址总线相连即可。
(1) 线选法(2) 译码法并行扩展的寻址方法0#芯片A0A1A2CS (6000H~7FFFH)A0A1A2A151#芯片A0A1A12CS (0A000H~0BFFFH)A0A1A12A142#芯片A0A1CS (0C000H~0DFFFH)A0A1A13...(1) 线选法:直接采用系统的高位地址线作为存储芯片的片选信号。
特点:连线简单,不需要设计逻辑电路。
但是芯片占用的存储空间不紧凑,地址空间利用率低,一般用于简单的系统扩展。
▪2. 译码法寻址由译码器组成译码电路对系统的高位地址进行译码,译码电路将地址空间划分若干块,其输出作为存储器芯片的片选信号分别选通各芯片通过地址线译码。
▪特点:既充分利用了存储空间,又克服了空间分散的缺点,还可以减少I/O 口线。
▪由于80C51采用不同的控制信号和指令,尽管ROM 与RAM 的地址是重叠的,也不会发生混乱。
▪80C51对片内和片外ROM 的访问使用相同的指令,两者的选择是由硬件实现的。
存储器的并行扩展并行扩展: ROM 最大容量为64KBRAM 最大容量为64KB当扩展64KB 时外部ROM 和RAM 地址均为0000H ~0FFFFH第八章MCS-51单片机并行扩展技术8.2~8.4存储器扩展1存储器扩展常用芯片常用的存储器芯片外部扩展常用程序存储器芯片有EPROM:2764A/ 27128A/ 27256A/ 27512A外部扩展常用数据存储器芯片有静态RAM(SRAM):6264 / 62128 / 62256 / 62512第八章MCS-51单片机并行扩展技术 1. 地址锁存器/并口输出芯片地址锁存器常用的有带三态缓冲输出的8D锁存器74LS373(74LS374)、74LS573、8282,带有清除端的74LS273等。
WR OECLK第八章MCS-51单片机并行扩展技术2. 译码器-地址译码常用的译码器芯片有74LS138(3-8译码器)、74LS139(2-4译码器)和74LS154(4-16译码器)RD 1G2G 3.总线缓冲器扩展并行输入口常用的单向总线缓冲器74LS244,双向驱动器74LS24574LS244内部有两组4位三态缓冲器,具有数据缓冲隔离和驱动作用第八章MCS-51单片机并行扩展技术2 存储器扩展方法外部存储器扩展需要注意以下几个问题:(1)选择合适类型的存储器芯片(2)工作速度匹配(3)选择合适的存储容量(4)合理分配存储器地址空间(5)合理选择地址译码方式第八章MCS-51单片机并行扩展技术3 典型的存储器扩展1.单片存储器的扩展EPROMEAPSENCEOE单片机与外部EPROM的连接图ALE:地址锁存允许控制信号,下降沿锁存PSEN:片外程序存储器读控制信号EA:程序存储器选择第八章MCS-51单片机并行扩展技术单片存储器的扩展RAMCEOE单片机与外部RAM的连接图RD:外扩RAM和I/O的读选通控制信号。
WR:外扩RAM和I/O的写选通控制信号第八章MCS-51单片机并行扩展技术单片机与外部RAM的连接图单片存储器的扩展RAM第八章MCS-51单片机并行扩展技术源程序:ORG 1000H MOV R0, #50H ;数据指针指向片内50H 单元MOV R7, #16;传送数据个数送计数寄存器MOV DPTR, #0000H ;数据指针指向RAM 的0000H 单元LOOP :MOV A, @R0;输出数据送累加器A MOVX @DPTR, A ;数据输出至片外RAM INC R0;修改片内数据指针INC DPTR ;修改片外数据指针DJNZ R7, LOOP ;未传送完循环END单芯片存储器扩展/IO 口扩展读:MOVX A,@Ri 写:MOVX @Ri,A 读:MOVX A,@DPTR 写:MOVX@DPTR ,A第八章MCS-51单片机并行扩展技术2. 多片存储器的扩展EPROM(1)采用线性选择法,即用剩余的地址线连接片选信号PSENCEOEEACEOECEOEMOVC A,@A+DPTR第八章MCS-51单片机并行扩展技术CEOEEACEOECEOE W R W R WR WRRD(1)采用线性选择法,即用剩余的地址线连接片选信号2. 多片存储器的扩展RAMMOVX A,@DPTRMOVX@DPTR, A第八章MCS-51单片机并行扩展技术(1)采用线性选择法,即用剩余的地址线连接片选信号综合扩展2. 多片存储器的扩展RAM &EPROMCEOEEACEOECEOE W R W R WR WRRDPSEN第八章MCS-51单片机并行扩展技术综合扩展扩展一片62256 RAM和一片27256 ROM。
EACEOECEOE WRWRRDP S E N(1)采用线性选择法,即用剩余的地址线连接片选信号为什么不发生冲突2. 多片存储器的扩展RAM &EPROM第八章MCS-51单片机并行扩展技术(2)采用全地址译码,即所有的地址线都参与译码。
PSENCEOEEACEOECEOEG0Y1Y2Y2. 多片存储器的扩展EPROMMOVC A,@A+DPTR第八章MCS-51单片机并行扩展技术CEOEEACEOECEOEG0Y1Y2YWR WR WR WRRD2. 多片存储器的扩展RAM(2)采用全地址译码,即所有的地址线都参与译码。
MOVX A,@DPTRMOVX@DPTR, ACE OE EACEOE CEOEGY 1Y 2Y WRWRWRRD PSEN第八章MCS-51单片机并行扩展技术(2)采用全地址译码,即所有的地址线都参与译码。
综合扩展2. 多片存储器的扩展RAM &EPROM第八章MCS-51单片机并行扩展技术4存储器的操作时序访问外部数据存储器MOVC A,@A+DPTR MOVC A, @A+PC访问外部数据存储器有两组指令,它们的寻址空间不同。
1. 8位寻址指令读数据:MOVX A,@Ri 写数据:MOVX @Ri,A只访问外部RAM的低256字节空间,使用低8位地址线寻址,将高8位地址线(P2口线)清0。
2. 16位寻址指令读数据:MOVX A,@DPTR 写数据:MOVX @DPTR ,A要访问的外部RAM空间大于256字节时,使用这组指令。
由于DPTR 为16位地址指针,故可寻址空间为64KB。
第八章MCS-51单片机并行扩展技术PSEN访问外部程序存储器的操作时序EPROM操作时序ALE:地址锁存允许控制信号,下降沿锁存PSEN:片外程序存储器读控制信号EA:程序存储器选择第八章MCS-51单片机并行扩展技术RAM 操作时序访问外部数据存储器的操作时序第八章MCS-51单片机并行扩展技术存储器的综合扩展1. 采用线性选择法扩展一片62256 RAM和一片27256 ROM。
逻辑电路如图8-15所示。
EACEOECEOE WRWRRDP S E N第八章MCS-51单片机并行扩展技术2.采用全地址译码法扩展16KB程序存储器和32KB数据存储器。
逻辑电路如图8-16所示。
CEOEEACEOECEOEG0Y1Y2YWR WR WRRDPSEN第八章MCS-51单片机并行扩展技术3.程序存储空间和数据存储空间的混合第八章MCS-51单片机并行扩展技术8.1并行扩展方式8.2程序存储器扩展8.3数据存储器扩展8.4存储器的综合扩展8.5简单并行I/O接口扩展I/O (输入/输出)接口是MCS-51与外设交换数字信息的桥梁。
I/O扩展也属于系统扩展的一部分。
MCS-51真正用作I/O口线的只有P1口的8位I/O线和P3口的某些位线。