高一 必修一基本初等函数知识点总结归纳-参考模板

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一必修一函数知识点(12.1)

〖1.1〗指数函数

(1)根式的概念

n 叫做根指数,a 叫做被开方数.

②当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.

③根式的性质:n a =;当n

a =;当n 为偶数时,

(0)

|| (0) a a a a a ≥⎧==⎨

-<⎩

. (2)分数指数幂的概念

①正数的正分数指数幂的意义是:0,,,m

n

a

a m n N +=>∈且1)n >.0的正分数指数幂等于0.

②正数的负分数指数幂的意义是: 1()0,,,m m n

n a

a m n N a -+==>∈且1)n >.0

的负分数指数幂没有意

义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质

①(0,,)r

s r s a

a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r a

b a b a b r R =>>∈

(4)指数函数

例:比较

〖1.2〗对数函数

(1)对数的定义

①若(0,1)x

a

N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x

N =,其中a 叫做底数,N

叫做真数.

②对数式与指数式的互化:log (0,1,0)x a x

N a N a a N =⇔=>≠>.

(2)常用对数与自然对数:常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).

(3)几个重要的对数恒等式: log 10a =,log 1a a =,log b a a b =.

(4)对数的运算性质 如果0,1,0,0a

a M N >≠>>,那么

①加法:log log log ()a a a M N MN += ②减法:log log log a a a

M

M N N

-=

③数乘:log log ()n

a

a n M M n R =∈ ④log a N

a

N =

⑤log log (0,)b n

a a n M M

b n R b

=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =

>≠且 (5)对数函数

函数值的 变化情况

log 0(1)

log 0(1)log 0(01)

a a a x x x x x x >>==<<<

log 0(1)

log 0(1)log 0(01)

a a a x x x x x x <>==><<

a 变化对 图

象的影响 在第一象限内,a 越大图象越靠低,越靠近x 轴 在第四象限内,a 越大图象越靠高,越靠近y 轴 在第一象限内,a 越小图象越靠低,越靠近x 轴 在第四象限内,a 越小图象越靠高,越靠近y 轴

(6) 反函数的求法

①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;

③将1()x

f y -=改写成1()y f x -=,并注明反函数的定义域.

(7)反函数的性质

①原函数

()y f x =与反函数1()y f x -=的图象关于直线y x =对称.

即,若(,)P a b 在原函数

()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.

②函数

()y f x =的定义域、值域分别是其反函数

1()y f x -=的值域、定义域.

〖1.3〗幂函数

(1)幂函数的图象(需要知道x=,1,2,3与y=的图像) (2)幂函数的性质

①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.

②过定点:图象都通过点(1,1).

〖1.4〗二次函数

(1)二次函数解析式的三种形式 ①一般式: ②顶点式: ③两根式:

(2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式.

②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.

(3)二次函数图象的性质

①二次函数

2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为 ,顶点坐标是 。

②在二次函数2()(0)f x ax bx c a =++≠中

当2

40b

ac ∆=->时,图象与x 轴有 个交点.

当 时,图象与x 轴有1个交点. 当 时,图象与x 轴有没有交点. ③当 时,抛物线开口向上,函数在(,]2b a -∞-

上递减,在[,)2b

a -+∞上递增,当2

b x a =-

时,

f(x)min= ;

当 时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2b

a

-+∞上递减,当2b x a =-

时,

f(x)max= . (4)一元二次方程2

0(0)ax

bx c a ++=≠根的分布

一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布. 设一元二次方程2

0(0)ax

bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方

面来分析此类问题:①开口方向:a ②对称轴位置:2b

x a

=- ③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔

②x 1≤x 2<k ⇔

③x 1<k <x 2 ⇔ af (k )<0

相关文档
最新文档