二进制数据的算术运算的基本规律和十进制数的运算十分相似
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二进制数据的算术运算的基本规律和十进制数的运算十分相似。最常用的是加法运算和乘法运算。
1. 二进制加法
有四种情况: 0+0=0
0+1=1
1+0=1
1+1=10
ps:0 进位为1
【例1103】求 (1101)2+(1011)2 的和
解:
1 1 0 1
+1 0 1 1
-------------------
1 1 0 0 0
2. 二进制乘法
有四种情况:0×0=0
1×0=0
0×1=0
1×1=1
【例1104】求 (1110)2 乘(101)2 之积
解:
1 1 1 0
× 1 0 1
-----------------------
1 1 1 0
0 0 0 0
1 1 1 0
-------------------------
1 0 0 0 1 1 0
(这些计算就跟十进制的加或者乘法相同,只是进位的数不一样而已,十进制的是到十才进位这里是到2就进了)
3.二进制减法
0-0=0,1-0=1,1-1=0,10-1=1。
4.二进制除法
0÷1=0,1÷1=1。[1-2]
5.二进制拈加法
拈加法二进制加减乘除外的一种特殊算法。
拈加法运算与进行加法类似,但不需要做进位。此算法在博弈论(Game Theory)中被广泛利用
计算机中的十进制小数转换二进制
计算机中的十进制小数用二进制通常是用乘二取整法来获得的。
比如0.65换算成二进制就是:
0.65 * 2 = 1.3 取1,留下0.3继续乘二取整
0.3 * 2 = 0.6 取0,留下0.6继续乘二取整
0.6 * 2 = 1.2 取1,留下0.2继续乘二取整
0.2 * 2 = 0.4 取0,留下0.4继续乘二取整
0.4 * 2 = 0.8 取0,留下0.8继续乘二取整
0.8 * 2 = 1.6 取1,留下0.6继续乘二取整
0.6 * 2 = 1.2 取1,留下0.2继续乘二取整
.......
一直循环,直到达到精度限制才停止(所以,计算机保存的小数一般会有误差,所以在编程中,要想比较两个小数是否相等,只能比较某个精度范围内是否相等。)。这时,十进制的0.65,用二进制就可以表示为:1010011。
还值得一提的是,在目前的计算机中,除了十进制是有符号的外,其他如二进制、八进制、16进制都是无符号的。
编辑本段进制转换
十进制数转换为二进制数、八进制数、十六进制数的方法:
二进制数、八进制数、十六进制数转换为十进制数的方法:按权展开求和法1.二进制与十进制间的相互转换:
(1)二进制转十进制
方法:“按权展开求和”
例:(1011.01)2 =(1×2^3+0×2^2+1×2^1+1×2^0+0×2^(-1)+1×2^(-2) )10
=(8+0+2+1+0+0.25)10
=(11.25)10
规律:个位上的数字的次数是0,十位上的数字的次数是1,......,依次递增,而十
分位的数字的次数是-1,百分位上数字的次数是-2,......,依次递减。
注意:不是任何一个十进制小数都能转换成有限位的二进制数。
(2)十进制转二进制
· 十进制整数转二进制数:“除以2取余,逆序排列”(除二取余法)
例:(89)10 =(1011001)2
89÷2 (1)
44÷2 0
22÷2 0
11÷2 (1)
5÷2 (1)
2÷2 0
1
· 十进制小数转二进制数:“乘以2取整,顺序排列”(乘2取整法)例: (0.625)10= (0.101)2
0.625X2=1.25 (1)
0.25 X2=0.50 0
0.50 X2=1.00 (1)
十进制1至100的二进制表示:
0=0
1=1
2=10
3=11
4=100
5=101
6=110
7=111
8=1000
9=1001
10=1010
11=1011
12=1100
13=1101
14=1110
15=1111
16=10000
17=10001
18=10010
19=10011
20=10100
21=10101
22=10110
23=10111
24=11000
25=11001
26=11010
27=11011
28=11100
29=11101
30=11110
31=11111
32=100000
33=100001
34=100010
36=100100 37=100101 38=100110 39=100111 40=101000 41=101001 42=101010 43=101011 44=101100 45=101101 46=101110 47=101111 48=110000 49=110001 50=110010 51=110011 52=110100 53=110101 54=110110 55=110111 56=111000 57=111001 58=111010 59=111011 60=111100 61=111101 62=111110 63=111111 64=1000000 65=1000001 66=1000010 67=1000011 68=1000100 69=1000101 70=1000110 71=1000111 72=1001000 73=1001001 74=1001010 75=1001011 76=1001100 77=1001101 78=1001110