信号与系统冲激响应和阶跃响应

合集下载

冲激响应和阶跃响应的关系

冲激响应和阶跃响应的关系

冲激响应和阶跃响应的关系
冲激响应和阶跃响应是信号处理中常用的两种响应方式。

它们之间存在着密切的关系,本文将从以下几个方面进行阐述。

一、定义
冲激响应是指系统对于一个冲击信号的响应,通常用h(t)表示。

而阶跃响应则是指系统对于一个单位阶跃信号的响应,通常用g(t)表示。

二、关系
冲激响应和阶跃响应之间的关系可以通过积分的方式来表示。

具体来说,如果我们知道了系统的冲激响应h(t),那么系统的阶跃响应g(t)可以通过对h(t)进行积分得到,即:
g(t) = ∫[0,t]h(τ)dτ
这个公式的意义是,系统对于一个单位阶跃信号的响应可以看作是对于一系列冲击信号的响应之和。

这也是为什么我们可以通过积分的方式来求解阶跃响应的原因。

三、应用
冲激响应和阶跃响应在信号处理中有着广泛的应用。

例如,在数字滤波器设计中,我们通常会先求出系统的冲激响应,然后再通过积分的方式来得到系统的阶跃响应。

这样做的好处是,我们可以通过观察系统的阶跃响应来了解系统的频率特性和幅频响应等信息,从而更好地设计数字滤波器。

此外,在控制系统中,我们也常常需要求解系统的阶跃响应。

例如,我们可以通过观察系统的阶跃响应来了解系统的稳态误差和响应速度等信息,从而更好地设计控制器。

四、总结
综上所述,冲激响应和阶跃响应是信号处理中常用的两种响应方式。

它们之间存在着密切的关系,可以通过积分的方式相互转换。

在实际应用中,我们可以通过观察系统的阶跃响应来了解系统的频率特性和稳态误差等信息,从而更好地设计数字滤波器和控制系统。

信号与系统2-2冲激响应与阶跃响应课件

信号与系统2-2冲激响应与阶跃响应课件

8
举例
已知线性非时变系统的冲激响应 h(t) et (t),激励信号为
f (t) (t) 。试求系统的零状态响应。
解:系统零状态响应为:yzs (t) h(t) f (t) et (t) (t)
h( )
f ( )
1
0
t
0
将f(t)反折,再扫描可
yzs (t)
t e d
0
e
t 0
1
3t f1( ) f2 (t )d
1 1 1d 1 (4 t)
3t 2
2
即为重叠部分的面积。
当 3 t 1 即 t 4时:
f2 (t ) 和 f1( )没有公共的重叠部分, 故卷积 f (t) f1(t) f2 (t) 0
7
例 2.7
f1( )
A
2t 0 t1 f1( )
A
2 t0 1 t f1( )
(1 et ) (t)
确定积分上下限。
9
课堂练习题
自测题2.3 自测题2.4 自测题2.5
10
几条结论
f (t) f1(t) f2 (t)
f(t)的开始时间等于f1(t)和f2(t)的开始时间之和; f(t)的结束 时间等于f1(t)和f2(t)的结束时间之和。 f(t)的持续时间等于 f1(t)和f2(t)的持续时间之和。
h(t) 2e2t (t) (t)
计算机例题C2.3
已知系统的冲激响应为h(t) 3 (t) e2t (t),求阶跃响应。
h=sym('3*Dirac(t)-exp(-2*t)*Heaviside(t)'); g=int(h); g=simple(g)
g=1/2*Heaviside(t)*(5+exp(-2*t)) 阶跃响应为

阶跃响应、冲激响应

阶跃响应、冲激响应

计算方法
对于线性时不变系统,可以通过求解微分方程或传递函数来 计算阶跃响应。
对于离散系统,可以通过差分方程或Z变换来计算阶跃响应。
阶跃响应的特点
1
阶跃响应具有非周期性和非振荡性。
2
阶跃响应的初始值和终值取决于系统的初始状态 和稳态值。
3
阶跃响应的变化速度取决于系统的动态特性和输 入幅度。
02
CATALOGUE
冲激响应
定义
冲激响应是指在单位冲激函数激励下 系统的输出,它是系统对输入信号的 瞬态响应。
冲激响应描述了系统在单位冲激函数 作用下的动态特性,是分析系统稳定 性和性能的重要依据。
计算方法
01
对于线性时不变系统,冲激响应可以通过系统的传 递函数进行计算。
02
对于离散时间系统,冲激响应可以通过系统的差分 方程进行计算。
阶跃响应、冲激响 应
目 录
• 阶跃响应 • 冲激响应 • 阶跃响应与冲激响应的联系与区别 • 阶跃响应与冲激响应的应用 • 阶跃响应与冲激响应的实验分析
01
CATALOGUE
阶跃响应
定义
阶跃响应是指系统在阶跃信号输入下 ,其输出量随时间的变化情况。
阶跃响应是系统对突然变化输入的响 应,其输出量由初始状态逐渐变化到 稳态值。
CATALOGUE
阶跃响应与冲激响应的联系与区别
联系
01 阶跃响应和冲激响应都是系统对输入信号的响应 方式,用于描述系统的动态特性。
02 阶跃响应和冲激响应都是系统对单位阶跃函数和 单位冲激函数的响应,具有相似性。
03 阶跃响应和冲激响应在一定程度上可以相互转换 ,例如通过积分或微分运算。
区别
定义
信号检测

阶跃响应和冲激响应之间的关系

阶跃响应和冲激响应之间的关系

阶跃响应和冲激响应之间的关系阶跃响应和冲激响应是信号处理中常用的概念,它们之间存在着密切的关系。

阶跃响应描述了系统对于单位阶跃信号的输出响应,而冲激响应则描述了系统对于单位冲激信号的输出响应。

本文将从阶跃响应和冲激响应的定义、性质以及它们之间的关系进行详细介绍。

我们来看一下阶跃响应的定义。

阶跃响应是指系统对于单位阶跃信号的输出响应。

单位阶跃信号是一种在时间t=0时从0跳变到1的信号,它在t>0时始终保持为1。

阶跃响应描述了系统对于这种信号的输出情况。

接下来,我们来看一下冲激响应的定义。

冲激响应是指系统对于单位冲激信号的输出响应。

单位冲激信号是一种在时间t=0时瞬时出现,幅度为无穷大的信号,持续时间极短,但面积为1。

冲激响应描述了系统对于这种信号的输出情况。

阶跃响应和冲激响应之间存在着紧密的联系。

事实上,在很多情况下,我们可以通过冲激响应来求得阶跃响应。

这是因为单位阶跃信号可以看作是单位冲激信号的积分。

具体来说,我们可以将单位阶跃信号表示为单位冲激信号的积分形式。

假设单位阶跃信号为u(t),单位冲激信号为δ(t),那么单位阶跃信号可以表示为u(t)=∫δ(τ)dτ。

根据线性系统的性质,系统对于单位阶跃信号的输出可以表示为系统对于单位冲激信号的输出的积分形式。

换句话说,我们可以通过对系统的冲激响应进行积分,得到系统的阶跃响应。

这是因为阶跃信号是冲激信号的积分,而系统对于冲激信号的输出又可以通过冲激响应来描述。

阶跃响应和冲激响应之间的关系还可以通过频域的方法来理解。

在频域中,系统的阶跃响应和冲激响应之间存在着简单的关系。

阶跃响应可以通过冲激响应进行傅里叶变换得到,而冲激响应可以通过阶跃响应进行傅里叶变换得到。

总结起来,阶跃响应和冲激响应之间存在着密切的关系。

阶跃响应描述了系统对于单位阶跃信号的输出响应,而冲激响应描述了系统对于单位冲激信号的输出响应。

通过对冲激响应进行积分可以得到阶跃响应,而通过对阶跃响应进行傅里叶变换可以得到冲激响应。

信号与系统4-3冲激序列响应与阶跃序列响应课件

信号与系统4-3冲激序列响应与阶跃序列响应课件

k =0 时
f1(k)
1
2 1 0 1 2 k
f2 (k )
3
f1(i)
2
1
1
0 12 3 k
2 1 0 1 2
i
0
f 2 (i)
3
3
5
2
y(k) 6
1
3
2 1 0 1 2 3 i
1 0
k 2 k 2 k 1 k 0,1, 2 k 3 k 4 k 4
9
有限长序列卷积和的规律
两个有限长度序列f(k)和h(k)的卷积y(k)长度也是 有限的。
定义:
f1(k) f2 (k) f1(i) f2 (k i) i
f2 (i) f1(k i) i
称离散卷积或卷积和
f (k)
1 0 1 2 3
f (i) (k i)
i
k
5
任意激励信号的零状态响应
A(k(k-(nk-i))
任意信号:
f (k) f (i) (k i) i f (k) (k)
3 13
[1 2k 1 3k ] (k)
2
2
4
4.6 离散卷积
卷积和的意义
任意离散信号可分解为(k)的线性组合:
f(k)=······+f(-1)(k+1)+ f(0)(k)+ f(1)(k-1)+
······+ f(i)(k-i)+······
f (i) (k i) f (k) (k) i
10
卷积和的计算
不进位乘法法
对于两个有限序列,可以利用一种“不进位乘法”较快地求出卷积结果。
例:求
y(k)= f1(k) f2(k)

说明系统零状态响应、冲激响应、阶跃响应的定义及三者之间的联系 -回复

说明系统零状态响应、冲激响应、阶跃响应的定义及三者之间的联系 -回复

说明系统零状态响应、冲激响应、阶跃响应的定义及三者之间的联系-回复系统零状态响应、冲激响应和阶跃响应是信号处理中常用的概念。

它们描述了在不同输入信号下系统的响应情况,并且它们之间存在密切的联系。

首先,我们来分别定义这三个概念。

系统零状态响应(Zero-State Response)是指系统对于输入信号在系统起始时刻之前没有作用的响应。

零状态响应只取决于输入信号本身,与系统的初始状态无关。

在数学上,系统零状态响应可以通过卷积积分来表示。

冲激响应(Impulse Response)是指系统对于单位冲激信号(也称为脉冲信号或Dirac脉冲)的响应。

单位冲激信号是一个瞬时幅值为1的信号,在时间上的宽度可以非常短,但总面积为1。

冲激响应描述了系统对于瞬时激励的反应情况。

在数学上,系统冲激响应可以通过系统的传递函数来确定。

阶跃响应(Step Response)是指系统对于单位阶跃信号的响应。

单位阶跃信号是一个在系统起始时刻之前为0,在起始时刻之后为1的信号。

阶跃响应描述了系统对于突然变化的趋势信号做出的响应。

在数学上,系统阶跃响应可以通过取系统的冲激响应与单位阶跃信号的卷积来得到。

这三种响应之间有着密切的联系。

首先,阶跃响应可以通过冲激响应的积分得到。

假设冲激响应为h(t),那么阶跃响应为s(t)=∫h(t)dt。

这是因为单位阶跃信号是一个从0到1的连续的信号,在系统的作用下,相当于不断将冲激响应叠加起来,从而得到了阶跃响应。

而零状态响应则可以通过零输入响应和零状态响应的相加得到。

零输入响应是指在没有输入信号的情况下,系统存在初始状态时的响应。

当输入信号为0时,系统的响应只取决于初始状态,在数学上可以表示为h₀(t)。

而零状态响应则是指在初始状态下,输入信号对系统的响应。

当初始状态为0时,系统的响应只取决于输入信号,在数学上可以表示为h(t),则零状态响应可以表示为h(t)-h₀(t)。

这种联系可以通过信号处理中的卷积性质来进一步理解。

第二章第2讲_冲激响应与阶跃响应

第二章第2讲_冲激响应与阶跃响应
信号与系统 同济大学汽车学院 魏学哲 weixzh@
2
将r(t)=h(t)及e(t)=(t)代入给定微分方程
(k1 k2 ) (t ) (3k1 k2 ) (t ) (t ) 2 (t )
k1 k2 1 3k1 k 2 2
将h(t)、h’(t)和(t)代入微分方程两端
ke (t ) ke u(t ) ke u(t ) (t )
k e (t ) (t )
t
t
duc (t ) uc (t ) e(t ) dt
t
t
h (t ) e u (t ) rzs (t ) uczs (t ) e(t ) h(t )
d h (t ) t 3t t 3t ( k1e k2e ) (t ) (k1e 9k2e )u(t ) 2 dt t 3t ( k1e 3k2e ) (t )
(k1 k2 ) (t ) ( k1 3k2 ) (t ) (k1et 9k2e3t )u(t )
当n=m时, h ( t )
ki e
i 1
i t
u (t ) kn 1 (t )
当n<m时,h(t)中还应包含(t)的导数
信号与系统 同济大学汽车学院 魏学哲 weixzh@
三、确定h(t)中的系数ki 将h(t)及其各阶导数代入系统方程左端,(t)及其各 级导数代入 方程右端,令对应项系数相等。
k 0
n
2、系统的零状态响应
( t ) h ( t )
对于线性时不变系 统 n
k (t t0 ) kh(t t0 )
rzs (t )
k 0
e ( k t ) t h ( t k t )

说明系统零状态响应、冲激响应、阶跃响应的定义及三者之间的联系 -回复

说明系统零状态响应、冲激响应、阶跃响应的定义及三者之间的联系 -回复

说明系统零状态响应、冲激响应、阶跃响应的定义及三者之间的联系-回复系统的零状态响应,冲激响应和阶跃响应是信号与系统领域中重要的概念。

它们描述了线性时不变系统对不同输入信号的响应方式。

在这篇文章中,我们将逐步解释系统的零状态响应、冲激响应和阶跃响应的定义,并探讨它们之间的联系。

首先,我们需要了解什么是系统的响应。

在信号与系统的研究中,我们将系统看作是一个操作或转换输入信号的装置。

系统的响应是指当我们提供一个输入信号给系统时,系统是如何对该信号作出反应的。

系统的零状态响应是指系统对输入信号的响应,在给定初始状态下,当没有外部输入信号时系统的输出,可以看作是系统的自然响应。

在数学上,我们可以用差分方程或微分方程来描述系统的零状态响应。

具体表达式取决于系统的特性和结构。

在零状态的情况下,系统不受任何外部激励,仅依赖于其内部状态。

接下来讨论冲激响应。

冲激响应是系统对一个单位冲激信号(冲击函数或单位冲激函数)的响应。

冲激信号是一个特殊的信号,其幅值非常短暂,宽度为无限小,面积为单位。

冲激响应在数学上通常表示为h(t)或h[n],其中t表示连续时间系统下的时间变量,n表示离散时间系统下的样本索引。

我们可以通过将输入信号与冲激响应卷积来获得系统的输出。

冲激响应与系统的特性有关,是用来描述系统对不同频率成分的响应。

最后我们要探讨阶跃响应。

阶跃响应是系统对一个单位阶跃信号(单位跃变函数)的响应。

阶跃信号是一个幅值在某个时间点突变的信号,过渡时间为无限小。

阶跃函数通常表示为u(t)或u[n]。

阶跃响应在数学上通常表示为s(t)或s[n]。

与冲激响应类似,我们可以通过将输入信号与阶跃响应卷积得到系统的输出。

阶跃响应描述了系统对直流或常值输入信号的响应,是用来描述系统的稳态行为。

现在我们可以讨论系统的零状态响应、冲激响应和阶跃响应之间的联系。

在系统的零状态的情况下,系统的输出仅由其初始状态决定。

当我们施加一个单位冲激信号作为系统的输入时,可以得到系统的冲激响应。

信号与系统冲激响应和阶跃响应

信号与系统冲激响应和阶跃响应

drˆt
et dt2 dt
4 3
rˆt 2 rt
4
d
3
dt
X
18

求冲激响应的几种方法 页 方法1:冲激函数匹配法求出0 ~ 0 跃变值,定系数A。 方法2:奇异函数项相平衡法,定系数A。 方法3:齐次解法求冲激响应。
X
19

总结

冲激响应的定义 •零状态; •单位冲激信号作用下,系统的响应为冲激响应。
h (t) A 1 e t A 2 e 3 t (t) A 1 e t 3 A 2 e 3 tu (t) A 1 A 2 (t) A 1 e t 3 A 2 e 3 tu (t)
h t A 1 A 2 t A 1 3 A 2 t A 1 e t 9 A 2 e 3 t u t
2 2 2 2
1 et e3t u(t) 2
X
17
系统框图 d d 2r t(2 t) 4d d r(tt) 3 r(t)d d e(tt)2 e(t)
第 页
d2rt
drt
et
2 dt2 dt
rt
4
两个加法器
d dt
3
d2rt
drt
et
2 dt2
dt
rt
d
子系统交换 dt
d2rˆt


求下图RC电路的冲激响应。(条件:vC00)
R
iC (t)
列系统微分方程:
RC dvdCt(t)vC(t)(t)
(t)
C
vC (t)
t0,t0
RCdvdCt(t)vC(t)0 齐次方程
冲激 t在 t时转0 为系统的储能(由 体vC现(0) ),

冲激响应和阶跃响应的关系

冲激响应和阶跃响应的关系

冲激响应和阶跃响应的关系冲激响应和阶跃响应是信号处理中常用的两种响应方式。

它们在时域和频域的特性不同,但在某些情况下存在一定的联系和关系。

冲激响应是指当输入信号为冲激函数(即单位脉冲函数)时,系统的输出响应。

冲激响应可以用于分析系统的频率响应特性,例如计算系统的频率响应函数、幅频特性和相频特性等。

冲激响应通常被表示为系统的单位脉冲响应函数。

阶跃响应是指当输入信号为阶跃函数(即单位阶跃函数)时,系统的输出响应。

阶跃响应可以用于分析系统的时域特性,例如计算系统的单位阶跃响应函数、过渡时间、稳态误差和阶跃响应曲线等。

阶跃响应通常被表示为系统的单位阶跃响应函数。

冲激响应和阶跃响应之间的关系可以通过拉普拉斯变换进行推导。

拉普拉斯变换是一种常用的信号处理工具,可以将时域的信号转换为复频域的函数。

通过拉普拉斯变换,我们可以将冲激响应和阶跃响应之间建立起联系。

对于一个线性时不变系统,假设其冲激响应为h(t),阶跃响应为s(t)。

根据定义,阶跃响应可以表示为冲激响应的积分。

具体地,s(t)等于h(t)的积分,即s(t) = ∫h(τ)dτ,其中积分的上限是从0到t。

通过拉普拉斯变换,我们可以将上述关系表示为复频域的函数。

假设冲激响应的拉普拉斯变换为H(s),阶跃响应的拉普拉斯变换为S(s)。

根据拉普拉斯变换的性质,阶跃响应的拉普拉斯变换可以表示为冲激响应的拉普拉斯变换除以s,即S(s) = H(s)/s。

从上述关系可以看出,冲激响应和阶跃响应之间存在一定的联系。

阶跃响应可以通过冲激响应的积分得到,而冲激响应可以通过阶跃响应的导数得到。

它们之间的关系可以帮助我们在信号处理中进行相互转换和分析。

除此之外,冲激响应和阶跃响应还可以用于系统的稳定性分析和系统参数估计。

通过对冲激响应和阶跃响应的分析,我们可以了解系统对不同类型输入信号的响应情况,进而判断系统的稳定性和性能。

冲激响应和阶跃响应在信号处理中扮演着重要的角色。

它们具有不同的时域和频域特性,但又存在一定的联系和关系。

信号系统实验冲击响应与阶跃响应实验(有数据)

信号系统实验冲击响应与阶跃响应实验(有数据)

实验2 冲激响应与阶跃响应一、实验目的1.观察和测量RLC申联电路的阶跃响应与冲激响应的波形和有关参数,并研究其电路元件参数变化对响应状态的影响;2.掌握有关信号时域的测量方法。

二、实验原理说明冲激响应与阶跃响应有以下三种状态:(1)时,称过阻尼状态;(2)时,称临界状态;(3)时,称欠阻尼状态。

三、实验设备1.双踪示波器 1台2.信号系统实验箱 1台四、实验步骤1.阶跃响应波形观察与参数测量设激励信号为方波,其幅度为1.5V,频率为500HZ。

①链接P04与P914。

②调节信号源,使P04输出f=500HZ,占空比为50%的脉冲信号,幅度调节为1.5V。

③示波器CH1接TP906,调整W902,使电路分别工作于欠阻尼,临界和过阻尼三种状态,并观察三种状态的波形。

2.冲激响应的波形观察①连接P04与P912;②将示波器的CH1接TP913,观察冲激激励信号;③连接P913与P914;④将示波器CH2接TP906,调整W902,是电路分别工作于欠阻尼,临界和过阻尼三种状态,并观察三种状态的波形。

五、数据处理与分析1.阶跃响应其中根据实验原理可以计算得到 。

实验波形:① 欠阻尼状态:可以通过示波器的游标测量出上升时间,峰值时间,调节时间。

②临界状态:③过阻尼状态:2.冲激响应:①冲击信号波形:②欠阻尼状态:③临界状态:④过阻尼状态:六、实验总结从本次实验中,进一步熟悉了示波器的用法,更加理解掌握有关信号时域的测量方法。

①通过示波器看到了冲激信号的波形,更加理解了冲激信号是阶跃信号的导数的概念。

②通过示波器看到了阶跃响应和冲击响应在临界状态下的波形,与卷积性质的③零输入响应,是没有加激励信号的作用,只由起始状态所产生的响应。

零状态响应,不考虑原始时刻系统的作用,由系统外加激励信号产生的响应。

冲激响应和阶跃响应收敛域

冲激响应和阶跃响应收敛域

冲激响应和阶跃响应收敛域简介冲激响应和阶跃响应是信号系统中常用的两种响应形式。

它们在频域和时域的特性不同,对于系统的稳定性和收敛性有着重要影响。

本文将从频域和时域的角度,分别探讨冲激响应和阶跃响应的收敛域。

冲激响应的收敛域冲激响应是指在输入信号为冲激函数(或称单位冲激信号)时,系统的输出响应。

冲激响应在频域上表示为系统的频率响应,决定了系统对不同频率成分的响应程度。

对于线性时不变(LTI)系统,冲激响应的收敛域是指频率响应的收敛域。

一个系统的冲激响应收敛域可分为以下几种情况:1.绝对收敛域:该系统的冲激响应在整个复平面上都收敛到有限值。

这意味着系统对于所有频率的输入都有有限的响应。

这种系统一般被认为是稳定的。

2.条件收敛域:该系统的冲激响应只在部分复平面上收敛,而在其他部分则发散或者无限增大。

这意味着系统只对某些输入频率有有限的响应,对于其他频率则无法给出有限的响应。

这种系统一般被认为是不稳定的。

3.绝对不收敛域:该系统的冲激响应在整个复平面上均不收敛,要么是无穷大,要么是震荡、振荡等无法收敛到有限值的情况。

这种系统一般被认为是不稳定的。

冲激响应的收敛域的确定需要分析系统的传递函数或者脉冲响应。

在实际工程应用中,常常使用频率响应曲线(Bode图)来观察系统的收敛性质。

阶跃响应的收敛域阶跃响应是指在输入信号为阶跃函数时,系统的输出响应。

阶跃响应描述了系统对于单位阶跃输入的反应情况,常常用来分析系统的稳态性能和时间特性。

阶跃响应收敛域与冲激响应收敛域是有区别的。

一个系统的阶跃响应收敛域可分为以下几种情况:1.绝对收敛域:该系统的阶跃响应在整个时间轴上收敛到有限值。

这意味着系统对于所有时刻的输入都有有限的响应。

这种系统一般被认为是稳定的。

2.条件收敛域:该系统的阶跃响应只在部分时间轴上收敛,而在其他部分则发散或者无限增大。

这意味着系统只对某些时间上的输入有有限的响应,对于其他时间则无法给出有限的响应。

信号与系统冲激响应和阶跃响应

信号与系统冲激响应和阶跃响应

对系统的微分方程进行拉普拉斯变换
01
将时域中的微分方程转换为复平面上的代数方程。
求解代数方程
02 根据复平面上的代数方程,求解系统的输出响应的拉
普拉斯变换式。
对输出响应的拉普拉斯变换式进行反变换
03
将复平面上的输出响应的拉普拉斯变换式反变换回时
域,得到系统的阶跃响应。
频域分析法求解阶跃响应
确定系统的频率响应函数
02 冲激响应与阶跃响应概述
冲激函数定义及性质
定义
冲激函数是一种特殊的信号,它在某一时刻取值为无穷大,而在其他时刻取值 为零。
性质
冲激函数具有筛选性、可加性、奇偶性等性质,其中筛选性是指冲激函数与任 何函数相乘的结果都等于该函数在冲激时刻的值。
阶跃函数定义及性质
定义
阶跃函数是一种在某一时刻发生跳变的信号,它的取值在跳变前为0,跳变后为1 (或其他常数)。
卷积积分法求解冲激响应
确定系统单位冲激响应。
利用卷积积分公式,将输入信号与系统单位冲激响应进 行卷积运算。
将输入信号表示为冲激函数的线性组合。
对卷积结果进行积分,得到系统的零状态响应,即为冲 激响应。
04 离散时间系统冲激响应分 析
差分方程求解方法
迭代法
通过逐步代入差分方程,求解系统的冲激响应。
区别
冲激响应描述的是系统在极短时间内对输入信号的响应,而阶跃响应描述的是系统在长时间内对输入信号的响应。 此外,冲激响应可以通过卷积运算得到系统的零状态响应,而阶跃响应则可以通过对冲激响应进行积分得到。
03 连续时间系统冲激响应分 析
微分方程求解方法
经典法
01
通过求解系统微分方程的通解,并根据初始条件确定特解,从

阶跃响应与冲激响应的关系

阶跃响应与冲激响应的关系

阶跃响应与冲激响应的关系1. 引言嘿,大家好!今天咱们来聊聊“阶跃响应”和“冲激响应”这两位老兄。

这两个概念在信号处理和系统分析里可是风头正劲的角色。

可能你听过它们,却不知道它们之间到底有什么关系。

别急,咱们慢慢来,保证让你听得津津有味。

2. 什么是冲激响应?2.1 冲激响应的定义首先,咱得了解一下“冲激响应”。

可以把它想象成一个超级短暂的信号,就像是你在派对上对朋友大喊“嗨!”然后瞬间安静下来了。

这种瞬间的信号就叫做冲激信号,而系统对这个信号的响应就是冲激响应。

听起来是不是很简单?2.2 冲激响应的特性而且,冲激响应的一个特性就是它能完全描述一个线性时不变系统的行为。

也就是说,只要你知道了冲激响应,你就能推导出系统对任何输入信号的响应,简直是信号处理界的万金油!所以,冲激响应就像是一张藏宝图,指引我们找到信号处理的宝藏。

3. 阶跃响应的魅力3.1 阶跃响应的定义接下来,咱们来看看“阶跃响应”。

它是系统对一个阶跃信号的响应,就像你突然把一个开关打开,整个房间立刻亮起来。

阶跃信号的特点就是它在某一时刻突然变得不一样,从0到1的变化就好比一瞬间的蜕变。

3.2 阶跃响应的重要性阶跃响应在很多实际应用中可是大显身手的,尤其是在控制系统中。

比如说,想象一下你在开车,突然踩下油门,车辆的加速反应就是阶跃响应在起作用。

通过阶跃响应,你可以了解系统的稳定性和动态特性,简直是开车必备的“老司机技巧”。

4. 冲激响应与阶跃响应的关系4.1 从冲激响应到阶跃响应那么,冲激响应和阶跃响应之间又是怎样的关系呢?简单来说,阶跃响应可以通过冲激响应“推导”出来。

你可以把冲激响应看作是一种基本的“调味料”,而阶跃响应就是这道菜的成品。

通过数学上的卷积操作,我们能把冲激响应变成阶跃响应,没错,就像把原料变成美味佳肴!4.2 直观的理解想象一下,你在做蛋糕。

冲激响应就像是准备蛋糕的面糊,而阶跃响应就是烤好的蛋糕,香喷喷的出炉了!当然,不同的配方会让蛋糕的味道有所不同,但最终都是通过面糊这个基础材料变成的。

冲激响应和阶跃响应实验报告

冲激响应和阶跃响应实验报告

冲激响应和阶跃响应实验报告一、实验目的通过实验,了解冲激响应和阶跃响应的基本概念和特性,进一步掌握信号与系统的应用和分析方法。

二、实验原理1. 冲激响应冲激响应是指系统对冲激信号的响应。

冲激信号是一种具有瞬时高幅度,持续时间极短的信号。

在实际中通常使用一段宽度很小的方波代替,即取宽度很小的矩形脉冲。

2. 阶跃响应阶跃响应是指系统对阶跃信号的响应。

阶跃信号是一种瞬时跃变的信号,从零到某一定值的跃变称为正跃变,实际上是由一个比较窄的方波组成。

从某一定值到零的跃变称为负跃变。

三、实验内容1. 冲激响应实验(1)将信号发生器输出相干的正弦波信号,并接入可变数字延时器。

(2)在延时器的输出端连接一个手动开关,按下手动开关,可以在延时时间内给信号发生器输出一个矩形脉冲,瞬间充当冲激信号。

(3)观察接收信号的波形,并记录数据。

2. 阶跃响应实验(1)将信号发生器输出一个幅度为零的正弦波信号,并接入比例调节器。

(2)比例调节器将幅度非线性放大,形成一个输入阶跃信号。

(3)接收信号并观察波形,记录数据。

四、实验结果1. 冲激响应实验结果(1)观察到响应信号最大幅值为4.5V。

(2)响应时间为0.375ms。

(3)计算得到冲激响应函数为H(t) = 12.0^4.5 e^(-18.75t)u(t)。

2. 阶跃响应实验结果(1)观察到阶跃信号到达峰值的时间为5.5ms。

(2)观察到响应信号最大幅值为6.3V。

(3)根据观察数据计算得到阶跃响应函数为H(t) = 1.8e^(-5.5t)u(t)。

五、实验结论在冲激响应实验中,得到了系统的冲激响应函数,该函数表明系统在接收到一个冲激信号时,系统输出的响应。

而在阶跃响应实验中,得到了系统的阶跃响应函数,该函数表明系统在接收到一个阶跃信号时输出的响应。

这两个函数是系统的重要性质,也是深入探究系统响应特性的基础。

六、实验注意事项(1)实验中需要小心操作,避免短路或电流过大等故障。

信号与系统 冲激响应和阶跃响应

信号与系统 冲激响应和阶跃响应

信号与系统
t t t t g ( t ) Ae u ( t ) e u ( t ) Ae e u(t ) 将
代入
d g (t ) g (t ) (t ) 2e t u (t ) dt

( A 1) (t ) ( Aet et )u(t ) ( Aet et )u(t ) (t ) 2et u(t )
A1 2, A2
1 3 , A3 2 2
故:
1 3 g(t ) (2e t e 2t )u(t ) u(t ) 2 2
信号与系统
二.阶跃响应
h(t ) (2e t e 2t )u(t )
ii)先求h(t)再积分法
g (t ) h( )d (2e e2 )d
信号与系统

冲激响应的定义 •零状态;

•单位冲激信号作用下,系统的响应为冲激响应
冲激响应说明:在时域,对于不同系统,零状态情况下加同样的激励 ( t ),看 响应 h( t ),h( t )不同,说明其系统特性不同,冲激响应可以衡量系统的特性。 (1)系统的在 x(t ) 激励下的零状态响应为 yzs (t ) x(t )* h(t ) (2)LTI系统因果性的充要条件可表示为 当
信号与系统
二.阶跃响应
2.阶跃响应与冲激响应的关系 线性时不变系统满足微、积分特性
u (t ) ( ) d

t
t
d (t ) u (t ) dt
dg (t ) h(t ) = dt
g (t ) h( ) d

阶跃响应是冲激响应的积分,注意积分限

t

信号与系统2-2

信号与系统2-2

电路如图所示,C=0.1F, 电路如图所示,C=0.1F, L=1H, R=2Ω t=0时,电路处于零状态, R=2Ω, 在t=0时,电路处于零状态, δ(t) 则:iC(0+)=______A, )=______A, -5
iR
R
iL(0+)=______A, iR(0+)=______A。 )=______A, )=______A。 0 5
阶跃响应为: ε (t) = ∫ h(τ )dτ = 1 − 1 e−0.5τ r 2 2
第二章第2讲
= (1− 1 e−0.5t )ε (t) 2
10

3
电路如图所示,电容C原已充电到3 电路如图所示,电容C原已充电到3V,现通过强度为 8δ(t) 的冲激电流, 的冲激电流, 则在冲激电流作用时刻,电容电压的跃变量 为______。 ______。 B + 8δ(t) (A) 7V (B) 4V 2F uC (C) 3V (D) -4V −
b0 特解为 rp = ε(t),齐次解的确定与冲激响应类似。 a0 n b0 λi t 当 n≥m 时: rε (t) = (∑Ci e + )ε (t) a0 i=1
= bme(m) (t) + bm−1e(m−1) (t) +⋯+ b e′(t) + b0e(t) 1
当 n<m 时: rε (t)中含有δ(t),确定方法与冲激响应类似。 中含有δ(t 阶跃响应与冲激响应的关系: 阶跃响应与冲激响应的关系: t d rε (t) rε (t) = ∫ h(τ )dτ h(t) = −∞ dt 第二章第2讲
∴ 利用线性时不变特性求h(t)。 h0 (t) = (e−t − e−2t )ε (t) • 利用线性时不变特性求h(t)。

信号与系统 冲激响应和阶跃响应

信号与系统 冲激响应和阶跃响应
n
i
①与特征根有关 设特征根为简单根(无重根的单根) h(t )
nm
h(t ) 包含 (t ) 及其各阶导数,最阶次为m - n
i 1

mn n i t h(t ) Ci e u(t ) Dk k (t ) k 0 i 1 4.求法:直接代入确定待定系数
A1 2, A2
1 3 , A3 2 2
故:
1 3 g(t ) (2e t e 2t )u(t ) u(t ) 2 2
信号与系统
二.阶跃响应
h(t ) (2e t e 2t )u(t )
ii)先求h(t)再积分法
g (t ) h( )d (2e e2 )d
可计算得 A 0 ,即 则冲激响应为 h(t ) 由 可得
g (t ) et u(t )
d g (t ) (t ) e t u (t ) dt
y1 (t ) 2et u(t ) yzi (t ) yzs (t ) yzi (t ) g (t ) yzi (t ) y1 (t ) g (t ) 2et u(t ) et u(t ) et u(t )
信号与系统
一.冲激响应
d 2r (t ) dr ( t ) de( t ) 例: 系统微分方程为 4 3r ( t ) 2e( t ) 2 dt dt dt
试求其冲激响应。
解: n=2,m=1 所以h(t)中不包含 (t)。
特征方程为: 2
4 3 0
1 1, 2 3
d 2 h(t ) t 3t t 3t ( k k ) ( t ) ( k e 3 k e ) ( t ) ( k e 9 k e )u (t ) 1 2 1 2 1 2 2 dt
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

r t
t2
t
t
a t a t
b
bu
t t
c
u
t
rt aut
h 0 1 ,h '0 2
代入h(t),得
hh'00A A113AA2212
h(t)1ete3t u(t)
A A121212
2
X
12

用奇异函数项相平衡法求待定系数 页
h ( t ) A 1 e t A 2 e 3 tu ( t )
RC (t)A (t)
1 RCA1 A
RC
X
波形
htvC(t)R 1C eR 1C tu(t)
vC (t) h(t) 1 RC
iC(t)
CdvC(t) dt
O
注意!
iC (t)
R12CeR1Ctu(t)
1 (t)
R
1
O R
电容器的电流在
t =0时有一冲激, 这就是电容电压突
1 R 2C
变的原因 。
•当nm时 , ht中 应 包 t含 ;
•当nm时 , ht应 包含 t及 其 各 阶 导 数 。 X
10

例2-5-2 页
求系统 d d 2r t(2 t)4d d r(tt)3 r(t)的 冲d d e 激(tt响) 应2 e 。(t) 解:
将e(t)→(t), r(t)→h(t)
d 2 d h t( 2 t) 4d d h (tt)3 h (t)d d ( tt)2 (t)
CtR1CeR1Ctut
X
6
方法2:奇异函数项相平衡原理
第 页
已知方程 冲激响应 求导 代入原方程
RC dvdCt(t)vC(t)(t) t vC(t)Ae RCu(t)
dvC(t)A(t)AeR 1tC u(t)
dt
RC
R C 1 A e R tu C (t) RC (t) A A e R tu C (t)(t) RC 整理,方程左右奇异函数项系数相平衡


求下图RC电路的冲激响应。(条件:vC00)
R
iC (t)
列系统微分方程:
RC dvdCt(t)vC(t)(t)
(t)
C
vC (t)
t0,t0
RCdvdCt(t)vC(t)0 齐次方程
冲激 t在 t时转0 为系统的储能(由 体vC现(0) ),
t >0时,在非零初始条件下齐次方程的解,即为原系统
1

信号与系统

§2.6 冲激响应和阶跃响应
• 冲激响应 • 阶跃响应
X
2
一.冲激响应
第 页
1.定义
系统在单位冲激信号 (t作) 用下产生的零状态响应,称 为单位冲激响应,简称冲激响应,一般用h(t)表示。
t
h t
H
2.一阶系统的冲激响应 3.n阶系统的冲激响应
X
3
例2-5-1 一阶系统的冲激响应
的冲激响应。
X
4
求解


特征方程
RC 10 特征根
1
RC
t
vC(t)AeRu C(t)
t0时的 解
下面的问题是确定系数A,求A有两种方法:
方法1:冲激函数匹配法求出 vC (0, )定系数A。 方法2:奇异函数项相平衡法,定系数A。
A 1
RC
vC(t)R1CeR1Ctu(t)
即:
h(t)
1
1t


线性时不变系统满足微、积分特性
u(t) t (t)dt
t
g(t) h(t)dt
阶 跃 响 应 是 冲 激积 响分 应, 的注 意 积 分 限 :
第 页
t t
X
7
8
3.n阶系统的冲激响应
第 页
(1)冲激响应的数学模型
对于线性时不变系统,可以用一高阶微分方程表示
dnr(t) dn1r(t)
dr(t)
C0 dtn C1 dtn1 Cn1 dt Cnr(t)
dme(t) dm1e(t)
de(t)
E0 dtm E1 dtm1 Em1 dt Eme(t)
响应及其各 阶导数(最 高阶为n次)
令 e(t)=(t)
则 r(t)=h(t)
激励及其各 阶导数(最 高阶为m次)
C 0 h n (t) C 1 h n 1 (t) C n 1 h 1 (t) C n h (t)
E 0m (t) E 1m 1 (t) E m 11 (t) E m (t)


1.定义
系统在单位阶跃信号作用下的零状态响应,称为单 位阶跃响应,简称阶跃响应。
et
rt
u t
gt
H
H
系统的输入 et,u其t响 应为
。rt系统g方t程的右端
将包含阶跃函数 ,所以除了ut齐 次解外,还有特解项。
我们也可以根据线性时不变系统特性,利用冲激响应和阶跃 响应关系求阶跃响应。
X
14
2.阶跃响应与冲激响应的关系
求特征根
2 4 3 0 1 1 ,2 3
n2,m 1,nmht中 不 包 含 冲 激 项 带u(t)
冲激响应
h (t) (A 1 e t A 2 e 3 t)u (t)
求待定系数 ,冲击匹配法求0+法,奇异函数项相平衡
X
11
冲击匹配法求0+定系数第页设d d2
d r d
h (t) A 1 e t A 2 e 3 t (t) A 1 e t 3 A 2 e 3 tu (t) A 1 A 2 (t) A 1 e t 3 A 2 e 3 tu (t)
h t A 1 A 2 t A 1 3 A 2 t A 1 e t 9 A 2 e 3 t u t
将h(t),h(t),h(t)代入原方程 A 1 A 2 ( t ) 3 A 1 A 2 ( t ) 0 u ( t ) ( t ) 2 ( t )
根据系数平衡,得
3AA11
A2 A2
1
A1
2A2
1
2 1
2
h(t)1et e3t u(t)
2
X
13
二.阶跃响应
e RCu(t)
RC
波形
X
5
方法1:冲激函数匹配法求 vC0
第 页
据方程可设 代入方程得
dυCt atbut
dt
υCtaut
R t C R u t a C a u t b t
得出
RCa1 即a 1 RC
所以
υC0υC0R1C R1C
把 C0代入 CtA eR 1tC 得 AR 1C
X
9

(2)h(t)解答的形式

由于 t 及其导数在 t 0 时都为零,因而方程式右
端的自由项恒等于零,这样原系统的冲激响应形式与齐次 解的形式相同。
①与特征根有关
设特征根为简单根(无重根的单根)
n
h(t)
Aieit u(t)
i1
②与n, m相对大小有关
•当nm时 , ht不 含 t及 其 各 阶 导 数 ;
相关文档
最新文档