建筑力学基础.(完整资料).doc

合集下载

建筑力学(完整版)

建筑力学(完整版)

二、建筑力学的研究内容
要处理好构件所受的荷载与构件本身的承载能 力之间的这个基本矛盾,就必须保证设计的构件 有足够的强度、刚度和稳定性。建筑力学就是研 究多种类型构件(或构件系统)的强度、刚度和稳 定性问题的科学。 各种不同的受力方式会产生不同的内力,相应就 有不同承载能力的计算方法,这些方法的研究构 成了建筑力学的研究内容。
物体作为研究对象进行受力分析即可。 架的受力图如图1-26b所示。
二、物体系统的受力分析
物体系统的受力分析较单个物体受力 分析复杂,一般是先将系统中各个部分作 为研究对象,分别进行单个物体受力分析 ,最后再将整个系统作为研究对象进行受 力分析。
小结
• 1.静力学是研究物体在力系作用下平衡规律的科学,它主要是解决 力系的简化(或力系的合成)问题和力系平衡的问题。
图1-9
四、力的平行四边形法则
图1-11,作用于物体上同一点上的两个力,其合力也作用 在该点上,至于合力的大小和方向则由以这两个力为边所构成 的平行四边形的对角线来表示,如图1-11a 所示,而原来的两 个力称为这个合力的分力。
图1-11
第三节 约束与约束力
第三节 约束与约束力
一、约束与约束力的概念 1.自由体
过铰C 和铰E 两点受力,是一个二力构件, 故C 、E 两点处的作用力必沿CE 连线的
方向,如图图1-8b所示。
三、平衡力系公理 在作用于刚体上的已知力系中,加上或减去任一平衡力 系,并不改变原力系对刚体的效应。这是因为平衡力系对刚 体作用的总效应等于零,它不会改变刚体的平衡或运动的状 态。这个公理常被用来简化某一已知力系。 应用这个公理可以导出作用于刚体上的力的如下一个重 要性质。图1-9 力的可传性原理:作用于刚体上的力,可沿其作用线任 意移动而不改变它对刚体的作用外效应。例如,图1-9中在 车后点加一水平力推车,如在车前点加一水平力拉车,对于 车的运动效应而言,其效果是一样的。

建筑力学基本知识.

建筑力学基本知识.

建筑力学基本知识第十一章静力学基础知识第一节力的概念及基本规律一、力的概念1、力的概念物体与物体之间的相互机械作用。

不能离开物体单独存在,是物体改变形状和运动状态的原因。

2、力的三要素大小(单位N kN)、方向、作用点。

力是矢量。

二、基本规律1、作用力与反作用力原理大小相等、方向相反、作用在同一直线上,分别作用在两个不同的物体上。

相同点:相等、共线;不同点:反向、作用对象不同。

2、二力平衡条件(必要与充分条件)作用在同一刚体(形状及尺寸不变的物体)上两个力,如果大小相等、方向相反、作用在同一直线上,必定平衡。

注意和作用力与反作用力的区别。

非刚体不一定成立。

3、力的平行四边形法则力可以依据平行四边形法则进行合成与分解,平行四边形法则是力系合成或简化的基础,也可以根据三角形法则进行合成与分解。

4、加减平衡力系公理作用在物体上的一组力称为力系。

如果某力与一力系等效,则此力称为力系的合力。

在同一刚体的力系中,加上或减去一个平衡力系,不改变原力系对该刚体的作用效果。

5、力的可传性原理作用在同一刚体上的力沿其作用线移动,不会改变该力对刚体的作用。

力的可传性只适用于同一刚体。

第二节平面汇交力系力系按作用线分布情况分平面力系和空间力系。

力系中各力的作用线都在同一平面内且汇交于一点,这样的力系称为平面汇交力系,是最简单的平面力系。

平面汇交力系的合力可以根据平行四边形法则或三角形法则在图上进行合成也可以进行解析求解。

一、力在坐标轴上的投影F x和F y分别称为力F在坐标轴X和Y上的投影,当投影指向与坐标轴方向相反时,投影为负。

注意:力在坐标轴上的投影F x和F y是代数量,力F的分力F x/和F y/是矢量,二者绝对值相同。

问题:如果F与某坐标轴平行,其在两坐标轴的分量分别是多少?如果两力在某轴的投影相等,能说这两个力相等吗?显然二、合力投影定理121121......nRx x x ix nx ixi nRy y y iy ny iyi F F F F F F F F F F F F ===++++==++++=∑∑ 或者于是,得到合力投影定理如下:力系的合力在任一轴上的投影F Rx 或F Ry ,等于力系中分力在同一轴上的投影的代数和。

建筑力学的基本知识

建筑力学的基本知识

建筑力学的基本知识目录1. 建筑力学基本概念 (3)1.1 建筑力学的定义 (4)1.2 建筑力学的研究对象 (4)1.3 建筑力学的应用领域 (5)2. 建筑材料的力学性质 (6)2.1 材料的强度与变形 (8)2.2 材料的弹性与塑性 (9)2.3 材料的脆性与韧性 (10)3. 建筑结构的基本组成 (12)3.1 结构的组成元素 (13)3.2 结构的受力分析 (14)3.3 结构的稳定性分析 (15)4. 建筑结构的受力分析方法 (16)4.1 静力学分析 (17)4.1.1 静定结构 (19)4.1.2 非静定结构 (20)4.2 动力学分析 (21)4.2.1 自由振动 (22)4.2.2 受迫振动 (23)5. 建筑结构的受力与反力 (24)5.1 反力的产生 (25)5.2 反力的计算方法 (26)5.3 反力的应用 (27)6. 建筑结构的内力分析 (28)6.1 内力的定义 (30)6.2 内力的计算方法 (31)6.3 内力的分布规律 (32)7. 建筑结构的截面性质 (33)7.1 截面的几何性质 (34)7.2 截面的力学性质 (35)7.3 截面的设计原则 (36)8. 建筑结构的稳定性分析 (37)8.1 稳定性的基本概念 (38)8.2 稳定性的分析方法 (39)8.3 稳定性的设计要求 (41)9. 建筑结构的极限状态分析 (42)9.1 极限状态的定义 (43)9.2 极限状态的分析方法 (44)9.3 极限状态的设计原则 (45)10. 建筑结构的计算方法与软件应用 (46)10.1 建筑结构计算的基本方法 (47)10.2 常用建筑结构计算软件介绍 (48)10.3 计算软件在建筑力学中的应用实例 (50)1. 建筑力学基本概念力:力是物体之间相互作用的结果,是使物体产生加速度或形变的物理量。

在建筑力学中,力可以表现为重力、拉力、压力、摩擦力等。

力系:由若干个力组成的系统称为力系。

《建筑力学》全套课件(完整版)

《建筑力学》全套课件(完整版)
所谓物体的平衡,建筑工程上一般是指物体相对于地面 保持静止状态或作匀速直线运动状态。要使物体处于平衡状 态,作用于物体上的力系必需满足一定的条件,这些条件称 为力系的平衡条件。作用于物体上正好使之保持平衡的力系 则称为平衡力系。静力学研究物体的平衡问题,实际上就是 研究作用于物体上的力系的平衡条件,并利用这些条件解决 具体问题。
悉尼歌剧院
斜拉桥
三峡大坝
平衡状态
无论是工业厂房或是民用建筑、公共建筑,它们的结构及组成结 构的各构件都相对于地面保持着静止状态,这种状态在工程上称为平 衡状态。
保证构件的正常工作必须同时满足三个要求: (1)在荷载作用下构件不发生破坏,即应具有足够的强 度; (2)在荷载作用下构件所产生的变形在工程允许的范围 内,即应具有足够的刚度; (3)承受荷载作用时,构件在其原有形状下的平衡应保 持稳定的平衡,即应具有足够的稳定性。
结构、构件:
在建筑物中承受和传递荷载而起骨架 作用的部分或体系称为结构。组成结构的 每一个部件称为构件。
• 结构分类
• 1 按组成结构的形状及几何尺寸分类: 杆件结构(即长度远大于截面尺寸的构件) 如梁 柱等 杆件结构依照空间特征分类: 平面杆件结构:凡组成结构的所有杆件的轴线在一平面内 空间杆件结构 薄壁结构(长度和宽度远大于厚度的构件) 如薄板 薄壳 实体结构 (长宽高接近的结构)如挡土墙 堤坝等
物体作为研究对象进行受力分析即可。 架的受力图如图1-26b所示。
二、物体系统的受力分析
物体系统的受力分析较单个物体受力 分析复杂,一般是先将系统中各个部分作 为研究对象,分别进行单个物体受力分析 ,最后再将整个系统作为研究对象进行受 力分析。
小结
• 1.静力学是研究物体在力系作用下平衡规律的科学,它主要是解决 力系的简化(或力系的合成)问题和力系平衡的问题。

(完整word)建筑力学知识点,推荐文档

(完整word)建筑力学知识点,推荐文档

建筑力学第一章绪论1.工程中习惯把主动作用于建筑物上的外力称为荷载。

例如自重,风压力,水压力,土压力等。

(主要讨论集中荷载、均匀荷载)2.在建筑物中,承受并传递荷载而起骨架作用的部分称为结构。

3.结构按几何特征分:一,杆件结构。

可分为:平面和空间结构。

它的轴线长度远大于横截面的宽度和高度。

二,板壳结构。

(薄壁结构)三,实体结构。

4.建筑力学要进行静力分析即由作用于物体上的已知力求出未知力。

5.强度指结构和构件抵抗破坏的能力,刚度指结构和构件抵抗变形的能力。

稳定性指结构和构件保持原有平衡状态的能力。

6.建筑力学的基本任务是研究结构的强度,刚度,稳定性问题。

为此提供相关的计算方法和实验技术。

为构件选择合适的材料,合理的截面形式及尺寸,以及研究结构的组成规律和合理形式。

第二章刚体静力分析基础1.静力学公理。

一,二力平衡。

(只适应于刚体,对刚体系统、变形体不适应。

)二,加减平衡力系。

(只适应于刚体,对刚体系统、变形体不适应。

)三,三力平衡汇交。

2.平面内力对点之矩。

一,合力矩定理3.力偶。

性质:一,力偶对物体不产生移动效应,故力偶没有合力。

它既不能与一个力等效或平衡。

二,任一力偶可在其作用面内任意移动。

4.约束:施加在非自由体上使其位移受到限制的条件。

一般所说的支座或支承为约束。

一物体(如一刚性杆)在平面内确定其位置需要两个垂直方向的坐标和杆件的转角。

因此,对应的约束力是相对的。

约束类型:1、一个位移的约束及约束力。

a)柔索约束。

b)理想光滑面约束。

C)活动(滚动)铰支座。

D)链杆约束。

2、两个位移的约束及约束力。

A)光滑圆柱形铰链约束。

B)固定铰支座约束。

3、三个位移的约束及约束力。

A)固定端。

4、一个位移及一个转角的约束及约束力。

A)定向支座(将杆件用两根相邻的等长、平行链杆与地面相连接的支座)。

第五章弹性变形体静力分析基础1.变性固体的基本假设。

连续性假设:固体材料的整个体积内毫无空隙的充满物体。

建筑力学基本概念和基本原理.docx

建筑力学基本概念和基本原理.docx

蒂建筑力学基本概念和基本原理羀一、判断蒅 1、材料的横向变形系数(泊松比 )和弹性模量E、剪切模量G 都是材料固有的力学性质。

螄2、一对等大反向的平行力 (即力偶 )既可使物体发生转动,也可使物体发生移动。

衿 3、铸铁试件压缩破坏是沿45 度斜截面被剪断。

蝿4、矩形梁危险截面的最大拉、压应力发生在截面的上下边缘处。

薅 5、梁的合理截面是使大部分材料分布于靠近中性轴(梁的横截面与线应变=0 的纵向面的交线)。

膄6、梁在集中力偶作用处,剪力图有突变。

薁7、忽略杆件自重,杆件上无荷载,荷载作用于结点上的杆件都是二力杆。

薇8、作用于弹性体一小块区域上的载荷所引起的应力,在离载荷作用区较远处,基本上只同载荷的主矢和主矩有关;载荷的分布情况只影响作用区域附近的应力分布,这就是圣维南原理。

蚅9、轴向拉 (压 )直杆的斜截面只有正应力,没有剪应力。

薅10、铸铁和砖石、混凝土等材料的抗拉能力远小于抗压能力。

聿11、某 T 形铸铁梁最大弯矩为正 (截面下侧受拉、上侧受压 ),该 T 形梁应该正放而不是倒放。

薀12、某矩形钢筋混凝土梁最大弯矩为负 ( 截面上侧受拉、下侧受压 ) ,钢筋应该配置在截面的下侧。

螅13、杆件某截面内力反映的是该截面处两部分杆件因为外力作用发生小变形而产生的相互作用,内力成对出现、等大反向,因此求内力要用截面法。

蚂14、构件的内力与横截面的尺寸大小和材料的力学性质都有关。

螁15、应力是内力的分布集度。

荿 16、平面一般力系向平面内某点平移的简化结果可能有三种情形:平衡状态、合力不为零、合力矩不为零。

袄17、各种材料对应力集中的敏感程度相同。

肃18、当某力的作用线通过某点时,该力对该点存在力矩。

蒃19、因为杆件受到外力作用发生的变形是小变形,所以求支座约束力和杆件内力时,杆件都使用原始尺寸。

膈20、杆件的稳定性是针对细长压杆的承载能力,此时稳定性要求超过强度要求。

袄二、填空蒄 1. 理想弹性体模型包括四个基本简化假设:假设、假设、假设、线弹性假设;在变形体静力学分析中,对所研究的问题中的变形关系也作了一个基本假设,它是假设。

建筑力学基础知识

建筑力学基础知识

WA WB
B
FN F’N
WB F
第二节 平面汇交力系
1、力在平面坐标轴上的投影 y Fy F A a´ Fx O a F b x
Fy
Fx F cos

B
Fy F cos
x
正负号规定:力的投影从开始端到末端的指向, 与坐标轴正向相同为正;反之,为负。 当投影Fx 、Fy 已知时,则可求出力 F 的大小和方向:
(3)画约束反力。
例3 水平梁 AB 两端用铰支座 和辊轴支座 (右图 ),在 C处作 A C
F
B
45
用一集中荷载F,梁重不计,
画出梁AB的受力图。 O A
FAx
FAy
F F
C
B
FB
45
A
FA
C
B
FB
45
例4. 水平梁AB两端用铰支座和辊轴支座支撑。在C处作用一集 中载荷P,梁重不计,画出梁AB的受力图。
F1 B B F2 A F F A A B F1
公理3 力的平行四边形法则
作用于物体上同一点的两个力,可以合成为一个合力,合 力的作用点也在该点,合力的大小和方向,由这两个力为边构 成的平行四边形的对角线确定。 F1
A
FR F2
以FR表示力F1和力F2的合力,则可以表示为
FR=F1+F2
即作用于物体上同一点两个力的合力等于这两个力的矢量合。
土建专业岗位人员基础知识
第十一章 建筑力学基础知识
1、力的概念
1.定义:力是物体间的相互机械作用,这种作用可以改变物 体的运动状态。 2. 力的效应: ①运动效应(外效应) ②变形效应(内效应)。 3. 力的三要素:大小,方向,作用点 力的单位: 国际单位制:牛顿(N) F A

建筑力学知识点基础总结

建筑力学知识点基础总结

建筑力学知识点基础总结静力学静力学是力学的一个分支,主要研究力系统平衡的条件和方法。

在建筑力学中,静力学是最基础的学科,它为建筑物的结构分析和设计提供了基础。

1. 力的基本概念在静力学中,力是物体之间相互作用的结果,它是外界对物体产生的原因。

力有大小和方向,通常用矢量表示。

建筑力学中的力包括静力和动力两种,主要研究的是静力。

2. 力的合成与分解在建筑物结构中,常常需要分解和合成力的作用,这是静力学中的基本概念和方法之一。

合成力是将若干个力合成为一个力,分解力是将一个力分解为若干个力。

3. 力的平衡条件静力学的基本原理之一是力的平衡条件。

当一个物体处于静止或匀速直线运动状态时,物体所受的合外力和合外力矩均为零。

这就是力的平衡条件。

4. 支点作用原理在建筑物结构中,支点是物体相对于其他物体的固定点。

支点的作用原理是静力学中重要的概念,它可以帮助我们分析物体受力的情况。

5. 杆件受力分析在建筑物中,大部分结构都可以简化为杆件模型。

杆件受力分析是静力学中的重要内容,通过受力分析可以确定结构的受力情况,为结构的设计提供基础依据。

结构力学结构力学是建筑力学的一个重要组成部分,它研究的是建筑物结构受力和变形的规律。

结构力学包括受力分析、结构稳定性、结构刚度等内容。

1. 结构受力分析结构受力分析是建筑力学中的核心内容,它包括梁、柱、板等结构在受力条件下的应力和变形分析。

通过受力分析,可以确定结构的稳定性和承载能力。

2. 结构稳定性结构的稳定性是结构力学中的重要概念,它是指结构在受到外力作用时不会发生失稳或倒塌的能力。

结构稳定性分析可以帮助我们确定结构的合理性和安全性。

3. 结构刚度结构的刚度是指结构在受力后的变形能力。

在结构力学中,刚度分析可以帮助我们确定结构的变形情况,为结构设计提供重要的参考依据。

4. 弹性力学弹性力学是建筑力学中的一个重要分支,主要研究材料在受力后的应力和变形规律。

弹性力学理论可以帮助我们确定结构在受力后的变形情况,为建筑物结构设计提供基础理论支持。

建筑力学基础知识

建筑力学基础知识

第1章建筑力学基础1.1力的性质、力在坐标轴上的投影1.1.1 力的定义力,是人们生产和生活中很熟悉的概念,是力学的基本概念。

人们对于力的认识,最初是与推、拉、举、掷时肌肉的紧张和疲劳的主观感觉相联系的。

后来在长期的生产和生活中,通过反复的观察、实验和分析,逐步认识到,无论在自然界或工程实际中,物体机械运动状态的改变或变形,都是物体间相互机械作用的结果。

例如,机床、汽车等在刹车后,速度很快减小,最后静止下来;吊车梁在跑车起吊重物时产生弯曲,等等。

这样,人们通过科学的抽象,得出了力的定义:力是物体间相互的机械作用,这种作用的结果是使物体的机械运动状态发生改变,或使物体变形。

物体间机械作用的形式是多种多样的,大体上可以分为两类:一类是通过物质的一种形式而起作用的,如重力、万有引力、电磁力等;另一类是由两个物体直接接触而发生的,如两物体间的压力、摩擦力等。

这些力的物理本质各不相同。

在力学中,我们不研究力的物理本质,而只研究力对物体的效应。

一个力对物体作用的效应,一般可以分为两个方面:一是使物体的机械运动状态发生改变,二是使物体的形状发生改变,前者叫做力的运动效应或外效应。

后者叫做力的变形效应或内效应。

就力对物体的外效应来说,又可以分为两种情况。

例如,人沿直线轨道推小车使小车产生移动,这是力的移动效应;人作用于绞车手柄上的力使鼓轮转动,这是力的转动效应。

而在一般情况下,一个力对物体作用时,既有移动效应,又有转动效应。

如打乒乓球时,如果球拍作用于乒乓球的力恰好通过球心,只有移动效应;如果此力不通过球心,则不仅有移动效应,还有绕球心的转动效应。

1.1.2 力的三要素实践证明,力对物体的作用效应取决于力的大小、方向和作用点。

这三者称为力的三要素。

即:1.力的大小力的大小表示物体间机械作用的强弱程度,它可通过力的运动效应或变形效应来度量,在静力学中常用测力器和弹性变形来测量。

为了度量力的大小,必须确定力的单位。

建筑力学课件(整本)完整版

建筑力学课件(整本)完整版
实验方法
建筑结构抗震实验通常采用振动台模拟地震振动,同时也可以采用地震模拟振动台进行测 试。
感谢您的观看
THANKS
03
结构力学
结构的静力分析
静力分析的定义
静力分析是研究结构在静力荷载 作用下的响应,包括位移、应变
和应力等。
静力分析的方法
静力分析的方法包括有限元法、有 限差分法和边界元法等,这些方法 可以根据不同的结构和荷载条件进 行选择。
静力分析的步骤
静力分析的步骤包括建立模型、施 加荷载、求解和结果分析等,其中 建立模型和求解是关键步骤。
建筑力学课件(整本)完整版
目录
• 建筑力学基础 • 材料力学 • 结构力学 • 建筑力学应用 • 建筑力学实验
01
建筑力学基础
力的基本概念
01
总结词
理解力的本质
02
详细描述
介绍力的定义、性质和单位, 以及力的分类和表示方法。
03
总结词
掌握力的作用效果
04
详细描述
解释力可以改变物体的运动状 态和形状,以及力的传递和分
详细描述
弯曲和扭转是材料在受到力作用时常见的两种变形方式。弯曲是指材料在力的作用下发生弯曲变形, 而扭转则是指材料在力的作用下发生旋转运动。了解这两种变形方式对于理解和分析材料的受力行为 以及设计结构至关重要。
材料的弯曲与扭转
总结词
掌握弯曲和扭转的应力计算方法。
VS
详细描述
在弯曲和扭转中,应力的计算方法有所不 同。在弯曲中,应力的计算需要考虑弯矩 和剪切力的影响,而在扭转中,应力的计 算需要考虑扭矩和剪切力的影响。掌握这 些计算方法对于评估材料的承载能力和稳 定性至关重要。
结构的动力学

建筑力学基础

建筑力学基础

建筑力学引言1、建筑力学包括:理论力学、材料力学、结构力学建筑力学研究对象:杆件、杆件结构结构:建筑中指出承和传递荷载而起骨架作用的部分(梁、板、柱、墙、基础、屋架等)构件:组成建筑结构的各个部分2、建筑结构按几何特征分类:杆件结构、薄壁结构、实体结构杆件:长度远大于其横向尺寸的构件杆件结构:若干根杆件组成的结构板件:厚度远小于其长度和宽度的构件薄壁结构:若干块板件组成的结构(楼板、壳(qiao)等)实体结构:几何特征是长宽高三方向的尺寸约为数量级(很大的基础、大坝、挡土墙等)3、杆件结构的类型梁:轴线是直线拱:轴线是曲线桁架:若干杆件构成,结点是铰接钢架:杆件和杆件是钢性结点组合结构:两件以上的组合结构4、荷载及其分类荷载:主动作用在建筑结构上的外力(自重、人员、设备自重、风压、雪压等)按作用时间分:横载(永久荷载):自重、固定设备活载(可动荷载):机具、人群、风、雪、吊车等按作用范围分:集中荷载:P(KN)集中力偶:m(KN﹒m)均布荷载:q(KN/m)按作用性质分:静荷载:(加速度为0)动荷载:振动(有惯性,加速度不等于0)冲击(位置发生改变)5、结构计算简化原则正确反映结构的实际受力情况;略去次要因素,便于分析计算简化内容:杆件、支座、荷载、结点6、课程内容静力学:基本概念受力分析受力图研究物体平衡条件平衡方程及应用材料力学:杆件在外力作用下的强度(破坏的程度)、刚度(变形)、稳定性(针对细长压杆问题)结构力学:研究静定结构的内力、位移计算、超静定结构的内力分析7、8、9、第一章静力学1、静力学是研究物体平衡问题,物体变形对其研究结果影响不大所以看作是刚体力:力是物体间相互机械作用,由两个及两个以上物体间相互作用才会产生。

力系:作用在物体上的一群力。

(对物体而言)力的作用效应(三要素):力的大小、方向、作用点大小:力对物体强烈程度。

方向:方位,力的作用线;指向,箭头。

作用点:力与物体接触点,箭头指向作用点力是矢量(向量)单位:N、KN外效应:数度位置改变;内效应:形状改变(对刚体而言)刚体:在力的作用下不变形的物体。

建筑力学基础知识

建筑力学基础知识

建筑力学基础知识
建筑力学是一门研究建筑结构和材料如何应对内外部作用力和机械内力的工程学科,它研究建筑物的静态力学和振动力学。

它的基本目的是确定满足设计或结构要求的最佳构形,并使该结构具有最小的材料消耗量和最小的变形程度。

建筑力学关注建筑物结构的支撑以及绝缘性、抗震性和耐候性能,并研究结构受外部环境影响的方式。

建筑力学的基本原理主要是外力学,包括力学、地震学、气动学等。

力学包括力的向量运动学和变形学,它研究结构受外界力作用后的变形,强度及其稳定性问题。

地震学则是研究建筑物在地震作用下的变形、破坏及其稳定性的学科。

气动学则是研究建筑物在气动作用下的变形、破坏及其稳定性的学科,主要分析受风及液态压力等气体流体作用力。

建筑力学技术用于解决建筑物安全、牢固性以及延展性能评价、建筑物稳定性改善以及结构加固等问题。

它还使用一些工具,如结构仿真和结构计算机软件来计算结构的性能、稳定性和可靠性,以及设计结构并研究结构的可持续性。

建筑力学是建筑设计的基础,它也是工程所能利用的最重要的知识,它能够帮助工程师实现设计的目标,提高建筑结构的结构性、安全性和可延伸性等,从而实现设计最优化。

第1章建筑力学基本理论

第1章建筑力学基本理论

1.2.3 荷载效应组合
承载能力极限状态——
当结构内力超过其承载能力的状态
正常使用极限状态——
当结构的变形、裂缝或应力超过允许值的状态
1.3
简化 代替 实际
建筑结构的简化
结构计
三大要素
结构上的荷载 约束(支座、结点)的简化 计算长度的确定
图形
结构
算简图
1.3.1 结构简化的原则
1)符合建筑结构实际的受力情况 2)方便受力分析和计算,尽量做到简单易行 3)要满足一定的精度要求
雪荷载 风 荷 载 施工荷载
② — 雪荷载或
施工荷载 ③ — 风荷载
荷载示意图 永久
结构荷载简图
图中
构件自身和建筑构造层(楼面、
梁上为均布荷载
荷载
可变 荷载
顶棚、装饰面层等)的重力荷载
雪荷载或施工荷载,风荷载 人群、家具、设备等楼面使用活载
的①
图中的 ②和③
而柱为集中荷载
处理成均布荷载
(3)偶然荷载
3)静力荷载和动力荷载
(1)静力荷载 (2)动力荷载
逐渐增加的荷载,其大小和位置变化,不会引起显著的结构振动 荷载作用在结构上会引起显著的结构振动
结构的自重 及其它恒载
静力 荷载
动力设备(如吊车)所产生的荷载 以及地震荷载等
动力 荷载
1.2.2 常见的建筑荷载
1)结构自重 2)楼面均布活荷载 :人、家具、设备 3)风荷载:与当地基本风压、建筑物体型、高度、 地面粗糙度等因素有关 4)雪荷载
木梁 木屋架 屋架与柱不能有相对位移 但可发生微小的相对转动 预埋螺栓 铰结点
铰结点 屋架与柱不能有相对位移 但可发生微小的相对转动
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【最新整理,下载后即可编辑】建筑力学基础课程性质《建筑力学》,主要介绍力学的基本公理与概念,平面杆件的变形和内力计算以及结构内力计算及结构受力分析等方面的知识。

建筑力学第一章静力学第一节静力学基本概念及公理第二节约束和约束反作用力第三节汇交力系第四节力偶及力偶矩第五节平面一般力系第二章材料力学第一节材料力学主要研究对象的几何特征第二节杆件变形的基本形式第三节变形的内力第三章结构力学第一节杆件结构力学的研究对象和任务第二节杆件结构的计算简图第三节平面杆件结构的分类第四节体系的几何组成分析第五节几何组成分析的步骤和举例第六节静定结构和超静定结构第一章静力学教学目标:掌握静力学基本概念;了解约束和约束反作用力第一节静力学基本概念及公理静力学(statics)研究物体在力系作用下处于平衡的规律。

一、平衡的概念:平衡是指物体相对于地球静止或作匀速直线运动。

二、刚体的概念:刚体是在任何情况下保持其大小和形状不变的物体。

三、力的概念:力对物体的效应表现在物体运动状态的改变和变形。

力对物体的效应取决于以下三个要素:(1)力的作用点;(2)力的方向;(3)力的大小在国际单位制中:力的大小的单位为牛顿(N)。

目前工程实际中采用的工程单位制,其力的单位为公斤(kgf)。

1 kgf=9.80665 N四、静力学公理(一)公理一(二力平衡公理)作用于刚体上的两个力,使刚体处于平衡的必要与充分条件是:此两力大小相等、指向相反且沿同一作用线。

(二)公理二(加减平衡力系公理)在作用于刚体上的任意一个力系中,加上或去掉任何一个平衡力系,并不改变原力系对刚体的作用。

此公理只适用于刚体,而不适用于变形体。

(三)公理三(力的平行四边形法则)作用于物体上同一点的两个力,可以合成为作用于该点的一个合力,它的大小和方向由这两个力的矢量为邻边所构成的平行四边形的对角线来表示(见下左图)。

亦可用右下图所示的力三角形表示,并将其称为力三角形法则。

合力R与分力F1、F2的矢量表达式为R=F1+F2(四)公理四(作用和反作用定律)两物体间的相互作用力,总是大小相等,方向相反,作用线沿同一直线。

力总是成对出现的。

作用力与反作用力并非是作用在同一物体之上的,而是分别作用于不同的两个物体之上的。

(五)公理五(刚化公理)若可变形体在已知力系作用下处于平衡状态,则可将此受力体视为刚体,其平衡不受影响。

若变形体处于平衡状态,则作用其上的力系一定满足刚体静力学的平衡条件。

第二节约束和约束反作用力物体受到约束时,物体与约束之间相互作用着力,约束对被约束物体的作用力称为约束反力,简称约束反力或反力。

几种常见的约束类型:1.由柔软的绳索、链条或皮带构成的约束绳索类只能受拉,所以它们的约束反力是作用在接触点,方向沿绳索背离物体。

2.光滑接触面的约束(光滑指摩擦不计)约束反力作用在接触点处,方向沿公法线,指向受力物体。

3 光滑圆柱铰链约束用销钉连接两个钻有相同大小孔径的构件构成铰链约束。

如其中一构件作为支座被固定,则称为铰链支座。

铰链约束限制物体沿径向的位移,故其约束力在垂直于销钉轴线的平面内并通过销钉中心。

由于该约束接触点位置不能予先确定,约束力方向也不能确定,常以两个正交分量和表示在分析铰链约束力时,通常将销钉固连在某个构件上,简化成只有两个构件的结构。

4 球形铰链约束图(a)所示的圆球和球壳的连接构成球铰约束。

此类约束限制构件的球心沿任何方向的位移。

其约束力通过球心,但方向不能确定,常用图(b)所示的三个正交分量表示。

5 锟轴铰链支座该约束由在铰链支座与光滑支承面间安装几个辊轴构成,亦称辊轴支座约束。

其构造及简图如下图(a)(b)所示。

滚动支座的约束性质与光滑面约束相同,其约束力垂直于支承面,通过销钉中心,如图(c)所示。

6.双铰链刚杆连接双铰链刚杆(不计自身重量)连接上图所示。

这种刚杆(直杆或弯杆)常被用来作为拉杆或支撑,而借两端的铰链连接两个物体(在平面情形中用轴线彼此平行的两个圆柱铰链。

上图中双铰刚杆BC对于物体A的反力是由铰链C传至铰链刀,因此它必须同时通过铰链B和C的中心。

为证实这一结论,只须单独考察双铰刚杆本身的平衡,它是仅受两个力作用而平衡的物体(二力构件),这两个力分别作用在两铰链的中心,而根据公理一,这两个力的作用线必须沿着这两个铰链中心的连线。

显然,与这两个力相应的反作用力,即刚杆BC对于两端所连物体的反力,必定也是沿这连线。

刚体既能受拉又能受压,因此,双铰刚杆连接能同时起前面第一类与第二类简单约束的作用,既能受拉,又能受压,这样的约束称为双面约束。

当然,单个铰链也是双面约束。

在实践中,如果不能事先肯定约束力是拉力还是压力,那末为了确保平衡,就得用双铰刚杆代替有关绳索或支承面。

如何将实践中所遇到的约束化简并估计其反力的特征,这是一个重要的,然而有时也可能是相当困难的问题。

必须具体地分析每个问题的条件。

但是,对于一般的问题,上述几种约束模型已有足够普遍的适用性。

7.分离体和受力图确定物体受了几个力,每个力的作用位置和方向,这一分析过程称为物体的受力分析。

为了清晰地表出物体(即研究对象)的受力情况,需将其从约束中分离出来,单独画出它的简图,这一步骤称为解除约束、取分离体。

在分离体上表示物体受力情况的简图称为受力图。

画受力图的步骤可概括如下:★根据题意选取研究对象,并用尽可能简明的轮廓把它单独画出,即取分离体。

★画出作用在分离体上的全部主动力。

★根据各类约束性质逐一画出约束力例题:第二章材料力学第一节材料力学主要研究对象的几何特征材料力学所研究的主要构件从几何上多抽象为杆,且大多数抽象为直杆。

第二节杆件变形的基本形式作用在杆上的外力是多种多样的,杆件相应产生的变形也有各种形式。

经过分析,杆的变形可归纳为四种基本变形的形式,或是某几种基本变形的组合。

四种基本变形的形式计有:1.拉伸或压缩(tension and compression) 这类变形是由大小相等、方向相反,作用线与杆件轴线重合的一对力所引起的,表现为杆件的长度发生伸长或缩短,杆的任意两横截面仅产生相对的纵向线位移。

图(a)表示一简易起重吊车,在载荷P的作用下,AC杆承受拉伸而BC杆承受压缩,图(b)、(c)。

此外起吊重物的吊索、桁架结构中的杆件、千斤顶的螺杆等都属于拉伸或压缩变形。

2.剪切(shear) 这类变形是由大小相等、方向相反、作用线垂直于杆的轴线且距离很近的一对横力引起的,其变形表现为杆件两部分沿外力作用方向发生相对的错动。

图(a)表示一铆钉连接,铆钉穿过钉孔将上下两板连接在一起,板在拉力P作用下,而铆钉本身承受横向力产生剪切变形,(图(b))。

机械中常用的连接件如键、销钉、螺栓等均承受剪力变形。

3.扭转(torsion) 这类变形是由大小相等,转向相反,两作用面都垂直于轴线的两个力偶引起的,变形表现为杆件的任意两横截面发生绕轴线的相对转动(即相对角位移),在杆件表面的直线扭曲成螺旋线。

左图(a)所示的汽车转向轴AB在运动时发生扭转变形。

此外汽车传动轴、电机与水轮机的主轴等,都是受扭转的杆件。

4.弯曲(bending) 这类变形是由垂直于杆件的横向力,或由作用于包含杆轴的纵向平面内的一对大小相等、转向相反的力偶所引起的,表现为杆的轴线由直线变为曲线。

右图(a)所示的机车轮轴所产生的变形即为弯曲变形。

工程上,杆件产生弯曲变形是最常遇到的,如桥式起重机的大梁、各种传动轴、船舶结构中的肋骨等都属于弯曲变形杆件。

机械中的零部件大多数同时承受几种基本变形,例如机床的主轴工作时承受弯曲、扭转与压缩三种基本变形的组合,钻床主柱同时承受拉伸与弯曲变形的组合,这种情况称为组合变形。

我们先依次分别讨论杆件在四种基本变形下的强度和刚度,然合再讨论组合变形时的强度和刚度问题。

第三节变形和内力荷载和支座反力都是作用在构件外部的力,称为外力,这是的平衡就是外力之间的相互平衡。

微笑的变形既是不容易察觉有可能是正常工作所允许的,过大的变形就是构件安全工作所不允许的了。

建筑结构的构件在工作时,变形情况一般归纳为下面几种形式:一、轴向拉伸和压缩变形1.1、轴向拉伸与压缩的概念工程范例:吊车梁的拉杆、吊运重物的钢丝绳、绗架杆件、柱受力特征:作用于杆上的外力或其合力的作用线沿着杆件的轴线。

变形特征:杆件主要产生轴向伸长(或缩短),受力简图如图1所示。

图1轴向拉伸与压缩受力和变形示意图1.2、轴向拉伸和压缩时的内力、轴力图(1)内力的概念:物体内部一部分与另一部分的相互作用力,构件受到外力作用的同时,在内部产生相应内力(外力作用引起的内力改变量)。

在外力作用下构件发生变形,构件内部相邻各质点间沿力作用方向的相对位置发生变化,同时构件各质点之间产生附加内力(简称内力),其作用是力图使各质点恢复其原始位置。

(2)内力的计算方法—截面法:截面法是材料力学研究内力的一个基本方法,其步骤如下:a )截开:在需求内力的截面处,将构件假想截分为两部分;b )代替:任取一部分为研究对象,弃去另一部分,并以内力代替弃去部分对留下部分的作用;c )平衡:对留下部分建立平衡方程,求出该截面的内力。

(3)拉压杆横截面上的内力特点:其作用线与杆轴线重合,称为轴力,用N 表示。

轴力N 的正负号规定,以拉力为正,压力为负。

(4)轴力图:表示沿杆件轴线各横截面上轴力变化规律的图线,轴力图以平行于杆轴线的x 轴为横坐标,表示横截面位置,以N 轴为纵坐标,表示横截面上的轴力值。

二、剪切变形2.1 工程中的剪切问题在构件连接处起连接作用的部件,称为连接件。

例如:螺栓、铆钉、键、销等。

连接件虽小,起着传递载荷的作用。

受力特点:作用在构件两个相对侧面的横向外力的合力大小相等、方向相反、作用线相距很近。

变形特点:构件沿两组平行力系的交界面发生相对错动。

2.2 剪切的实用计算根据构件的破坏可能性,采用能反映受力基本特征,并简化计算的假设,计算其名义应力,然后根据直接试验的结果,确定其相应的许用应力,以进行强度计算。

(1)剪切的实用计算剪切面、剪力、剪应力名义切应力:假定剪切面上的切应力均匀分布,可得切应力t 为:AQ =τ 相应剪切强度条件为:][ττ≤=AQ 式中: Q 为剪切面上的内力—剪力; A 为剪切面的面积;][τ为许用切应力。

(2)挤压的实用计算挤压:构件局部面积的承压现象。

挤压力:在接触面上的压力,记P 。

挤压面积:接触面在垂直P 方向上的投影面的面积。

假设挤压应力在有效挤压面上均匀分布。

挤压强度条件为:][bs bsbs A P σσ≤=: 三、弯曲变形工程实际中的弯曲问题(1)弯曲的概念弯曲:在通过轴线的平面内,杆受垂直于轴线的外力或外力偶的作用时,轴线弯曲成为曲线,这种受力形式称为弯曲。

梁:以弯曲变形为主的构件通常称为梁。

相关文档
最新文档