三点式正弦波振荡器实验报告
正弦波振荡器实验报告(高频电路)
高频电路原理与分析实验报告组员:学号:班级:电子信息工程实验名称:正弦波振荡器指导教师:一.实验目的1.掌握电容三点式LC振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能;2.掌握LC振荡器幅频特性的测量方法;3.熟悉电源电压变化对振荡器振荡幅度和频率的影响;4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。
二.实验内容V ,1.用示波器观察LC振荡器和晶体振荡器输出波形,测量振荡器输出电压峰-峰值p p并以频率计测量振荡频率;2.测量LC振荡器的幅频特性;3.测量电源电压变化对振荡器的影响;4.观察并测量静态工作点变化对晶体振荡器工作的影响。
三、实验步骤1、实验准备插装好正弦振荡器与晶体管混频模块,接通实验箱电源,此时模块上电源指示灯和运行指示灯闪亮。
用鼠标点击显示屏,选择“实验项目”中的“高频原理实验”,然后再选择“振荡器实验”中的“LC振荡器实验”,显示屏会显示出LC振荡器原理实验图。
说明:电路图中各可调元件的调整,其方法是:用鼠标点击要调整的原件,模块上对应的指示灯点亮,然后滑动鼠标上的滑轮,即可调整该元件的参数。
利用模块上编码器调整与鼠标调整其效果完全相同。
用编码器调整的方法是:按动编码器,选择要调整的元件,模块上对应的指示灯点亮,然后旋转编码器旋钮,即可调整其参数。
我们建议采用鼠标调整,因为长时间采用编码器调整,可能会造成编码器损坏。
本实验箱中,各模块可调元件的调整,其方法与此完全相同,后面不再说明。
2、LC振荡实验(为防止晶体振荡器对LC振荡器的影响,应使晶振停振,即调2W3使晶振停振。
)(1)西勒振荡电路幅频特性测量用铆孔线将2P2与2P4相连,示波器接2TP5,频率计与2P5相连。
开关2K1拨至“p”(往下拨),此时振荡电路为西勒电路。
调整2W4使输出幅度最大。
(用鼠标点击2W4,且滑动鼠标滑轮来调整。
)调整2W2可调整变容管2D2的直流电压,从而改变变容管的电容,达到改变振荡器的振荡频率,变容官上电压最高时,变容管电容最小,此时输出频率最高。
正弦波振荡器实验报告
正弦波振荡器实验报告姓名:学号:班级:一、实验目的1.掌握LC三点式振荡电路的基本原理,掌握LC电容反馈式三点振荡电路设计及电参数计算。
2.掌握振荡回路Q 值对频率稳定度的影响。
3.掌握振荡器反馈系数不同时,静态工作电流IEQ对振荡器起振及振幅的影响。
二、实验电路图三、实验内容及步骤1. 利用EWB软件绘制出如图1.7的西勒振荡器实验电路。
2. 按图设置各个元件参数,打开仿真开关,从示波器上观察振荡波形,读出振荡频率,并做好记录3. 改变电容C 6的值,观察频率变化,并做好记录。
填入表1.3中。
4.改变电容C4的值,分别为0.33μF和0.001μF,从示波器上观察起振情况和振荡波形的好坏,并做好记录。
填入表1.3中。
5.将C4的值恢复为0.033μF,分别调节Rp 在最大到最小之间变化时,观察振荡波形,并做好记录。
填入表1.4中。
四、暑假记录与数据处理1、电路的直流电路图和交流电路图分别如下:(1):直流通路图(2)交流通路图2、改变电容C 6的值时所测得的频率f的值如下:3、C4 0.033μF 0.33μF 0.01μFC6(pF)270 470 670 270 470 670 270 470 670F(Hz)494853.5 403746.8 372023.8 32756.8 32688.2 32814.4 486357.7 420875.4 373357.2(1)、当C4=0.033uF时:C6=270pF时,f=1/T=1000000/2.0208=494853.5HZC6=470pF 时,f=1/T=1000000/2.4768=403746.8HZC6=670pF 时,f=1/T=1000000/2.6880=372023.8HZ(2)、当C4=0.33uF时:C6=270pF时,f=1/T=1000000/30.5280=32756.8HC6=470uF时,f=1/T=1000000/30.5921=32688.2HZC6=670uF时,f=1/T=1000000/30.4744=32814.4HZ(3)、C4=0.01时:当C6=270uF时,f=1/T=1000000/2.0561=486357.7HZ当C6=470uF时,f=1/T=1000000/2.3760=420875.4HZ当C6=670uF时,f=1/T=1000000/2.6784=373357.2HZ2、将C4的值恢复为0.033μF,分别调节Rp 在最大到最小之间变化时的频率和波形如下:Rp(KΩ)50 40 30 20 10 0F(HZ)403746.8 416666.7 420875.4 425170.1 422582.8 529553.3 (1)、当Rp=50k时,f=1/T=1000000/2.4768=403746.8HZ(2)、当Rp=40k时,f=1/T=1000000/2.4000=416666.7HZ(3)、当Rp=30k时,f=1/T=1000000/2.3760=420875.4HZ(4)、当Rp=20k时,f=1/T=1000000/2.3520=425170.1HZ(5)、当Rp=10k时,f=1/T=1000000/2.3664=422582.8HZ(6)、当Rp=0k时,f=1/T=1000000/2.3280=529553.3HZ总结:由表一可知,当C4较大(既为0.33PF)时,不管C6如何变化,电路所输出的波形的频率比较稳定,而且没有失真。
三点式正弦波振荡器(高频电子线路实验报告)
三点式正弦波振荡器(高频电子线路实验报告)摘要本实验采用三点式正弦波振荡器电路,通过实验验证了三点式正弦波振荡器的设计和实际应用,其中包括三点式正弦波振荡器的基本原理、电路结构和工作特性等。
实验结果表明,通过合理的电路设计和优化,可以得到高精度、稳定性好的正弦波振荡器,为工程应用提供了重要的参考。
关键词:三点式正弦波振荡器、电路结构、工作特性一、实验目的1.熟悉三点式正弦波振荡器的基本原理和电路结构;3.通过实验验证三点式正弦波振荡器的设计和实际应用。
二、实验原理三点式正弦波振荡器是一种常用的基本电路,它通过正反馈作用在电路中产生自激振荡现象,从而输出对称的正弦波信号。
其基本原理如下:当输出正弦信号幅度变动时,输入放大器的反相输出端和反馈电容之间的电压也会变化,导致反馈放大器的增益也会随之变化,最终导致输出正弦波的幅度稳定在一定的水平上。
同时,在电路中增加合理的RC网络,可以使三点式正弦波振荡器输出的波形更加准确、稳定。
其中,- OA1, OA2分别为运算放大器;- R1, R2, R3分别为电阻,C1, C2分别为电容,L为电感;- 输出信号可以从OA1反相输出端或者OA2非反相输出端输出。
三、实验过程本实验采用EDA软件进行电路仿真和搭建,整个实验过程分为以下几个步骤:1.根据电路原理图,使用EDAW工具将三点式正弦波振荡器的电路搭建出来;2.依据实验材料,按照电路图要求选择合适的R、C、L值;3.将搭建好的电路连接上电源(+12V),开启仿真。
4.在电路仿真过程中,通过示波器观察输出的正弦波形,并分析波形的稳定性和频率响应等特性;5.修改电路参数,观测输出波形的变化情况,并记录相应的数据;四、实验结果通过实验,在合适的电路参数和电源电压下,三点式正弦波振荡器的输出波形为一定幅值的正弦波。
图2 实验得到的三点式正弦波振荡器输出波形五、实验分析通过本实验,我们可以看出三点式正弦波振荡器具有以下特点:1.输出波形准确、稳定。
正弦波振荡器(LC振荡器和晶体振荡器)实验
正弦波振荡器(LC 振荡器和晶体振荡器)实验一、实验目的1.掌握电容三点式LC 振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能; 2.掌握LC 振荡器幅频特性的测量方法;3.熟悉电源电压变化对振荡器振荡幅度和频率的影响;通过实验进一步了解调幅的工作原理。
4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。
二、实验仪器1.100M 示波器 一台2.高频信号源 一台3.高频电子实验箱 一套三、实验电路原理1.基本原理振荡器是指在没有外加信号作用下的一种自动将直流电源的能量变换为一定波形的交变振荡能量的装置。
正弦波振荡器在电子技术领域中有着广泛的应用。
在信息传输系统的各种发射机中,就是把主振器(振荡器)所产生的载波,经过放大、调制而把信息发射出去的。
在超外差式的各种接收机中,是由振荡器产生一个本地振荡信号,送入混频器,才能将高频信号变成中频信号。
振荡器的种类很多。
从所采用的分析方法和振荡器的特性来看,可以把振荡器分为反馈式振荡器和负阻式振荡器两大类。
此实验只讨论反馈式振荡器。
根据振荡器所产生的波形,又可以把振荡器分为正弦波振荡器与非正弦波振荡器。
此实验只介绍正弦波振荡器。
常用正弦波振荡器主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成,这就是反馈振荡器。
按照选频网络所采用元件的不同,正弦波振荡器可分为LC 振荡器、RC 振荡器和晶体振荡器等类型。
(1)反馈型正弦波自激振荡器基本工作原理以互感反馈振荡器为例,分析反馈型正弦波自激振荡器的基本原理,其原理电路如图2-1所示。
b V bE cE -1L 2L f V bV '+-图 2-1反馈型正弦波自激振荡器原理电路当开关K 接“1”时,信号源b V 加到晶体管输入端,构成一个调谐放大器电路,集电极回路得到了一个放大了的信号F V 。
当开关K 接“2”时,信号源b V 不加入晶体管,输入晶体管是F V 的一部分b V '。
实验三 正弦振荡实验
实验三 正弦振荡实验一、 实验目的1、 掌握晶体管工作状态,反馈大小,负载变化对振荡幅度与波形的影响。
2、掌握改进型电容三点式正弦波振荡器的工作原理及振荡性能的测量方法。
3、研究外界条件变化对振荡频率稳定度的影响。
4、比较LC 振荡器和晶体振荡器频率稳定度,加深对晶体振荡器频率稳定为何高的理解。
二、 实验原理与线路正弦波振荡器是指振荡波形接近理想正弦波的振荡器,这是应用非常广泛的一类电路,产生正弦信号的振荡电路形式很多,但归纳起来,不外是RC 、LC 和晶体振荡器三种形式,在本实验中,我们研究的主要是LC 三端式振荡器及晶体振荡器。
LC 三点式振荡器的基本电路如图1所示:根据相位平衡条件,图中构成振荡电路的三个电抗中间,X 1、X 2 必须为同性质的电抗,X 3 必须为异性质的电抗,且它们之间应满足下列关系式: X 3 = -(X 1+X 2)这就是LC 三端式振荡器相位平衡条件的判断准则。
若X 1 和X 2 均为容抗,X 3 为感抗,则为电容三端式振荡电路;若X 1 和X 2 均为感抗,X 3 为容抗,则为电感三端式振荡器。
下面以电容三端式振荡器为例分析其原理。
1、电容三端式振荡器共基电容三端式振荡器的基本电路如图2 所示。
图中C3 为耦合电容。
由图可见:与发射极连接的两个电抗元件为同性质的容抗元件C1 和C2;与基极连接的为两个异性质的电抗元件C2 和L ,根据前面所述的判别准则,该电路满足相位条件。
若要它产生正弦波,还须满足振幅,起振条件,即:A O ·F >1。
式中A O 为电路刚起振时振荡管工作状态为小信号时的电压增益;F 是反馈系数。
2、振荡管工作状态对振荡器性能的影响对于一个振荡器,当其负载阻抗及反馈系数F 已经确定的情况,静态工作点的位置对振荡器的起振以及稳定平衡状态有着直接的影响,如图3中(a )、(b )所示。
图 1 LC 三点式振荡器的等效电路 图2 考毕兹振荡器图3 晶体管工作状态对性能的影响图3(a )工作点偏高,振荡管工作范围易进入饱和区,输出阻抗的降低将会使振荡波形严重失真,严重时,甚至使振荡器停振。
电子电路综合实验-LC正弦波振荡器报告
LC 正弦波振荡(虚拟实验)1、 电容三点式(1)121100,400,10C nF C nF L mH ===示波器频谱仪(2)121100,400,5C nF C nF L mH ===示波器频谱仪(3)121100,1,5C nF C F L mH μ===示波器频谱仪数据表格: (C1, C2, L1) (C 1,C 2,L 1) O U •i U •增益A 相位差 谐振频率f 0 测量值 理论值 测量值 理论值 (100nF,400nF,10mH )5.972V1.486V44.0191806.025kHz5.627(100nF,400nF,5mH ) 4.698V 1.161V 4 4.047 180 7.995 kHz 7.958 (100nF,1uF,5mH )7.116V711.458mV1010.0021807.897 kHz7.465实验数据与理论值间的差异分析:增益差别不大但谐振频率差别较大, 主要是由于读数是的精度有限造成的。
由于游标以格为单位, 因此读数时选取的幅值最大的点可能与实际有差, 因而谐振频率的测量也有误差。
2、 电感三点式(1)1225,100,200L mH L H C nF μ===示波器频谱仪(2)1225,100,100L mH L H C nF μ===示波器频谱仪(3)1222,100,100L mH L H C nF μ===示波器频谱仪数据表格:(L1, L2, C2)(L1,L2,C2)OU•(V)iU•(mV)增益A 相位差谐振频率f0测量值理论值测量值(kHz)理论值(kHz)(5mH,100uH,200nF) 4.497V 89.938mV 50.001 50 180 5.039kHz 4.983 (5mH,100uH,100nF) 4.504V 90.070 mV 50.005 50 180 7.010kHz7.047(2mH,100uH,100nF) 4.483V 224.150mV 20.000 20 180 10.951kHz10.983实验数据与理论值间的差异分析:误差均较小, 主要由于电路不够稳定以及读数精度造成。
电容三点式lc振荡器实验报告
电容三点式lc振荡器实验报告电容三点式LC振荡器实验报告引言:本实验旨在通过搭建电容三点式LC振荡器,研究其原理和特性。
振荡器是电子电路中常见的一种重要元件,具有广泛的应用,如在无线电通信、射频电路和频率合成器等领域中。
通过实验,我们可以深入了解振荡器的工作原理和参数调节对振荡频率的影响。
实验器材:1. 电源:提供所需的直流电源。
2. 电容:用于构建振荡器电路。
3. 电感:与电容串联构成谐振回路。
4. 变阻器:用于调节振荡器的工作频率。
5. 示波器:用于观察振荡器输出波形。
实验步骤:1. 按照给定的电路图,搭建电容三点式LC振荡器电路。
2. 将电源连接到电路中,调节变阻器使得振荡器开始工作。
3. 使用示波器观察振荡器的输出波形,并记录相关数据。
4. 调节变阻器,观察振荡器输出波形的变化,记录相关数据。
实验结果与分析:在实验中,我们通过调节变阻器,观察到了振荡器的输出波形的变化。
当变阻器的阻值较小时,振荡器的输出波形呈现正弦波,并且频率较低。
随着变阻器阻值的增大,振荡器的输出波形逐渐变为方波,并且频率逐渐增加。
这是因为在振荡器电路中,电容和电感构成了一个谐振回路。
当谐振回路的电容和电感参数满足一定的条件时,会产生自激振荡。
在振荡器工作时,电容和电感会不断地储存和释放能量,形成振荡。
变阻器的作用是调节振荡器的工作频率。
当变阻器阻值较小时,电流通过谐振回路的速度较慢,导致振荡频率较低。
而当变阻器阻值较大时,电流通过谐振回路的速度较快,导致振荡频率较高。
通过实验观察到的输出波形变化,可以看出振荡器的频率与变阻器的阻值之间存在一定的关系。
这为我们在实际应用中调节振荡器的频率提供了一定的参考。
实验总结:通过本次实验,我们成功搭建了电容三点式LC振荡器,并观察到了振荡器输出波形的变化。
实验结果验证了振荡器的工作原理和参数调节对振荡频率的影响。
振荡器作为一种重要的电子元件,在无线电通信和射频电路等领域中具有广泛的应用。
电容三点式lc振荡器实验报告
电容三点式lc振荡器实验报告电容三点式LC振荡器实验报告实验目的:本实验旨在通过搭建电容三点式LC振荡器,探究其工作原理和特性,并对其进行性能测试。
实验器材:1. 电容三点式LC振荡器电路板2. 信号发生器3. 示波器4. 电压表5. 电感6. 电容7. 电阻8. 电源实验步骤:1. 按照电路图连接电容三点式LC振荡器电路板,并接入信号发生器和示波器。
2. 调节信号发生器的频率和幅度,观察振荡器的输出波形,并记录波形的频率和幅度。
3. 测量电容三点式LC振荡器的电压、电流和频率的关系,绘制相关的特性曲线。
4. 调节电容或电感的数值,观察振荡器的频率和幅度的变化,并记录数据。
实验结果:通过实验,我们观察到电容三点式LC振荡器在一定频率范围内能够产生稳定的正弦波输出。
随着频率的增加,输出波形的振幅也随之增大,直到达到共振频率时振幅最大。
在共振频率附近,振荡器的输出波形非常稳定,可以作为稳定的信号源使用。
此外,我们还发现当调节电容或电感的数值时,振荡器的共振频率也会相应地发生变化。
这表明电容三点式LC振荡器的频率特性受到电容和电感数值的影响,可以通过调节这些参数来实现对振荡器频率的调节。
结论:通过本实验,我们深入了解了电容三点式LC振荡器的工作原理和特性。
我们发现该振荡器能够稳定产生正弦波输出,并且具有较好的频率调节性能。
这些特性使得电容三点式LC振荡器在实际应用中具有广泛的用途,例如在通信、测量和控制系统中都有着重要的作用。
希望通过本实验,能够增进同学们对振荡器的理解,为今后的学习和研究打下良好的基础。
实验2 正弦波振荡器(LC振荡器和晶体振荡器)
实验2 正弦波振荡器(LC振荡器和晶体振荡器)一.实验目的1.掌握电容三点式LC振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能;2.掌握LC振荡器幅频特性的测量方法;3.熟悉电源电压变化对振荡器振荡幅度和频率的影响;4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。
二.实验内容1.用示波器观察LC振荡器和晶体振荡器输出波形,测量振荡器输出电压峰-峰值,并以频率计测量振荡频率;2.测量LC振荡器的幅频特性;3.测量电源电压变化对振荡器的影响;4.观察并测量静态工作点变化对晶体振荡器工作的影响。
三.实验步骤1.实验准备插装好LC振荡器和晶体振荡器模块,接通实验箱电源,按下模块上电源开关,此时模块上电源指示灯点亮。
2.LC 振荡实验(为防止晶体振荡器对LC振荡器的影响,应使晶振停振,即将3W03顺时针调到底。
)(1)西勒振荡电路幅频特性的测量3K01拨至LC振荡器,示波器接3TP02,频率计接振荡器输出口3P02。
调整电位器3W02,使输出最大。
开关3K05拨至“P”,此时振荡电路为西勒电路。
四位拨动开关3SW01分别控制3C06(10P)、3C07(50P)、3C08(100P)、3C09(200P)是否接入电路,开关往上拨为接通,往下拨为断开。
四个开关接通的不同组合,可以控制电容的变化。
例如开关“1”、“2”往上拨,其接入电路的电容为10P+50P=60P。
按照表2-1电容的变化测出与电容相对应的振荡频率和输出电压(峰-峰值V P-P),并将测量结果记于表中。
表2-1根据所测数据,分析振荡频率与电容变化有何关系,输出幅度与振荡频率有何关系,并画出振荡频率与输出幅度的关系曲线。
注:如果在开关转换过程中使振荡器停振无输出,可调整3W01,使之恢复振荡。
(2)克拉泼振荡电路幅频特性的测量将开关3K05拨至“S”,振荡电路转换为克拉泼电路。
按照上述(1)的方法,测出振荡频率和输出电压,并将测量结果记于表2-1中。
高频电容三点式正弦波振荡器课程设计报告
目录摘要. (I)1绪论 (1)2.1反馈振荡器的原理 (2)2.1.1原理分析 (2)2.1.2平衡条件 (3)2.1.3起振条件 (3)2.1.4稳定条件 (4)2 .2电容三点式振荡器 (4)3设计思路及方案 (6)3.1总体思路 (6)3.2设计原理 (6)3.3单元设计 (7)3.3.1电容三点式振荡单元 (7)4电路仿真与实现 (10)4.1基于 NI.Multisim.V10.0.1软件的电路仿真 (10)5心得体会 (14)摘要在社会信息化程度越来越高的背景下,通讯工具在我们的生活中扮演了越来越重要的角色。
高频信号发生器主要用来向各种电子设备和电路提供高频能量或高频标准信号,以便测试各种电子设备和电路的电气特性。
高频信号发生器主要是产生高频正弦振荡波,故电路主要是由高频振荡电路构成。
振荡器的功能是产生标准的信号源,广泛应用于各类电子设备中。
所以,振荡器是电子技术领域中最基本的电子线路,也是从事电子技术工作人员必须要熟练掌握的基本电路。
本次课设要求制作高频电容三点式正选拨振荡器,采用晶体三极管或集成电路,场效应管构成正弦波振荡器,达到任务书所要求的目标。
并介绍了设计步骤,比较了各种设计方法的优缺点,总结了不同振荡器的性能特征。
使用实验要求的电源和频率计进行验证,实现了设计目标。
关键字:通信高频信号电容正弦波振荡器1绪论在社会信息化程度越来越高的背景下,通讯工具在我们的生活中扮演了越来越重要的角色。
振荡器简单地说就是一个频率源,一般用在锁相环中能将直流电转换为具有一定频率交流电信号输出的电子电路或装置。
详细说就是一个不需要外信号激励、自身就可以将直流电能转化为交流电能的装置。
一般分为正反馈和负阻型两种。
所谓“振荡”,其涵义就暗指交流,振荡器包含了一个从不振荡到振荡的过程和功能。
能够完成从直流电能到交流电能的转化,这样的装置就可以称为“振荡器”。
一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。
实验三LC正弦波振荡器
压增益, 为反馈系数。
实验三 LC正弦波振荡器
相位起振条件为: o 2 s c L C 1 C 2 C 1 C 2 L g ig L 0
振幅起振条件为: gmgL (1C C 1 2 )gi(1o 2sc1LC 1)
g L R 1 L ( R L R L //R p ) ,g i R 1 i( R i R E //r e r e ) ,C 2 C 2 C b e
(1)改变CT电容,当分别接C9、C10、C11时,记录相应的频率值, 并填入表。
(2)改变CT电容,当分别接C9、C10、C11时,用示波器测量振荡 电压的峰峰值VP-P,并填入表
(3)比较起振前后工作点的变化,其中起振前 VBEQ=VBQ-VEQ 起振后为VBE0=VB0-VE0
实验三 LC正弦波振荡器
3、测试当C、 不同时,起振点振幅与工作电流IEQ的关系 (R=110k )
实验三 LC正弦波振荡器
3、测试当C不同时,起振点振幅与工作电流IEQ的关系 (R=110k )
实验三 LC正弦波振荡器
4、回路的Q值、改变晶体管的静态电流值,对振荡频率的影响 实验条件:C T 1 0 0 p F ,C C 1 0 0 1 2 0 0 、 I E Q 3 m A时。改变L两端的并 联电阻R,使其分别为 ,分别记录电路的振荡频率,并填入表 3-3。(注意:频率计后几位跳动变化的情况)
实验三 LC正弦波振荡器
六、实验报告
1、画出实验电路图及其交流等效电路。 2、整理实验数据、分析实验结果,比较LC振荡器与晶体振荡
器的优缺点。 3、以IEQ为横轴,输出电压峰值VP-P为纵轴,将不同 C C 值下
测得的三组数据,在同一坐标纸上绘制成曲线。 4、回答思考题1、2、5。
实验报告四.改进式电容三点式正弦波振荡器软件仿真
实验报告四改进型电容三点式正弦波振荡器仿真班级:通信162班姓名:曾华兆学号:6110116078 实验日期:2018.12.3一、实验目的1、掌握改进型电容三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。
2、通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。
3、研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。
二、实验内容1、熟悉克拉泼振荡器与西勒振荡器模块各元件及其作用。
三、实验原理与分析1.克拉泼振荡器仿真克拉泼振荡器仿真电路如图1所示。
与普通电容三点式振荡电路比较,仅是在谐振回路电感支路中串接了一个电容C4.由于C4<<C2,C4<<C3,C2、C3可以忽略不计,谐振回路的总电容C≈C4,因此振荡器的振荡频率f可近似为f0≈12π√LC4由此可见,比晶体管极间电容大很多的C2、C3对振荡频率f0的影响显著减小,故与C2联的晶体管极间电容对振荡频率f0的影响也就很小,振荡频率的稳定度也就提高。
但接入C4后,晶体管的等效负载减小,放大器的放大倍数下降,振荡器输出信号幅值减小,且C4愈小,放大倍数愈小。
若C4过小,振荡器将因不满足振幅起振条件而停止振荡。
该振荡电路仅适用于频率调节范围很小的振荡器。
运行仿真,用频率计检测的振荡器输出信号频率如图2所示,用示波器检测的振荡器输出信号电压波形如图3所示,用瞬态分析功能检测的振荡器起振瞬间的输出信号电压波形如图4所示。
依据图1所示的电路参数,理论估算振荡频率约为15.92MHz,仿真检测频率约为16.658Mhz。
这是由于理论估算忽略了晶体管极间电容和C2、C3对振荡频率的影响以及测量误差所致。
另外,为了满足高频振荡需要、减小误差,可双击品体管电路符号,单击其数值下拉菜单中的编辑模型选项,查看晶体管的电路模型技术参数,选择极间电容较小的管型。
图1图2图3图42.西勒振荡器仿真在图1所示的克拉泼振荡电路中,C4取值减小会导致放大器的放大倍数减小,为了改善这个问题,有西勒( Seiler)振荡器仿真电路如图5所示。
三点式正弦波振荡器实验数据
三点式正弦波振荡器实验数据引言三点式正弦波振荡器实验是电子工程学中的一项基础实验,用于研究电路中的振荡现象。
本文将详细介绍该实验的原理、实验装置、实验过程和实验数据分析,并对实验结果进行深入探讨。
一、实验原理正弦波振荡器是一种能够产生稳定频率和振幅的信号源。
它由三个主要部分组成:放大器、反馈网络和频率稳定电路。
1.1 放大器在正弦波振荡器中,放大器起到放大信号的作用。
放大器通常采用共射放大器或共基放大器的形式,工作在其放大区间。
1.2 反馈网络反馈网络是正弦波振荡器中的关键组成部分,它将部分输出信号反馈到放大器的输入端,从而形成正反馈回路,使得系统产生振荡。
1.3 频率稳定电路频率稳定电路用于保持振荡器的输出频率稳定。
最常见的频率稳定电路是RC网络,通过调节电容或电阻的值可以改变振荡器的频率。
二、实验装置本实验使用的实验装置主要包括示波器、信号发生器和三点式正弦波振荡器电路。
2.1 示波器示波器用于显示电路的波形,是本实验中不可缺少的仪器之一。
示波器可以测量电压和时间的关系,并以波形的形式显示出来。
2.2 信号发生器信号发生器用于产生稳定的正弦波信号,作为振荡器电路的输入信号。
信号发生器具有可调节频率和振幅的功能,可以为实验提供所需的输入信号。
2.3 三点式正弦波振荡器电路三点式正弦波振荡器电路是本实验的核心部分。
它由放大器、反馈网络和频率稳定电路组成,可以产生稳定的正弦波信号。
三、实验过程3.1 实验准备首先,将示波器和信号发生器连接起来,并根据实验要求设置信号发生器的输出频率和振幅。
3.2 搭建电路根据实验指导书提供的电路图,搭建三点式正弦波振荡器电路。
确保电路连接正确并牢固。
3.3 调节电路打开示波器和信号发生器,逐步调节电路,使得示波器上显示出稳定的正弦波波形。
根据实验指导书中给出的方法,调节放大器、反馈网络和频率稳定电路的参数。
3.4 记录实验数据在调节电路的过程中,用示波器测量和记录各部分电路的电压和频率值。
《高频电子线路》正弦波振荡器实验报告
《高频电子线路》正弦波振荡器实验报告课程名称:高频电子线路实验类型:验证型实验项目名称:正弦波振荡器一、实验目的和要求通过实验,学习克拉泼振荡器的工作原理、电路组成和调试方法,学习电容三点式振荡器的设计方法,利用Multisim仿真软件进行仿真分析实验。
二、实验内容和原理(一)实验原理1、正弦振荡器的基本原理;2、产生等幅震荡的两个基本条件:相位条件和幅度条件)1 利用正反馈将电源接入瞬间的一个激励不断通过谐振网络滤波放大得到一个只含有一个频率成分的正弦。
2 振幅条件:环路增益在放大倍率为1时的偏导数(对输出电压)小于0.相位条件:谐振频率的信号输出相位为2π整数倍(二)实验内容(1)设计振荡频率为9.5MHz的克拉泼振荡器。
(2)用Multisim进行仿真,用双踪示波器观察振荡器器输出信号波形,并用频率计测量振荡频率,并与理论计算结果进行对比。
(3)改变电阻R3的阻值,用电压表测量振荡管的直流静态工作电压。
三、主要仪器设备计算机、Multisim仿真软件、双踪示波器、频率计、电压表、直流电源。
四、操作方法与实验步骤及实验数据记录和处理1、设计频率为9.5MHz的克拉泼振荡器电路图。
C11000pF R212kΩR12kΩL110mHR4100ΩXSC3ABExt Trig++__+_L23.2uHC41000pFR310kΩKey=A0 %C31000pF C510µFC610µFV112VL322mH C21µFC7100pFXFC1123Q12N29232、用Multisim 进行仿真,用双踪示波器观察振荡器器输出信号波形,并用频率计测量振荡频率,并与理论计算结果进行对比。
(1)仿真波形和频率测量(2)理论分析计算根据电路图提供的振荡回路参数,计算设计电路的振荡频率与实际测试的振荡频率进行对比。
计算频率值02f LCπ==8.897MHz电路测试频率值f = 9.325MHz 00||100%f f f -=⨯=频率稳定度 5.3%对比分析其产生误差的原因:3、改变电阻R3的阻值,用电压表测量振荡管Q1的直流静态工作电压。
实验二正弦振荡器实验
实验二正弦振荡器实验一、实验目的:1、掌握晶体管(震荡管)工作状态,反馈大小,伏在变化对震荡幅度与波形的影响。
2、掌握改进电容三点式正弦波振荡器的工作原理级震荡性能的测量方法。
3、研究外界条件变化对振荡器稳定度的影响。
4、比较LC振荡器和晶体振荡器频率稳定度,加深对晶体振荡器频率稳定度得理解。
5、学习使用示波器和频率正当其测量高频震荡频率的方法二、实验原理与线路正弦波振荡器是指振荡波形接近理想针刺安博的振荡器,这是引用非常广泛的一类电路,产生的正弦信号的振荡电路的形式很多,但归纳起来,不外是RC,LC和晶体振荡器三种形式,在本实验中,我们研究的主要是lc三端式振荡器级晶体振荡器。
图1 LC 三点式振荡器的等效电路图2 考毕兹振荡器如图所示:三点式振荡器的交流等效电路如图4-1所示。
图中,X 1、X 2、X 3为谐振回路的三个电抗。
根据相位平衡条件可知,X 1、X 2必须为同性电抗,X 3与X 1、X 2相比必须为异性电抗,且三者之间满足下列关系:X 3=-(X 1+X 2) (4-1)这就是三点式振荡器相位平衡条件的判断准则。
在满足式(4-1)的前提下,X 1、X 2若呈容性,X 3呈感性,则振荡器为电容反馈三点式振荡器;若X 1、X 2呈感性,X 3呈容性,则为电感反馈三点式振荡器。
1、电容三端式振荡器电容三点式振荡器电路如图4-2所示,图中L 和C1、C2组成振荡回路,反馈电压取自电容C2的两端,Cb 和Cc 为高频旁路电容,Lc 为高频扼流圈,对直流可视为短路,对交流可视为开路。
显然,该振荡器的交流通路满足相位平衡条件。
若要它产生正弦波,还必须满足振幅条件和起振条件,即:1>⋅uo uo F A (4-2)式中uo A 为电路刚起振时,振荡管工作状态为小信号时的电压增益;uo F 为反馈系数,只要求出二者的值,便可知道电路有关参数与它的关系。
F 越大,越容易起振。
第二项表示输入电导对振荡的影响,'ie g 和F 越大,越不容易起振。
电容三点式lc振荡器实验报告
电容三点式lc振荡器实验报告电容三点式LC振荡器实验报告引言:振荡器是电子电路中常见的重要元件,用于产生稳定的交流信号。
其中,电容三点式LC振荡器是一种常见的振荡器电路,本实验旨在通过实际搭建电容三点式LC振荡器电路,验证其振荡频率与电路参数的关系,并观察其输出波形。
实验目的:1. 理解电容三点式LC振荡器的原理及工作方式;2. 掌握电容三点式LC振荡器的搭建方法;3. 验证振荡频率与电路参数的关系;4. 观察并分析电容三点式LC振荡器的输出波形。
实验器材:1. 电源2. 电阻箱3. 电容4. 电感5. 示波器6. 万用表7. 连线电缆实验步骤:1. 按照电路图搭建电容三点式LC振荡器电路,确保连接正确可靠;2. 调节电阻箱的阻值,观察振荡频率的变化;3. 使用示波器观察电路的输出波形,并记录观察结果;4. 使用万用表测量电路中各元件的参数值,并记录测量结果。
实验结果与分析:通过实验,我们得到了电容三点式LC振荡器在不同电阻值下的振荡频率和输出波形。
观察结果显示,振荡频率与电路中的电容和电感参数有关,当电容和电感值增大时,振荡频率相应增大;当电阻值增大时,振荡频率相应减小。
这符合振荡器的基本原理,即振荡频率与电路参数成正比关系。
同时,我们还观察到电容三点式LC振荡器的输出波形为正弦波。
这是因为在振荡器电路中,电容和电感构成了一个谐振回路,通过不断的能量交换,实现了正弦波的产生和持续。
实验中我们还测量了电路中各元件的参数值,以验证其与理论计算值的一致性。
结果显示,测量值与理论值基本吻合,误差较小。
这说明我们的实验搭建成功,并且实验结果可靠。
结论:通过本次实验,我们成功搭建了电容三点式LC振荡器电路,验证了振荡频率与电路参数的关系,并观察了其输出波形。
实验结果表明,振荡频率与电容和电感参数成正比关系,而输出波形为正弦波。
此外,实验结果还与理论计算值基本吻合,验证了实验的可靠性。
实验中我们也发现了一些问题,例如电路中的元件参数对振荡频率的影响并非线性关系,这需要进一步的研究和探索。
LC正弦波振荡器报告
LC 正弦波振荡(虚拟实验)04008307 郭佩1、 电容三点式(1)121100,400,10C nF C nF L mH ===示波器频谱仪(2)121100,400,5C nF C nF L mH ===示波器频谱仪(3)121100,1,5C nF C F L mH μ===示波器频谱仪数据表格:实验数据与理论值间的差异分析:由表格数据可见,,增益测量值比理论值(A=C2/C1)大。
因为在仿真中,AF>1,因而测量得到的增益系数稍大一些;另一方面谐振频率测量值比理论值小,由于仿真软件的精度问题读数时会造成一定的误差,而且理论谐振频率的计算公式没有考虑寄生电容和电感,是一个近似计算,这进一步带来了误差。
2、 电感三点式(1)1225,100,200L mH L H C nF μ===示波器频谱仪(2)1225,100,100L mH L H C nF μ===示波器频谱仪(3)1222,100,100L mH L H C nF μ===示波器频谱仪数据表格:实验数据与理论值间的差异分析:由表格数据可见,,增益测量值比理论值(A=C2/C1)大。
因为在仿真中,AF>1,因而测量得到的增益系数稍大一些;另一方面谐振频率测量值比理论值小,由于仿真软件的精度问题读数时会造成一定的误差,而且理论谐振频率的计算公式没有考虑寄生电容和电感,是一个近似计算,这进一步带来了误差。
思考和分析答:(1)L1的改变将影响电路的谐振频率。
在C1、C2相等的情况下,L1越小,频率越高。
(2)在C1项等的情况下,C2越大,放大倍数越大。
在C1、L1相等的情况下,C2越大,谐振频率越低。
(3)相位差为180,不满足正反馈要求。
答:(1)C2的改变将影响电路的谐振频率。
在L1、L2相等的情况下,C2越小,频率越高。
(2)在L2项等的情况下,L1越大,放大倍数越大。
在L2、C2相等的情况下,L1越大,谐振频率越低。
三点式正弦波振荡器实验报告
三点式正弦波振荡器一、实验目的1、掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。
2、通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。
3、研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。
二、实验内容1、熟悉振荡器模块各元件及其作用。
2、进行LC振荡器波段工作研究。
3、研究LC振荡器中静态工作点、反馈系数以及负载对振荡器的影响。
4、测试LC振荡器的频率稳定度。
三、实验仪器1、模块3 1块2、频率计模块1块3、双踪示波器1台4、万用表1块四、基本原理将开关S1 的1 拨下2 拨上,S2 全部断开,由晶体管N1 和C3、C10、C11、C4、CC1、L1 构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。
振荡器的频率约为4.5MHz (计算振荡频率可调范围)振荡电路反馈系数振荡器输出通过耦合电容C5(10P)加到由N2 组成的射极跟随器的输入端,因C5 容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。
射随器输出信号经N3 调谐放大,再经变压器耦合从P1 输出。
五、实验步骤1、根据图5-1 在实验板上找到振荡器各零件的位置并熟悉各元件的作用。
2、研究振荡器静态工作点对振荡幅度的影响。
1)将开关S1 拨为“01”,S2 拨为“00”,构成LC 振荡器。
2)改变上偏置电位器W1,记下N1 发射极电流(将万用表红表笔接TP2,黑表笔接地测量VE),并用示波测量对应点TP4 的振荡幅度VP-P,填于表5-1 中,分析输出振荡电压和振荡管静态工作点的关系。
11 RVe分析思路:静态电流ICQ 会影响晶体管跨导gm,而放大倍数和gm 是有关系的。
在饱和状态下(ICQ 过大),管子电压增益AV 会下降,一般取ICQ=(1~5mA)为宜。
3、测量振荡器输出频率范围将频率计接于P1 处,改变CC1,用示波器从TP8 观察波形及输出频率的变化情况,记录最高频率和最低频率填于5-2 表中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三点式正弦波振荡器
一、实验目的
1、掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。
2、通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。
3、研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。
二、实验内容
1、熟悉振荡器模块各元件及其作用。
2、进行LC振荡器波段工作研究。
3、研究LC振荡器中静态工作点、反馈系数以及负载对振荡器的影响。
4、测试LC振荡器的频率稳定度。
三、实验仪器
1、模块3 1块
2、频率计模块1块
3、双踪示波器1台
4、万用表1块
四、基本原理
将开关S1 的1 拨下2 拨上,S2 全部断开,由晶体管N1 和C3、C10、C11、C4、CC1、L1 构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。
振荡器的频率约为4.5MHz (计算振荡频率可调范围)
振荡电路反馈系数
振荡器输出通过耦合电容C5(10P)加到由N2 组成的射极跟随器的输入端,因C5 容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。
射随器输出信号经N3 调谐放大,再经变压器耦合从P1 输出。
五、实验步骤
1、根据图5-1 在实验板上找到振荡器各零件的位置并熟悉各元件的作用。
2、研究振荡器静态工作点对振荡幅度的影响。
1)将开关S1 拨为“01”,S2 拨为“00”,构成LC 振荡器。
2)改变上偏置电位器W1,记下
N1 发射极电流(将万用表红表笔接TP2,黑表笔接地测量VE),并用示波测量对应点TP4 的振荡幅度VP-P,填于表5-1 中,分析输出振荡电压和振荡管静态工作点的关系。
11 RVe
分析思路:静态电流ICQ 会影响晶体管跨导gm,而放大倍数和gm 是有关系的。
在饱和状态下(ICQ 过大),管子电压增益AV 会下降,一般取ICQ=(1~5mA)为宜。
3、测量振荡器输出频率范围
将频率计接于P1 处,改变CC1,用示波器从TP8 观察波形及输出频率的变化情况,记录最高频率和最低频率填于5-2 表中。
六、实验报告
测量振荡器输出的频率范围
七、实验分析
通过本次实验掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。
通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。
温度对振荡器频率稳定度的影响。
通过做实验过程中懂得了很多的知识。