multisim仿真实验报告格式

合集下载

虚拟仿真搭建实验报告(3篇)

虚拟仿真搭建实验报告(3篇)

第1篇一、实验背景与目的随着现代科技的发展,虚拟仿真技术在各个领域得到了广泛应用。

它能够在计算机上模拟真实环境,降低实验成本,提高实验效率。

本实验旨在通过虚拟仿真软件搭建一个简单的电路系统,验证其基本功能,并探讨虚拟仿真在实验教学中的应用。

二、实验器材与软件1. 实验器材:- 电脑一台- 虚拟仿真软件(如Multisim、LTspice等)2. 实验软件:- 选择Multisim软件进行虚拟仿真实验三、实验步骤1. 软件安装与启动:- 在电脑上安装Multisim软件- 启动Multisim软件2. 搭建电路:- 打开Multisim软件,选择“原理图”模块- 从元件库中选取所需的元件,如电阻、电容、二极管、晶体管等- 使用导线连接元件,搭建所需电路3. 设置参数:- 设置电源电压、元件参数等- 设置仿真时间、步进等参数4. 仿真实验:- 点击仿真按钮,观察电路的仿真结果- 分析仿真结果,与理论计算进行对比5. 结果分析:- 对仿真结果进行详细分析,总结实验现象- 分析实验误差,探讨改进措施6. 实验报告撰写:- 按照实验报告格式,撰写实验报告四、实验结果与分析1. 电路搭建:- 搭建了一个由电阻、电容、二极管组成的简单电路- 电路包括一个整流电路和一个滤波电路2. 仿真结果:- 仿真结果显示,电路能够正常工作- 整流电路将交流电源转换为直流电源- 滤波电路对直流电源进行滤波,输出稳定的电压3. 结果分析:- 仿真结果与理论计算基本一致- 电路搭建过程中,元件选择和参数设置合理- 仿真软件在电路搭建和仿真实验中发挥了重要作用五、实验讨论1. 虚拟仿真在实验教学中的应用:- 虚拟仿真技术能够降低实验成本,提高实验效率- 在虚拟仿真环境中,学生可以自由搭建电路,进行实验操作 - 虚拟仿真有助于提高学生的动手能力和创新意识2. 实验误差分析:- 仿真软件的精度对实验结果有一定影响- 元件参数的误差也可能导致实验误差- 实验过程中,应尽量减少误差,提高实验精度3. 改进措施:- 提高仿真软件的精度,降低实验误差- 优化元件参数选择,提高电路性能- 加强实验操作规范,提高实验效果六、结论本实验通过虚拟仿真搭建了一个简单的电路系统,验证了其基本功能。

Multisim电路仿真实验报告(实验1.2)

Multisim电路仿真实验报告(实验1.2)

Multisim电路仿真实验报告(实验1.2)实验⼀1.电路图
1
2
电容c1和电阻R2交换后
3. 逻辑分析仪和字信号发⽣器的使⽤
实验⼆
1.
静态⼯作点分析
IBQ=12.954uA ICQ=2.727mA
结合电路图可知:UBQ=3.39196V,UCQ=6.54870V,所以三极管的放⼤倍数:β= ICQ/IBQ =210
2.估算出该电路的放⼤倍数Av
从仿真结果中得到:
Uo=1.94895V, Ui=0.014V.
从⽽估算出该电路的放⼤倍数:Av=139
对两电路的带负载能⼒进⾏⽐较
3.1
由以上两个仿真图可知,放⼤电路2⽐放⼤电路1带负载能⼒更强。

⽽放⼤电路的带负载能⼒受其输出电阻影响,输出电阻越⼩,带负载能⼒越强。

由后⾯的计算可知放⼤电路2的输出电阻更⼩,因⽽其带负载能⼒⽐放⼤电路1强。

因此仿真实验结果符合理论要求。

3.2 对电路1和2分别作温度扫描分析
3.3 测试电路1和2
的输⼊和输出阻抗
电路1
输⼊电阻的测试电路图及测试结果
电路1输出电阻的测试电路图及测试结果由以上实验结果算出电路1的输⼊阻抗1264kΩ,输出阻抗为1.92kΩ
电路2
输⼊电阻的测试电路图及测试结果
电路2输出电阻的测试电路图及测试结果
由以上实验结果算出电路1的输⼊阻抗5.9kΩ,输出阻抗为4.8Ω
放⼤电路1是放⼤电路2的电流串联负反馈形式,电流串联负反馈的作⽤是增⼤输⼊输出电阻。

multisim实验二实验报告

multisim实验二实验报告

仲恺农业工程学院实验报告纸_自动化学院_(院、系)_工业自动化_专业_144_班_电子线路计算机仿真课程实验二模拟运算电路仿真实验一、实验目的1、掌握在Multisim平台上进行集成运算放大器仿真实验的方法2、掌握用集成运算放大器组成比例、加法、减法和积分电路的方法。

二、实验设备PC机、Multisim11。

三、实验内容1. 反相比例运算电路(1)创建电路创建如图所示反相比例运算电路,并设置各元器件参数。

图2- 1 反相比例运算电路(2)仿真测试①闭合仿真开关。

②观察万用表,显示输出电压有效值为5V,打开示波器窗口,如图所示。

图2- 3 输入、输出波形图(3)实验原理如图所示,这是典型的反相比例运算电路。

输入电压u I 通过电阻R 作用于集成运放的反向输入端,故输出电压uo 与u I 反相。

同相输入端通过电阻R ’接地。

由“虚短”的原则,有 u N = u P = 0由“虚断”的原则,有 i R = i FRu u R oN I -=-N u u 整理,得因此,u o 和u I 成比例关系,比例系数为-R f /R ,负号表示u o 与u I 反相。

在这里,R f =100k Ω,R=10k Ω,u I =0.5,所以2. 同相比例运算电路 (1)创建电路创建如下图所示电路,并设置电路参数。

图2-4 反向比例运算电路图2- 2 输出电压有效值If o u RR -=u -5V 0.5*-10u ==-=I fo u RR图2- 5 同相比例运算电路(2)仿真测试 ①闭合仿真开关。

②观察交流万用表,显示输出电压有效值为5.5V ,打开示波器窗口,如图所示。

观察u I 和u O 波形,由大小和相位关系,可以得出u O = 11u I ,与理论值相符。

(3)实验原理由“虚短”和“虚断”,有 u P = u N = u I 且图2- 6 输出电压有效值图2-7 同相比例运算电路仿真波形图2-8 同相比例运算电路fNO N Ru u R -=-0u整理,有则I )1(u u RR f O +=上式表明u o 与u I 同相且u o 大于u I 。

multisim使用及电路仿真实验报告_范文模板及概述

multisim使用及电路仿真实验报告_范文模板及概述

multisim使用及电路仿真实验报告范文模板及概述1. 引言1.1 概述引言部分将介绍本篇文章的主题和背景。

在这里,我们将引入Multisim的使用以及电路仿真实验报告。

Multisim是一种强大的电子电路设计和仿真软件,广泛应用于电子工程领域。

通过使用Multisim,可以实现对电路进行仿真、分析和验证,从而提高电路设计的效率和准确性。

1.2 文章结构本文将分为四个主要部分:引言、Multisim使用、电路仿真实验报告以及结论。

在“引言”部分中,我们将介绍文章整体结构,并简要概述Multisim的使用与电路仿真实验报告两个主题。

在“Multisim使用”部分中,我们将详细探讨Multisim软件的背景、功能与特点以及应用领域。

接着,在“电路仿真实验报告”部分中,我们将描述一个具体的电路仿真实验,并包括实验背景、目的、步骤与结果分析等内容。

最后,在“结论”部分中,我们将总结回顾实验内容,并分享个人的实验心得与体会,同时对Multisim软件的使用进行评价与展望。

1.3 目的本篇文章旨在介绍Multisim的使用以及电路仿真实验报告,并探讨其在电子工程领域中的应用。

通过对Multisim软件的详细介绍和电路仿真实验报告的呈现,读者将能够了解Multisim的基本特点、功能以及实际应用场景。

同时,本文旨在激发读者对于电路设计和仿真的兴趣,并提供一些实践经验与建议。

希望本文能够为读者提供有关Multisim使用和电路仿真实验报告方面的基础知识和参考价值,促进他们在这一领域的学习和研究。

2. Multisim使用2.1 简介Multisim是一款功能强大的电路仿真软件,由National Instruments(国家仪器)开发。

它为用户提供了一个全面的电路设计和分析工具,能够模拟各种电子元件和电路的行为。

使用Multisim可以轻松地创建、编辑和测试各种复杂的电路。

2.2 功能与特点Multisim具有许多强大的功能和特点,使其成为研究者、工程师和学生选择使用的首选工具之一。

MultiSIM仿真实验基础_实验报告模版

MultiSIM仿真实验基础_实验报告模版

Multisim仿真实验基础一、实验目的1.学习Multisim分析调试电路。

2.掌握放大器静态工作点调试方法以及对放大器性能影响;测试最大不失真输出电压3.学习测试放大电路的影响二、实验电路和内容1、改变电位器值,使得基极电位为1.15v。

此时用直流分析方法得到三极管三个电位和电流;去掉旁路电容后重复测量。

2、对电路最瞬态分析,比较输入输出信号的相位。

去掉r6后再做瞬态分析。

3、对电路作交流分析4、逐渐增大输入信号的幅度,记录输入信号不失真的最大值5、对r1进行参数扫描,电阻值为80k,100k,200k,300k,观察瞬间特性6、对r3进行参数扫描,电阻值为5k,15k,20k,50k,观察瞬间特性7、对电路进行温度扫描,观察-20度,0度,27度,50度,100度的瞬间特性,讨论温度对静态工作点的影响压控振荡器一、 实验目的1、 掌握multisim 仿真软件的使用,并能进行电路的分析和调试2、 了解压控振荡器的原理、组成及调试方法二、 实验原理调节可变电阻或可变电容可以改变波形发生电路的振荡频率,一般是通过人的手来调节的。

而在自动控制等场合往往要求能自动地调节振荡频率。

常见的情况是给出一个控制电压(例如计算机通过接口电路输出的控制电压),要求波形发生电路的振荡频率与控制电压成正比。

这种电路称为压控振荡器,又称为VCO 或u-f 转换电路。

利用集成运放可以构成精度高、线性好的压控振荡器。

下面介绍这种电路的构成和工作原理,并求出振荡频率与输入电压的函数关系。

1、电路的构成及工作原理怎样用集成运放构成压控振荡器呢?我们知道积分电路输出电压变化的速率与输入电压的大小成正比,如果积分电容充电使输出电压达到一定程度后,设法使它迅速放电,然后输入电压再给它充电,如此周而复始,产生振荡,其振荡频率与输入电压成正比。

即压控振荡器。

图2.9.1就是实现上述意图的压控振荡器(它的输入电压U i >0)。

图2.9.1所示电路中A 1是积分电路,A 2是同相输入滞回比较器,它起开关作用。

Multisim模拟电路仿真实验报告

Multisim模拟电路仿真实验报告

一、实验目的1.认识并了解Multisim的元器件库;2.学习使用Multisim绘制电路原理图;3.学习使用Multisim里面的各种仪器分析模拟电路;二、实验内容【基本单管放大电路的仿真研究】1.仿真电路如图所示。

2.修改参数,方法如下:双击三极管,在Value选项卡下单击EDIT MODEL;修改电流放大倍数BF为60,其他参数不变;图中三极管名称变为2N2222A*;双击交流电源,改为1mV,1kz;双击Vcc,在Value选项卡下修改电压为12V;双击滑动变阻器,在Value选项卡下修改Increment值为0.1% 或更小。

三、数据计算1.由表中数据可知,测量值和估算值并不完全相同。

可以通过更精细地调节滑动变阻器,使V E更接近于1.2V.2.电压放大倍数测量值A u =−13.852985 ;估算值A u =−14.06 ;相对误差=−13.852985−(−14.06)−14.06×100% =−1.47%由以上数据可知,测量值和估算值并不完全相同,可能的原因有:1) 估算值的计算过程中使用了一些简化处理,如动态分析时视电容为短路,r be =300+(β+1)∙26I E等与仿真电路并不完全相同。

2) 仿真电路的静态工作点与理想情况并不相同,也会影响放大倍数。

3. 输入输出电阻验相同的原因外(不再赘述),还有:万用表本身存在电阻。

4.去掉R E1后,电压放大倍数增大,下限截止频率和上限截止频率增大,输入电阻减小。

说明R E1减小了放大倍数,增大了输入电阻。

四、感想与体会电子实验中,估算值与仿真值、仿真值与实际测量值往往并不完全一致。

在设计电路时可以通过估算得到大致的判断,再在电脑中进行仿真,最后再实际测量运行。

用电脑仿真是很必要的,一方面可以及早发现一些简单错误,防止功亏一篑,另一方面还可以节省材料和制作时间。

但必须考虑实际测量与仿真的不同之处,并应以实测值为准。

模电仿真报告

模电仿真报告

模拟电子技术基础Multisim 仿真实验报告课题:交流负反馈对放大倍数稳定性的影响班级:自1203班姓名:张凯(41251083)张晨光(41251084)李顶立(41251085)一、题目负反馈对电压串联负反馈放大电路电压放大倍数稳定性的影响。

二、仿真电路仿真电路采用虚拟集成运放,运放U1、U2分别引入了局部电压并联负反馈,其闭环电压放大倍数分别为RR A11f 1uf -≈,RR A22f 2uf ≈,可以认为该负反馈放大电路中基本放大电路的放大倍数AA Au u 2f 1f ≈整个电路引入了急件电压串联负反馈,闭环电压放大倍数FA A A A Au u u u u 2f 1f 2f 1f f1+≈,RRR Ff+=,三、仿真内容分别测量 Ω=k R f 1002和 Ωk 10 时的 A u f 。

从示波器可读出输出电压的幅值,得到放大倍数电压的变化。

四、仿真结果1、张凯的结果(1)实验截图图1 负反馈放大倍数(张凯)(2)实验数据表图2 实验数据表(张凯)(1)实验截图图3 负反馈放大倍数(张晨光)(2)实验数据表图4 实验数据表(张晨光)(1)实验截图图5 负反馈放大倍数(李顶立)(2)实验数据表图6 实验数据表(李顶立)五、实验数据分析1、比较第1组数据与第2组数据可知,当反馈电阻减小时,运放的闭环电压放大倍数减小。

2、不接反馈电阻时的开环电压放大倍数与接上反馈电阻时的闭环电压放大倍数具有明显的差异,表明负反馈具有提高放大倍数稳定性的作用。

六、实验结论1、由 图4 可知,当R 2f 从100k Ω 变为10k Ω时,电路的开环电压放大倍数变化量Δ9.0101010443)(=-=A A ,闭环电压放大倍数变化量Δ()148.01.1.95-0.811ff-≈=AA u u ,AA AA uf∆<<∆uf。

由此说明负反馈放大倍数的稳定性。

2、根据 图四 可知R 2f 从100k Ω 变为10k Ω时,开环电压放大倍数A 从104变为103,闭环电压放大倍数A uf 分别为99和90.9,与仿真结果近似。

multisim仿真实验报告

multisim仿真实验报告

实验一单级放大电路一、实验目的1、熟悉multisim软件的使用方法2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。

3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了解共射级电路的特性。

二、虚拟实验仪器及器材双踪示波器信号发生器交流毫伏表数字万用表三、实验步骤1.仿真电路图E级对地电压25.静态数据仿真26.动态仿真一1.单击仪表工具栏的第四个,放置如图,并连接电路。

2.双击示波器,得到如下波形5.他们的相位相差180度。

27.动态仿真二1.删除负载电阻R62.重启仿真。

3.分别加上5.1k,300欧的电阻,并填表填表.28.仿真动态三1.测量输入端电阻。

在输入端串联一个5.1k的电阻,并连接一个万用表,启动仿真,记录数据,填入表格。

2.测量输出电阻RO数据为VL测量数据为VO填表1.画出如下电路图。

2.元件的翻转4.去掉r7电阻后,波形幅值变大。

实验二 射级跟随器一、实验目的1、熟悉multisim 软件的使用方法2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。

3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了解共射级电路的特性。

4、学习mutisim参数扫描方法 5、学会开关元件的使用二、虚拟实验仪器及器材双踪示波器 信号发生器交流毫伏表数字万用表 三、实验步骤1实验电路图如图所示;2.直流工作点的调整。

如上图所示,通过扫描R1的阻值,在输入端输入稳定的正弦波,功过观察输出5端的波形,使其为最大不失真的波形,此时可以确定Q1的静态工作点。

7.出现如图的图形。

10.单击工具栏,使出现如下数据。

11.更改电路图如下、17思考与练习。

1.创建整流电路,并仿真,观察波形。

XSC12.由以上仿真实验知道,射级跟随器的放大倍数很大,且输入输出电压相位相反,输入和输出电阻也很大,多用于信号的放大。

实验三:负反馈放大电路一、实验目的:1、熟悉Multisim软件的使用方法2、掌握负反馈放大电路对放大器性能的影响3、学习负反馈放大器静态工作点、电压放大倍数、输入电阻、输出电阻的开环和闭环仿真方法。

电子电路multisim仿真实验报告

电子电路multisim仿真实验报告

电子电路multisim仿真实
验报告
班级:XXX
姓名:XXX
学号:XXX
班内序号:XXX
一:实验目的
1:熟悉Multisim软件的使用方法。

2:掌握放大器静态工作点的仿真方法及其对放大器性能的影响。

3:掌握放大电路频率特性的仿真方法。

二:虚拟实验仪器及器材
基本电路元件(电阻,电容,三极管)双踪示波器波特图示仪直流电源
三:仿真结果
(1)电路图
其中探针分别为:
探针一探针二
(2)直流工作点分析。

(3)输入输出波形
A通道为输入波形B通道为输出波形
四:实验流程图
开始
选取实验所需电路元件
及测量工具
合理摆放元件位置并连
接电路图
直流特性分析
结束
五:仿真结果分析
(1)直流工作点
电流仿真结果中,基极电流Ib为7.13u,远小于发射极和集电极,而发射极和集电极电流Ie和Ic近似相等,与理论结果相吻合。

电压仿真结果中,基极与发射极的电位差Vbe经过计算约为0.625V,符合三极管的实际阈值电压,而Vce约为5.65V。

以上数据均满足放大电路的需求,所以电路工作在放大区。

(2)示波器图像分析
示波器显示图像中,A路与B路反相,与共射放大电路符合。

六:总结与心得
这次的仿真花费了大量时间,主要是模块的建立。

经过本次的电子电路仿真实验,使我对计算机在电路实验中的应用有了更为深刻的认识,对计算机仿真的好处有了进一步的了解。

仿真可以大大的减轻实验人员的工作负担,同时更可以极大的提升工作效率,事半功倍,所以对仿真的学习是极为必要的。

multisim电路仿真实验报告范文

multisim电路仿真实验报告范文

multisim电路仿真实验报告范文模拟电子技术课程一、目的2.19利用multiim分析图P2.5所示电路中Rb、Rc和晶体管参数变化对Q点、Au、Ri、Ro和Uom的影响。

二、仿真电路晶体管采用虚拟晶体管,VCC12V。

1、当Rc5k,Rb510k和Rb1M时电路图如下(图1):图12、当Rb510k,Rc5k和Rc10k时电路图如下(图2)图23、当Rb1M时,Rc5k和Rc10k时的电路图如下(图3)图34、当Rb510k,Rc5k时,=80,和=100时的电路图如下(图4)图4三、仿真内容1.当Rc5k时,分别测量Rb510k和Rb1M时的UCEQ和Au。

由于输出电压很小,为1mV,输出电压不失真,故可从万用表直流电压(为平均值)档读出静态管压降UCEQ。

从示波器可读出输出电压的峰值。

2.当Rb510k时,分别测量Rc5k和Rc10k时的UCEQ和Au。

3.当Rb1M时,分别测量Rc5k和Rc10k时的UCEQ和Au。

4.当Rb510k,Rc5k时,分别测量β=80,和β=100时的UCEQ和Au。

四、仿真结果1、当Rc5k,Rb510k和Rb1M时的UCEQ和Au仿真结果如下表(表1仿真数据)表格1仿真数据2、当Rb510k时,Rc5k和Rc10k时的UCEQ和Au仿真结果如下表(表2仿真数据)表格2仿真数据3、当Rb1M时,Rc5k和Rc10k时的UCEQ和Au仿真结果如下表(表3仿真数据)表格3仿真数据4、当Rb510k,Rc5k时,分别测量=80,和=100时的UCEQ和Au的仿真结果如下表(表4仿真数据)。

表格4仿真数据五、结论及体会1.当Rc为定值时,Rb增大,ICQ减小,UCEQ增大,Au减小。

2.当Rb为定值时,若Rb的阻值过小,则电路容易产生饱和失真,此时当Rc增大,电路的放大倍数不会增大,电路没有放大作用。

3.当Rb、Rc为定值时,当增大时,Au的值也增大。

4.实验心得:本次仿真实验用到了以前没有用过的元件,元器件参数复杂,由于以前没有我终于将各参数的意思大致弄清楚了。

大连理工大学实验报告 Multisim实验报告范例

大连理工大学实验报告  Multisim实验报告范例

大连理工大学实验报告学院(系):专业:班级:姓名:学号: ___实验时间:第周星期第 / 节实验室:综合楼实验台:指导教师签字:成绩:实验名称: Multisim电路仿真实验报告一、实验目的和要求1、通过实验了解并掌握Multisim软件的运用方法,以及电路仿真的基本方法。

2、学会用电路仿真的方法分析各种电路。

3、通过电路仿真的方法验证所学的各种电路基础定律,并了解各种电路的特性。

二、实验原理和内容Multisim是主要用于集成电路的分析程序,其主要用途是用于于仿真设计:在实际制作电路之前,先进行计算机模拟,可根据模拟运行结果修改和优化电路设计,测试各种性能,不必涉及实际元器件及测试设备。

Multisim可以十分方便的进行电路设计,然后利用分析工具对所设计的电路进行仿真,测试电路的有效性、可靠性和功能。

同时,也可以配合电路理论的基本知识对理论的推导结果进行有效的比较和验证。

在设计和仿真中需要注意的一点是,Multisim中的元件值可以进行任意设定,但如果设计仿真的是实际电路,则需要考虑实际元件的额定值,否则无法起到验证实际电路性能的效果。

三、预习要求及思考题对于简单的电阻电路,用Multisim软件进行电路的仿真分析时,需进行画出电路图,然后调用分析模块、选择分析类型,进行电路分析等步骤的操作。

Multisim软件是采用节点电压法求电压的,因此,在绘制电路图时,一定要有零点(即接地点)。

同时,要可以用电路基础理论中的方法列电路方程,求解电路中各个电压和电流。

与仿真结果进行对比分析。

四、主要仪器设备五、 实验步骤与操作方法题目1:基尔霍夫定律的Multisim 仿真实验基尔霍夫定律实验电路如图1所示,令U1=6V ,U2=12V ,利用Multisim 对该电路进行电路仿真,测量各支路电流,验证基尔霍夫电流定律(KCL )的正确性。

45U 2I I(1) 建立电路:根据上图所示电路在Multisim 中从各元器件库中选取直流电压源、电阻、电流表和接地端等元件,建立如下图所示的仿真电路,并设置各元器件的相关属性。

动态电路仿真实验报告

动态电路仿真实验报告

一、实验目的1. 掌握使用Multisim软件进行动态电路仿真的基本方法。

2. 理解并验证一阶、二阶动态电路的基本特性。

3. 分析电路参数对动态电路响应的影响。

4. 通过仿真实验,加深对动态电路理论知识的理解。

二、实验原理动态电路是指电路中元件的参数(如电阻、电容、电感等)随时间变化的电路。

动态电路的特性主要取决于电路的结构和元件参数。

本实验主要研究一阶和二阶动态电路的响应特性。

三、实验仪器1. PC机一台2. Multisim软件四、实验内容1. 一阶动态电路仿真(1)搭建RC电路使用Multisim软件搭建一个RC电路,电路参数如下:R=1kΩ,C=1μF。

将电路连接到函数信号发生器上,输出一个5V的方波信号。

(2)仿真分析① 零输入响应:将电容C的初始电压设为5V,观察电容电压uc随时间的变化情况,并记录时间常数τ。

② 零状态响应:将电容C的初始电压设为0V,观察电容电压uc随时间的变化情况,并记录时间常数τ。

③ 完全响应:将电容C的初始电压设为5V,观察电容电压uc随时间的变化情况,并记录时间常数τ。

2. 二阶动态电路仿真(1)搭建RLC电路使用Multisim软件搭建一个RLC电路,电路参数如下:R=1kΩ,L=1mH,C=1μF。

将电路连接到函数信号发生器上,输出一个5V的方波信号。

(2)仿真分析① 零输入响应:将电感L的初始电流设为5A,观察电感电流iL随时间的变化情况,并记录时间常数τ。

② 零状态响应:将电感L的初始电流设为0A,观察电感电流iL随时间的变化情况,并记录时间常数τ。

③ 完全响应:将电感L的初始电流设为5A,观察电感电流iL随时间的变化情况,并记录时间常数τ。

五、实验结果与分析1. 一阶动态电路(1)零输入响应:电容电压uc随时间呈指数衰减,时间常数τ=1s。

(2)零状态响应:电容电压uc随时间呈指数增长,时间常数τ=1s。

(3)完全响应:电容电压uc随时间呈指数衰减和增长,时间常数τ=1s。

multisim仿真实验报告

multisim仿真实验报告

竭诚为您提供优质文档/双击可除multisim仿真实验报告
篇一:multisim仿真实验报告
multisim仿真实验报告
3班刘鑫学号:20XX302660009
实验一单极放大电路
动态仿真一
动态仿真二
2.重新启动仿真波形
R=5.1k
R=330欧
篇二:multisim仿真实验报告
实验报告
—基于multisim的电子仿真设计
班级:卓越(通信)091班姓名:杨宝宝学号:6100209170辅导教师:陈素华徐晓玲
实验一基于multisim数字电路仿真实验
学生姓名:杨宝宝学号:6100209170专业班级:卓越(通信)091班实验类型:□验证□综合□设计□创新实验日期:实验成绩:
一、实验目的
1.掌握虚拟仪器库中关于测试数字电路仪器的使用方法,入网数字信号发生器和逻辑分析仪的使用。

2.进一步(:multisim仿真实验报告)了解multisim仿真软件基本操作和分析方法。

二、实验内容
用数字信号发生器和逻辑分析仪测试74Ls138译码器逻辑功能。

三、实验原理
实验原理图如图所示:
四、实验步骤
1.在multisim软件中选择逻辑分析仪,字发生器和
74Ls138译码器;
2.数字信号发生器接138译码器地址端,逻辑分析仪接138译码器输出端。

并按规定连好译码器的其他端口。

3.点击字发生器,控制方式为循环,设置为加计数,频率设为1Khz,并设置显
学生姓名:杨宝宝学号:6100209170专业班级:卓越(通。

multisim仿真实验报告格式

multisim仿真实验报告格式

模拟电子技术课程电流负反馈偏置的共发射极放大电路仿真实验报告学号:王海洋姓名:5090309560一、本仿真实验的目的1.研究在电流负反馈偏置的共发射极放大电路中各个电路元件参数与电路中电压增益A us=v o/v s、输入电阻R i、输出电阻R o以及低频截止频率f L的关系;2.进一步理解三极管的特性以及电流负反馈偏置的共发射极放大电路的工作原理;3.进一步熟悉Multisim软件的使用方法。

二、仿真电路图1 电流负反馈偏置的共发射极放大电路注:在此电路中,三极管为BJT-NPN-VRTUAL*,设置参数为BF=100,RB=100Ω(即设置晶体管参数为β=100,r bb’=100Ω)。

三、仿真内容1.计算电路的电压增益A us=v o/v s,输入电阻R i及输出电阻R o;2.研究耦合电容、旁路电容对低频截止频率f L的影响:1)令C2,C E足够大,计算由C1引起的低频截止频率f L1;2)令C1,C E足够大,计算由C2引起的低频截止频率f L2;3)令C1,C2足够大,计算由C E引起的低频截止频率f L3;4)同时考虑C1,C2,C E时的低频截止频率f L;3.采用图1所示的电路结构,使用上述给定的晶体管参数,设R L=3kΩ,R S=100Ω,设计其它电路元件参数,满足下列要求:A us≥40,f L≤80Hz。

四、仿真结果1.计算电路的电压增益A us=v o/v s,输入电阻R i及输出电阻R o;仿真电路如图2所示:图2测量结果如下所示:1)Vs有效值为5mv,频率为60Hz:测得A us=-29.2,R i=5.60kΩ,R o=3.35 kΩ。

2)Vs有效值为5mv,频率为100Hz:测得A us=-43.5,R i=3.89kΩ,R o=3.33kΩ。

3)Vs有效值为5mv,频率为1kHz:测得A us=-76.1,R i=2.27kΩ,R o=3.31kΩ。

4)Vs有效值为5mv,频率为1kHz:测得A us=-77.1,R i=2.25kΩ,R o=3.30kΩ。

仿真实验实训总结报告

仿真实验实训总结报告

一、引言随着科技的不断发展,仿真实验在教育教学、科研实践等领域得到了广泛应用。

本次实训旨在通过仿真实验,提高我们的实践能力、创新能力和团队协作能力。

以下是我对本次仿真实验实训的总结报告。

一、实训背景本次实训是在我国某高校电子信息工程专业的课程设置中进行的,旨在使学生了解仿真实验的基本原理、方法和步骤,提高学生的动手能力和创新能力。

实训过程中,我们主要使用了仿真软件Multisim进行电子电路仿真实验。

二、实训目标1. 掌握仿真软件Multisim的基本操作和功能;2. 熟悉电子电路仿真实验的基本步骤和流程;3. 通过仿真实验,提高自己的实践能力和创新能力;4. 培养团队协作精神,提高沟通与协作能力。

三、实训内容1. Multisim软件介绍及基本操作在实训过程中,我们首先学习了Multisim软件的基本操作和功能。

通过学习,我们掌握了以下内容:(1)软件界面及工具栏的使用;(2)电路元件的添加、编辑和删除;(3)电路仿真参数的设置;(4)仿真结果的查看和分析。

2. 电子电路仿真实验本次实训共进行了5个电子电路仿真实验,分别为:(1)放大电路仿真实验;(2)滤波电路仿真实验;(3)振荡电路仿真实验;(4)运算放大器电路仿真实验;(5)数字电路仿真实验。

在实验过程中,我们按照以下步骤进行:(1)根据实验要求,设计电路图;(2)添加电路元件,设置仿真参数;(3)运行仿真实验,观察仿真结果;(4)分析仿真结果,总结实验结论。

3. 团队协作与沟通在实训过程中,我们以小组为单位进行实验,每个小组由4名成员组成。

在实验过程中,我们充分发挥团队协作精神,共同解决问题,确保实验顺利进行。

同时,我们还加强了与指导老师的沟通,及时反馈实验过程中遇到的问题。

四、实训成果1. 理论知识方面:通过本次实训,我们对电子电路仿真实验的基本原理、方法和步骤有了更加深入的了解,为今后的学习和研究打下了坚实基础。

2. 实践能力方面:通过实际操作,我们提高了自己的动手能力,学会了如何运用仿真软件进行电子电路设计、分析和优化。

数电仿真实验报告Multism

数电仿真实验报告Multism

实验一组合逻辑电路设计与分析1实验目的(1)学习掌握组合逻辑电路的特点;(2)利用逻辑转换仪对组合逻辑电路进行分析与设计。

2实验内容:实验电路及步骤:(1)利用逻辑转换仪对逻辑电路进行分析:按下图所示连接电路。

图表1 待分析的逻辑电路A经分析得到真值表和表达式:逻辑功能说明:观察真值表,我们发现当四个输入变量A、B、C、D中1的个数为奇数是,输出为0;当四个变量中的个数为偶数时,输出为1.该电路是一个四位输入信号的奇偶校验电路。

(2)根据要求利用逻辑转换仪进行逻辑电路的设计。

问题提出:有一火灾报警系统,设有烟感、温感、紫外线三种类型不同的火灾探测器。

为了防止误报警,只有当其中有两种或两种以上的探测器发出火灾探测信号时,报警系统才产生报警信号,试设计报警控制信号的电路在逻辑转换仪面板上根据下列分析出真值表如下图所示:由于探测器发出的火灾探测信号也只有两种可能,一种是高端平(1),表示有火灾报警;一种是低电平(0),表示正常无火灾报警。

因此,令A、B、C分别表示烟感、温感、紫外线三种探测器输出的信号,为报警控制电路的输入、令F为报警控制电路的输出。

(3)在逻辑转换仪面板上单击按钮(由真值表导出简化表达式)后得到下图所示的最简化表达式。

(4)在上图的基础上单击(由逻辑表达式得到逻辑电路)后得到如下图所示的逻辑电路思考题(1)设计一个4人表决电路。

如果3人或3人以上同意,则通过;反之,则被否决。

用与非门实现。

记A、B、C、D四个变量表示一个人是否同意,若同意输出1,反之输出0。

在逻辑转换仪面板上分析出真值表如下图所示:化简逻辑表达式后并转化成与非门电路如下图所示(2)利用逻辑转换仪对下图所示电路进行分析。

得出真值表如下逻辑功能分析:当A、B不同时为1时,输出为C非;当A、B同时为1时,输出为C。

A B端作为控制信号控制输出与C的关系。

实验二编码器、译码器电路仿真实验一、实验要求(1)掌握编码器、编译器的工作原理。

multisim 仿真实验报告

multisim 仿真实验报告

multisim 仿真实验报告Multisim 仿真实验报告引言:Multisim是一款功能强大的电子电路仿真软件,它为工程师和学生提供了一个方便、直观的平台,用于设计、分析和测试各种电路。

本文将介绍我在使用Multisim进行仿真实验时的经验和结果。

1. 实验目的本次实验的目的是通过Multisim软件仿真,验证电路设计的正确性和性能。

具体来说,我们将设计一个简单的放大器电路,并使用Multisim进行仿真,以验证电路的增益、频率响应和稳定性。

2. 实验设计我们设计的放大器电路采用了共射极放大器的基本结构。

电路由一个NPN晶体管、输入电阻、输出电阻和耦合电容组成。

我们选择了适当的电阻和电容值,以实现所需的放大倍数和频率响应。

3. 仿真过程在Multisim中,我们首先选择合适的元件并进行连接,然后设置元件的参数。

在本实验中,我们需要设置晶体管的参数,例如其直流放大倍数和频率响应。

接下来,我们将输入信号源连接到电路的输入端,并设置输入信号的幅度和频率。

在仿真过程中,我们可以观察电路的各种性能指标,如电压增益、相位差和输出功率。

我们还可以通过改变电路中的元件值,来分析它们对电路性能的影响。

通过多次仿真实验,我们可以逐步优化电路设计,以达到所需的性能要求。

4. 仿真结果通过Multisim的仿真,我们得到了放大器电路的性能曲线。

我们可以观察到电路的增益随频率的变化情况,以及输出信号的波形和频谱。

通过对比仿真结果和理论预期,我们可以评估电路设计的准确性和可行性。

此外,Multisim还提供了一些实用工具,如示波器和频谱分析仪,用于更详细地分析电路性能。

通过这些工具,我们可以观察到电路中各个节点的电压和电流变化情况,以及信号的频谱特性。

5. 实验总结通过本次实验,我们深入了解了Multisim软件的功能和应用。

它为我们提供了一个方便、直观的平台,用于设计和分析各种电路。

通过仿真实验,我们可以快速评估电路设计的性能,并进行必要的优化和改进。

模拟电子技术MULTISIM仿真报告

模拟电子技术MULTISIM仿真报告

模拟电子技术MULTISIM仿真报告班级:自动化姓名:***学号:*******1.分析下图电路,已知v s=10sinωt(V)且f=1kHz,试测试v s和v o的波形。

2.分析下图电路,已知v i=10sinωt(V)且f=1kHz,V REF=3V,试测试v i 和v o的波形。

3.分析下图电路,已知v i=10sinωt(V)且f=1kHz,V REF=3V,试测试v i 和v o的波形。

4.分析下图电路,试测试二极管两端压降,并根据测试值判断二极管是导通还是截止,并测试AO两端电压V AO。

5. 在下图所示的单级放大电路中,u S=15sinωt(mV)且f=1kHz,U CC=12V,R L=6kΩ。

要求:(1)三极管工作在放大区,要求V CE≈1/2 U CC,根据V CE 和β值确定R B、R C的取值并测静态工作点;(2)测输入和输出电压波形;(3)求电压放大倍数;(4)测输出电压和V CE的波形。

(说明:该题三极管的β值,每班一号是60,按实际学号依次往上加5,比如2号就是65,3号就是70。

)(1)由题得:R B=(509kΩ)、R C=(3kΩ)(2)测得静态工作点的值为:I BQ=(22.32微安)、I CQ=(2毫安)、V BEQ=(639.21毫伏)、V CEQ=(6伏)(3)测输入和输出电压波形(4)根据波形测得电压放大倍数Vo/Vi=-124.00(5)测输出电压和V CE的波形(6)附加题:测输出电阻和输入电阻。

想一想怎么能用仿真测出来这两个电阻。

6. 集成运算放大器的电路如图所示,其中u I1=2sinωt(V), u I2=3sinωt (V),u I3=4sinωt(V)且f=1kHz,所有电阻均为10kΩ,要求:测输入和输出信号波形(用四踪示波器)。

7.集成运算放大器的电路如图所示,其中u I1=2sinωt(V), u I2=3sinωt (V)且f=1kHz,R2=R3=R6=R7=20kΩ,R1=R4=R5=10kΩ,要求:(1)测输入和输出信号波形(用四踪示波器);(2)根据测试的波形,计算电压放大倍数A u=u Ou I1−u I2。

Multisim电路仿真实验报告

Multisim电路仿真实验报告

Multisim电路仿真实验报告谢永全1 实验目的:熟悉电路仿真软件Multisim的功能,掌握使用Multisim进行输入电路、分析电路和仪表测试的方法。

2使用软件:NI Multisim student V12。

(其他版本的软件界面稍有不同)3 预习准备:提前安装软件熟悉其电路输入窗口和电路的编辑功能、考察其元件库中元件的分类方式、工具栏的定制方法、仪表的种类、电路的分析方法等;预习实验步骤,熟悉各部分电路。

4熟悉软件功能(1)了解窗口组成:主要组建包括:电路图编辑窗口、主菜单、元件库工具条、仪表工具条。

初步了解各部分的功能。

(2)初步定制:定制元件符号:Options|Global preferences,选择Components标签,将Symbol Standard区域下的元件符号改为DIN。

自己进一步熟悉全局定制Options|Global preferences窗口中各标签中的定制功能。

(3)工具栏定制:选择:View|Toolbars,从显示的菜单中可以选择显示或者隐藏某些工具栏。

通过显示隐藏各工具栏,体会其功能和工具栏的含义。

关注几个主要的工具栏:Standard(标准工具栏)、View(视图操作工具栏)、Main(主工具栏)、Components(元件工具栏)、Instruments (仪表工具栏)、Virtual(虚拟元件工具栏)、Simulation(仿真)、Simulation switch(仿真开关)。

(4)Multisim中的元件分类元件分两类:实际元件(有模型可仿真,有封装可布线)、虚拟元件(有模型只能仿真、没有封装不能布线)。

另有一类只有封装没有模型的元件,只能布线不能仿真。

在本实验中只进行仿真,因此电源、电阻、电容、电感等使用虚拟元件,二极管、三极管、运放和其他集成电路使用实际元件。

元件库的结构:元件库有三个:Master database(主库)、Corporate database(协作库)和User database(用户库)。

Multisim仿真实验报告

Multisim仿真实验报告

电气工程学院2011308880023电气11级2班刘思逸Multisim仿真实验报告实验一单极放大电路一.实验目的1.熟悉Multisim软件的使用方法。

2.掌握放大器静态工作点的仿真方法及其对放大电路性能的影响。

3.学习放大器静态工作点、电压放大倍数、输入电阻、输出电阻的仿真算法,了解共射极电路特性。

二.虚礼实验仪器及器材双踪示波器信号发生器交流毫伏表数字万用表三.实验步骤1.启动multisim如图所示2.点击菜单栏上的place/component,弹出如下图所示select a component对话框3.在group 下拉菜单中选择basic,如图所示4.选中RESISTOR,此时在右边列表中选中1.5KΩ5%的电阻,点击OK 按钮。

此时该电阻随鼠标一起移动,在工作区适当位置点击鼠标左键,如下图所示5.同理,把如下所示的所有电阻放入工作区6.同样如下图所示选取电容10uF两个,放在工作区适当位置7.同理如下图所示,选取滑动变阻器8.同理选取三极管9.选取信号源10.选取直流电源11.选取地12.最终元器件放置如下13.元件的移动与旋转,即:单击元件不放,便可以移动元件的位置;单击元件(就是选中元件),鼠标右键,如下图所示,便可以旋转元件。

14.同理,调整所有元件如下图所示15.把鼠标移动到元件的管脚,单击,便可以连接线路。

如下图所示16.同理,把所有元件连接成如下所示电路17.选择菜单栏options/sheet properties,如图所示18.在弹出的对话框中选取show all,如下图所示19.此时,电路中每条线路上便出现编号,以便后来仿真。

20.如果要在2N222A的e端加上一个100欧的电阻,可以选中“7”这条线路,然后按键盘del键,就可以删除。

如下图所示21.之后,点击菜单栏上place/component,添加电阻。

22.最后,电路如下:注意:该电路当中元件阻值与前面几个步骤中不一样,更改方法是:比如(要把R3从5.1千欧更改为20千欧),选中R3电阻,右键,如图所示:之后,重新选取20千欧电阻便会自动更换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模拟电子技术课程
电流负反馈偏置的共发射极放大电路仿真实验报告学号:王海洋姓名:5090309560
一、本仿真实验的目的
1.研究在电流负反馈偏置的共发射极放大电路中各个电路元件参数与电路中电
压增益A us=v o/v s、输入电阻R i、输出电阻R o以及低频截止频率f L的关系;
2.进一步理解三极管的特性以及电流负反馈偏置的共发射极放大电路的工作原
理;
3.进一步熟悉Multisim软件的使用方法。

二、仿真电路
图1 电流负反馈偏置的共发射极放大电路
注:在此电路中,三极管为BJT-NPN-VRTUAL*,设置参数为BF=100,RB=100Ω(即设置晶体管参数为β=100,r bb’=100Ω)。

三、仿真内容
1.计算电路的电压增益A us=v o/v s,输入电阻R i及输出电阻R o;
2.研究耦合电容、旁路电容对低频截止频率f L的影响:
1)令C2,C E足够大,计算由C1引起的低频截止频率f L1;
2)令C1,C E足够大,计算由C2引起的低频截止频率f L2;
3)令C1,C2足够大,计算由C E引起的低频截止频率f L3;
4)同时考虑C1,C2,C E时的低频截止频率f L;
3.采用图1所示的电路结构,使用上述给定的晶体管参数,设R L=3kΩ,R S=100
Ω,设计其它电路元件参数,满足下列要求:A us≥40,f L≤80Hz。

四、仿真结果
1.计算电路的电压增益A us=v o/v s,输入电阻R i及输出电阻R o;
仿真电路如图2所示:
图2
测量结果如下所示:
1)Vs有效值为5mv,频率为60Hz:
测得A us=-29.2,R i=5.60kΩ,R o=3.35 kΩ。

2)Vs有效值为5mv,频率为100Hz:
测得A us=-43.5,R i=3.89kΩ,R o=3.33kΩ。

3)Vs有效值为5mv,频率为1kHz:
测得A us=-76.1,R i=2.27kΩ,R o=3.31kΩ。

4)Vs有效值为5mv,频率为1kHz:
测得A us=-77.1,R i=2.25kΩ,R o=3.30kΩ。

测量数据归纳如表1所示:
表1 不同频率下的电路参数
A us R i k(Ω)R o( kΩ) Vs=5mv,f=60Hz-29.2 5.60 3.35
Vs=5mv,f=100Hz-43.5 3.89 3.33
Vs=5mv,f=1kHz-76.1 2.27 3.31
Vs=5mv,f=1MHz-77.1 2.25 3.30
2.研究耦合电容、旁路电容对低频截止频率f L的影响:
1)令C2,C E足够大,计算由C1引起的低频截止频率f L1;
仿真电路如图3所示:
图3
令C2=CE=5F,输入电压为1mv。

当f=1Mhz时V o=0.071v,因此当f=f L时V o=0.0502v。

经电路仿真,当f=19.5Hz时,V o=0.0502v。

因此f L =19.5Hz。

2)令C1,C E足够大,计算由C2引起的低频截止频率f L2;
仿真电路如图4所示:
图4
令C1=CE=5F ,输入电压为5mv。

当f=1Mhz时Vo=0.358v,因此当f=f L时Vo=0.253v。

经电路仿真,当f=5.7Hz 时,V o=0.253v。

因此f L=5.7Hz。

3)令C1,C2足够大,计算由C E引起的低频截止频率f L3;
仿真电路如图5所示:
图5
令C1=C2=5F ,输入电压为5mv。

当f=1Mhz时V o=0.353v,因此当f=f L时Vo=0.250v。

经电路仿真,当f=118Hz 时,V o=0.250v。

因此f L=118Hz。

4)同时考虑C1,C2,C E时的低频截止频率f L;
仿真电路如图6所示:
图6
原始电路基础上,输入电压为5mv。

当f=1Mhz时V o=0.354v,因此当f=f L时V o=0.250v。

经电路仿真,当f=135Hz时,V o=0.250v。

因此f L=135Hz。

3.采用图1所示的电路结构,使用上述给定的晶体管参数,设R L=3kΩ,R S=100
Ω,设计其它电路元件参数,满足下列要求:A us≥40,f L≤80Hz。

仿真电路如图7所示:
图7
令C1=Ce=1F,Rb1=100KΩ,Rb2=40kΩ,输入电压为5mv。

当f=1Mhz时输出电压为0.534v,此时输入电压为4.644mv,因此A us =115;当f=f L时V o=0.377v。

经电路仿真,当f=7.5Hz时,Vo=0.377v。

因此f L=7.5Hz。

五、结论及体会
1.实验结果分析
1)在电流负反馈偏置的共发射极放大电路中,电路中电压增益A us=v o/v s、输
电阻R i、输出电阻R o以及低频截止频率f L由各个电路元件(电阻、电容
等)参数决定;
2)在其他条件相同时,信号源频率增大时,电路中电压增益数值|A us|增大、
输电阻R i、输出电阻R o减小;
3)电路中三个电容均影响截止频率,切Ce影响最大。

2.仿真中遇到的问题以及解决方法
1)在起初设计电路时,由于要求三极管参数β=100,r bb’=100Ω,不知何种三
极管满足以上要求,后经上网查询,得知可以选择三极管为
BJT-NPN-VRTUAL*,在自己将参数设置为BF=100,RB=100Ω,问题得
到解决;
2)在做实验内容1时,起初给信号源分别加5mv、20mv、100mv电压,发现
所得放大倍数不同,怀疑产生失真,但不知如何检验失真,后想到用示波
器显示输出波形,问题得到解决。

3.使用Multisim的体会
这是我第二次使用Multisim。

第一次使用是在上学期照着实验书一步一步做的,
这次不是,没有书指导如何使用Multisim,起初想在网上下一个使用教程,但
后来发现没有必要,因为我发现这个软件设计的比较人性化,人们比较容易掌
握其使用方法。

我觉得Multisim这个软件主要有以下优点:
1)基本器件库较全,如电源、电阻、三极管等等不仅有,而且有很多的种类;
2)比较符合现实,我发现很多电路元件是可以自己制定其运行情况的(如可
以吧三极管设置成漏电等)这样在实际中更具有实用性。

3)仿真结果与现实很接近。

我也发现这个软件的一些不足之处,不如说象那种封装的器件(如芯片等较
少),此外它所含有的器件大多数是不能够自己设计、改动的。

总之,我认为这个软件的产生真的是人类的一个伟大进步。

首先我很佩服最初
有这种想法的人,通过软件模拟实际电路;其次我也很佩服设计这个软件的人,
他们不仅要掌握编程能力,还要熟悉各种电路器件的功能特性。

这个软件真的
具有很强的实用性,不仅可以把实验室搬到家,还能够使我们进一步加深对电
路元件的理解。

相关文档
最新文档