以太网技术的发展和应用研究论文
以太网技术及其发展历程 山东建筑大学 计算机网络论文

摘要以太网是一种以10M每秒的速度(Mbps)传输数据的标准,是一种世界上应用最广泛、最为常见的网络技术。
在不涉及到网络的协议细节时,很多人愿意将802.3局域网简称为以太网。
如今以太网的速度已经提高了很高,已经发展成为高速以太网。
关键词:以太网;传输数据;局域网正文以太网指的是由Xerox公司创建并由Xerox,Intel和DEC公司联合开发的基带局域网规范。
以太网络使用CSMA/CD(载波监听多路访问及冲突检测技术)技术,并以10M/S的速率运行在多种类型的电缆上。
以太网与IEEE802.3系列标准相类似。
它不是一种具体的网络,是一种技术规范。
以太网是当今现有局域网采用的最通用的通信协议标准。
该标准定义了在局域网(LAN)中采用的电缆类型和信号处理方法。
以太网在互联设备之间以10~100Mbps的速率传送信息包,双绞线电缆10 Base T以太网由于其低成本、高可靠性以及10Mbps的速率而成为应用最为广泛的以太网技术。
直扩的无线以太网可达11Mbps,许多制造供应商提供的产品都能采用通用的软件协议进行通信,开放性最好。
一、以太网的工作原理以太网采用带冲突检测的载波帧听多路访问(CSMA/CD)机制。
以太网中节点都可以看到在网络中发送的所有信息,因此,我们说以太网是一种广播网络。
以太网的工作过程如下:当以太网中的一台主机要传输数据时,它将按如下步骤进行:1、帧听信道上收否有信号在传输。
如果有的话,表明信道处于忙状态,就继续帧听,直到信道空闲为止。
2、若没有帧听到任何信号,就传输数据3、传输的时候继续帧听,如发现冲突则执行退避算法,随机等待一段时间后,重新执行步骤1(当冲突发生时,涉及冲突的计算机会发送会返回到帧听信道状态。
注意:每台计算机一次只允许发送一个包,一个拥塞序列,以警告所有的节点)4、若未发现冲突则发送成功,计算机所有计算机在试图再一次发送数据之前,必须在最近一次发送后等待9.6微秒(以10Mbps运行)。
以太网协议技术的发展历程与应用现状

以太网协议技术的发展历程与应用现状以太网是计算机网络中广泛应用的协议之一,是一种基于IEEE 802.3标准的局域网传输协议。
以太网协议最初由诺贝尔物理学奖得主鲍勃·梅特卡夫(Bob Metcalfe)等人于1972年发明,是实现计算机互联的重要技术之一。
本文将探讨以太网协议技术的发展历程与应用现状。
一、以太网协议技术的发展历程以太网协议技术的发展可以分为以下几个阶段:1. 早期的以太网:早期的以太网采用的是10Mbps传输速率,基于“冲突检测”(CSMA/CD)协议,即在每次发送数据之前,先监听信道是否被占用,如果未被占用,则可发送数据。
如果多个计算机同时发送数据,就会出现数据冲突,此时采用随机等待的方式等待一段时间后再次发送。
2. Fast Ethernet:Fast Ethernet是以太网技术的改进版,其传输速率可达100Mbps,采用了流控制技术,可以有效避免数据冲突,提高网络的传输效率。
3. Gigabit Ethernet:Gigabit Ethernet是以太网技术的又一次升级,其传输速率可达1Gbps,采用了全双工的传输模式,可以同时进行数据的发送和接收,大大缩短了数据传输的时间。
4. 10 Gigabit Ethernet:10 Gigabit Ethernet是以太网技术的最新版本,其传输速率可达10Gbps,是目前局域网中最快的传输协议。
以上各个阶段的以太网协议技术改进,都是为了提高网络的传输速率、降低数据冲突的概率,提高网络传输的效率。
二、以太网协议技术的应用现状以太网协议技术在局域网中应用广泛。
以太网协议在各种领域中均有应用,如云计算、虚拟化、企业数据中心等。
目前,以太网协议技术主要应用于以下几个领域:1. 云计算:随着云计算应用的兴起,以太网协议技术得到了广泛应用。
云计算中使用的以太网协议技术,可以提高数据传输的效率,降低延迟,提高系统的可靠性和稳定性。
2. 虚拟化:虚拟化技术是当前企业数据中心中较为流行的一种技术,在虚拟化环境中,以太网协议技术可以提高虚拟网络的传输效率,降低网络延迟,提高数据传输的安全性。
计算机网络技术的相关论文

计算机网络技术的相关论文关于计算机网络技术的论文范文一:现代计算机网络技术应用及发展摘耍:计算机网络技术是一门融合了网络技术学科、计算机技术学科和通信技术学科多方面知识的交叉学科,当下信息技术快速发展,计算机网络技术在社会各个领域都得到了广泛的普及应用,现在社会生活中,无论生产还是生活都有计算机网络技术的身影,它已经深入到社会的每个角落,对人类社会的日常生产生活具有重大影响力量。
基于此,对现代计算机网络技术的发展历程、功能、分类、应用及未来的发展进行阐述。
关键词:计算机网络技术;主机互联;网络互联;原则;发展计算机网络技术是一种创新性非常强的技术,经历了几十年的快速发展,其在政治领域、经济领域、军事领域、科技研究领域与文化领域等方面都能够产生出□大而深远的影响。
现在,人们的生活水平不断提高,对技术的需求就更大,这极大的缩短了技术革新的周期,使得计算机网络技术的更新换代的速度大大加快。
相信随着现代计算机网技术的迅速发展与进步,在未來社会发展中必然会产生极大的推动力量。
1现代计算机网络发展历程概述1.1练级终端系统第一代计算机采用的是练级终端系统,它是以单一计算机为中心,通过单一的计算机设备进行远程联机的网络系统模式,其系统终端没有CPU与内存卡,外部设备主要是依靠显示器与键盘等。
其中美国飞机订票系统在计算机主机上增加了设置的FEP前端机,是由专门设置的一台计算机设备与在美国范围内的两千余个系统终端组合而成的,这是当时最为经典的应用类型,此时网络订票系统己经具备了计算机网络的雏形。
1. 2主机互联系统随着计算机设备的逐渐升级与快速发展,以单独的计算机网络为主的网络系统逐渐不符合人们的需求而被淘汰,以通信子网为中心的主机互联系统开始被应用,这种计算机网络系统是运用多种计算机网络进行互联而形成的,它主耍是通过借助通信线路将分布在不同地方的单一计算机设备连接成为了局域性网络,从而实现计算机用户不仅能够直接使用本地计算机设备中相关的软硬件、数据信息资源等,同时还可以对计算机网络系统中其他的软硬件与信息数据资源进行应用,从而达到了资源共享的目的。
以太网技术的进化与发展

以太网技术的进化与发展以太网作为一种局域网技术,自20世纪70年代问世以来,一直在不断进化和发展。
今天,以太网已经成为了现代通信网络的基础,而它的进化也同样影响了这些网络的性能和规模。
本文就以太网技术的进化与发展进行探讨。
1. 初代以太网最初的以太网协议发布于1976年,称为“以太网防碰撞协议”(Ethernet Collision Detect,简称Ethernet CD)。
这个协议使用基带频率传输数据,并且发送数据之前需要先监听通道,确保通道空闲。
但是,由于即使在无数据时仍然需要发送空闲包,这种防碰撞方法的效率并不高。
此外,初代以太网每个传输周期中只能有一个传输活动,而且传输速率只有10Mbps,不足以满足今天的大规模网络需求。
然而,初代以太网的出现奠定了现代局域网技术的基础。
2. 发展至Gigabit Ethernet1995年,IEEE标准组织发布了以太网的第一个千兆位数据传输标准--Gigabit Ethernet。
由于它的速度是以前的100倍,同时也采用严格的标准来规范数据传输和流控制,因此在商业和科研环境中被广泛使用。
此外,Gigabit Ethernet还提供了多种优化特性,例如数据包过滤、优先排队和切片流技术,这使它能够为像VoIP和视频流这样的多媒体应用程序提供可靠的带宽。
3. 10 Gigabit Ethernet10 Gigabit Ethernet(10GbE)标准在2002年被IEEE发布。
这个标准在速度上又将以太网的速度提高到了10Gbps,这比上一代Gigabit Ethernet快了10倍。
同时,10GbE还为现代数据中心和超级计算机提供了更快、更可靠和更实用的局域网服务。
在这一代网络技术中,10GbE采用了全局通道(CX4)和光纤通道技术(Fiber Channel),这使得10GbE成为了现代数据中心中不可或缺的网络技术之一。
4. 25、40、50和100 GbE在以太网技术发展的道路上,25、40、50和100 GbE都是很重要的一步。
以太网技术的发展与应用

以太网技术的发展与应用1.概述随着网络技术飞速发展,多媒体应用愈来愈多,对网络的需求也越来越大,尤其是在服务器端上,100Mbps的速度已不能满足要求。
于是Gigabit Ethernet诞生了。
就如同Fast Ethernet的起源一样,Gigabit Ethernet也必须要能够向下相容Fast Ethernet以及Ethernet。
目前中大型企业新一代的区域网络规划中,Gigabit Ethernet普遍使用在区域网络的骨干上,并以光纤介面为主流。
在铜线(UTP)Gigabit部分,短期内则还不会像100baseTX那样快速延伸至桌面。
以太网最初是由Xerox公司研制而成的,并且在1980年由DEC公司和Xerox公司共同使之规范成形。
后来它被作为802.3标准为电气与电子工程师协会(IEEE)所采纳。
以太网的基本特征是采用一种称为载波监听多路访问/冲突检测CSMA/CD(Carrier Sense Multiple Access/Collision Detection)的共享访问方案,即多个工作站都连接在一条总线上,所有的工作站都不断向总线上发出监听信号,但在同一时刻只能有一个工作站在总线上进行传输,而其他工作站必须等待其传输结束后再开始自己的传输。
冲突检测方法保证了只能有一个站在电缆上传输。
早期以太网传输速率为10Mbps。
2.以太网技术标准采用CSMA/CD(载波监听多路存取和冲突检测)介质访问控制方式的局域网技术,最初由Xerox公司于1975年研制成功,1979年7月~1982年间,由DEC、Intel和Xerox三家公司制定了以太网的技术规范DIX,以此为基础形成的IEEE802.3以太网标准在1989年正式成为国际标准。
在20多年中以太网技术不断发展,成为迄今最广泛应用的局域网技术,产生了多种技术标准。
10base5;是原始的以太网标准,使用直径10mm的50欧姆粗同轴电缆,总线拓扑结构,站点网卡的接口为DB-15连接器,通过AUI电缆,用MAU装置栓接到同轴电缆上,末端用50欧姆/1W的电阻端接(一端接在电气系统的地线上);每个网段允许有100个站点,每个网段最大允许距离为500m,网络直径为2500m,既可由5个500m长的网段和4个中继器组成。
以太网的发展历程与现状

以太网的发展历程与现状以太网(Ethernet)是计算机网络技术中的一种,通过局域网(LAN)连接计算机与其他设备,诞生于20世纪70年代。
本文将为大家探讨以太网的发展历程与现状。
1. 初代以太网在20世纪70年代初期,市场上的计算机数量增长迅速,但相应的数据传输技术却无法应对数据传输的需求。
于是诞生了以太网,最初只能传输10Mbps的数据速率。
它的传输速度虽然与现代网络相比较较慢,但是它的数据传输速度和稳定性一直被认为是计算机行业的标准。
2. 发展至以太网2在20世纪80年代,以太网的发展进入了以太网2阶段。
在这个阶段中,以太网网络的数据传输速度提高到了100Mbps,并在网络中引入了交换机,从而提高了网络的安全性和可靠性。
3. 以太网的世界标准化为了促进以太网技术的发展,IEEE(电气和电子工程师学会)决定对以太网进行标准化。
在1983年,IEEE批准了10Base-T的标准,这是一种使用双绞线传输数据的技术,使得以太网在这之后的趋势上得到了显著的发展。
4. 以太网的现状如今,以太网一直处于不断发展的变化中。
在现代网络中,以太网已经成为常见的技术,并且继续被用于各种不同的应用中。
在今天的以太网技术中,传输速度提高到了百Gbps的级别,并且技术越来越倾向于无线网络。
5. 未来的以太网发展尽管以太网技术已经过了40多年的时间,但它仍在不断变化,以求更好地满足日益增长的网络需求。
随着技术的发展,未来的以太网将继续追求更高的传输速度和更低的延迟,同时也会更加注重网络安全。
在总结这篇文章之前,值得注意的是,以太网技术虽然已经被广泛适用,但其他技术的涌现可能会对它产生一定程度的影响。
例如,随着人工智能、区块链和物联网等技术的锤炼,未来的网络环境可能会更加多样化,并且需要新的技术来提供更好的数据传输服务。
在这个不断变化的网络世界中,以太网在过去四十多年中一直处于前沿地位,并继续扮演着至关重要的角色。
我们希望未来的以太网在不断革新中继续为我们服务,为我们的生活带来更多的便利。
以太网技术的发展历史和应用价值

以太网技术的发展历史和应用价值以太网技术是一种局域网(LAN)数据传输协议,起源于20世纪70年代末和80年代初。
最初,以太网技术是由Xerox公司的研究人员发明的,旨在解决公司内部数据传输的问题。
随着以太网技术被逐渐应用于市场,它发生了不断的变革,从最初的10Mbps、100Mbps到现在的千兆以太网,再到10千兆以太网和40千兆以太网,以及最新的百千兆以太网。
在20世纪80年代和90年代,以太网技术开始逐渐被商业、政府机构和大学采用。
它的主要优点是低成本、易于部署和维护、高效、可靠和灵活性强,因此逐渐成为了全球范围内电脑局域网常用的数据传输协议之一。
今天,以太网技术得到了广泛的应用,不仅仅是在办公室、金融、交通等行业,还广泛地应用于数据中心、云计算、智能家居、工业自动化、智慧城市等领域。
以太网技术的应用价值不仅仅在于其数据传输速度快、可扩展性强等方面,更在于它为各行各业的生产和管理提供了更高效而可靠的数据传输方式。
以太网技术为数据的传输和存储提供了高速、安全和稳定的工具,例如,我们现在常用的云存储技术就依赖于以太网技术的高速传输数据和存储技术来实现。
同时,以太网技术在工业自动化和物联网的应用也有着重要的地位。
工业自动化中各个设备之间的连接就需要以太网技术来进行,而物联网互联的基础也是以太网技术。
以太网技术的应用不仅仅局限于传输数字数据,同时还广泛应用于音频、视频和信号控制等多个领域。
随着技术的不断发展,以太网技术也在不断的创新和完善。
高速以太网技术能够支持更高速的数据传输和更快的数据处理速度,而新的标准和协议也进一步完善了以太网的安全性、可靠性和效率。
例如,虚拟局域网(VLAN)技术使得数据在局域网内更安全而且更容易管理,而质量服务(QoS)技术则保证了不同应用所需的带宽和网络连接质量。
总的来说,以太网技术的发展历史以及广泛的应用价值可以说是IT领域的一个重大成就。
随着信息技术的不断发展,以太网技术也将不断推陈出新,为各个行业的管理和生产提供更高效、更可靠的数据传输方式。
以太网技术的发展和应用研究论文

以太网技术的发展和应用研究论文以太网技术的发展和应用研究论文论文关键词:电信级以太网;以太网技术要求;以太网技术;以太网技术应用论文摘要:文章首先提出了电信级以太网技术的基本概念,然后介绍了电信级以太网的基本技术要求和几种典型的电信级以太网技术,并分析了电信级以太网技术的发展前景。
1、电信级以太网的基本技术要求1.1业务标准划分EPL(以太网专线):具有两个UNI接口,每个UNI仅接入一个客户的业务,实现点到点的以太网透明传送,基本特征是传送带宽为专用,在不同用户之间不共享。
EVPL(以太网虚拟专线):具有两个或多个UNI接口,每个UNI 接口接入一个或多个客户的业务,实现点到点的连接,基本特征是UNI-N接口或传送带宽在不同用户之间共享。
EPLAN(以太网专用局域网):具有多个UNI接口,每个UNI仅接入一个客户的业务,实现多个客户之间的多点到多点的以太网连接,基本特征是传送带宽为专用,在不同用户之间不共享。
EVPLAN(以太网虚拟专用局域网):具有多个UNI接口,每个UNI可以接入多个客户的业务,实现多个客户之间的多点到多点的以太网连接,基本特征是在EPLAN基础上增加了不同用户共享传送带宽的功能。
1.2服务质量(QoS)服务质量(QoS)的量化指标主要有两个方面:一方面是由呼叫与连接建立的速度,包括端到端延迟(End-to-endDelay)和延迟变化(Jitter);另一方面是网络数据的吞吐量,吞吐量的主要指标可以表明可用的带宽大小,吞吐量决定着网络传输的流量,与带宽、出错率、缓冲区容量和处理机的能力等因素有关。
早期的以太网在局域网内主要承载数据业务,数据业务的特点是对时延不敏感,TCP的重传机制又可以容忍以太网上少量数据包的丢失,因此不需要差异化的服务质量保证。
但对于电信级以太网技术,由于其需要承载综合业务,这种不区分流量类型的Besteffort服务难以保证业务的质量。
电信级以太网实现QoS有IntServ(集成业务体系结构)和Diff-Serv(区分业务体系结构)两种方法,通常使用后者,其具体实现过程包括流分类、映射、拥塞控制和队列调度。
以太网技术的发展与应用

以太网技术的发展与应用以太网技术是一种通用局域网技术,它以一种高效、安全的方式传输数据。
它的发展和应用对于我们的生活和工作都产生了深远的影响。
在未来,以太网技术的重要性将会越来越突出。
本文将会探讨以太网技术从诞生到发展及其应用,以及一些未来的趋势和发展方向。
1. 以太网的诞生和发展以太网技术最早是由Xerox公司的研究人员研制出来的,该技术最初是为了在局域网内传输数据而设计的。
在20世纪80年代初,以太网技术经过不断的发展,逐渐得到了广泛的应用。
之后,该技术开始支持多种协议,包括TCP/IP等协议,进一步提高了其适用性。
当然,与传统的以太网相比,以太网技术在过去几年中也经历了一些变化。
在过去几年中,以太网技术已经迅速发展成为了高速以太网,以支持更高的传输速度。
在2000年左右,10G以太网技术已经成为了一种行业标准,这需要更高的性能和更高的带宽。
2. 以太网技术的应用在当前的互联网环境下,以太网技术被广泛应用于各种场合。
现在, 以太网技术已经广泛应用于办公网、校园内部网、工业生产网络、交通运输网络等各种领域。
它已经成为了数百万个网络的标准,支持着各种应用。
可以说,以太网技术的广泛应用对于我们的生活和工作都产生了深远的影响。
它可以支持我们的办公、娱乐、交流等各种活动,并且还可以在数据中心、云计算等领域发挥极大的作用。
3. 未来的趋势和发展将来,以太网技术将会继续取得重大突破。
其中一个趋势是由于数据传输量的不断增长,以太网技术需要提供更高的带宽。
因此,研究团队正在不断研究一些更高速的以太网技术,这些技术可能会支持更高的传输速度,并能够更好地应对未来的数据传输需求。
另一个趋势是以太网技术的智能化。
近年来,人工智能技术的快速发展已经深刻影响着各个行业和领域。
在未来,以太网技术将会和人工智能技术相结合,以提高其自动化和智能化水平,以满足不同场合的需求。
此外,以太网技术还将与其他技术相结合,以进一步提高其适应性和运营效率,例如与5G技术的结合,以实现实时数据的更快传输和更低时延等。
以太网技术分析及应用

以太网技术分析及应用随着互联网的快速发展,以太网技术已经成为人们日常生活中不可或缺的一部分。
它是将计算机网络连接起来的一种通用技术,不受制于特定的硬件设备。
本文将对以太网技术进行深入分析,并探讨其在实际应用中的作用和优势。
一、以太网技术的特点以太网技术是一种基于局域网的计算机通信技术,它的特点主要有以下几点:1. 数据传输速度快以太网技术传输速度非常快,普通的以太网传输速度可以达到10Mbps、100Mbps、1Gbps等多种速度等级。
现在以太网技术所支持的速度已经提高到数十Gbps,并且随着技术的不断革新,速度还将不断提升。
2. 使用成本低以太网技术的硬件和软件的成本都很低,相对于其他网络技术而言,以太网的使用成本要低得多。
因此,它可以提供更加经济的网络方案。
3. 高可靠性以太网技术还具有高可靠性,即使在网络拓扑结构发生变化时,以太网仍然可以保持正常的运行。
因此,以太网技术可以为用户提供更稳定的服务。
4. 灵活性强以太网技术可以同时支持多种不同的应用程序和协议,因此,用户可以根据自己的具体需求来进行设置和优化。
同时,在应用层面上,以太网技术也可以满足用户多样化的需求。
二、以太网技术的实际应用以太网技术已经在众多领域得到广泛应用。
下面,将介绍一些以太网技术在实际应用中的具体作用和应用场景。
1. 工业自动化控制系统以太网技术在工业自动化控制系统中的应用非常广泛。
它可以帮助企业建立起高效、可靠的生产控制系统,提高工作效率和工作质量。
通过互联网,工业设备与设备之间可以快速传输数据,实现物理设备的联网互通和自主智能化。
2. 云计算和数据中心云计算和数据中心是现代企业进行互联网和网络技术应用的重要场景。
通过以太网技术,企业可以实现更加高效的计算资源管理和数据中心管理,帮助企业提高业务效率和服务质量。
同时,以太网技术也可以帮助企业建立起高速、高可靠的数据传输网络,支持企业的网络应用。
3. 传媒和影视行业以太网技术在传媒和影视行业中的应用也非常广泛。
以太网技术发展综述

Abs t r a c t :At pr e s e nt ,t he Et he me t ha s a l r e a d y be e n u s e d i n t h e who l e I nt e me t a nd I n t r a ne t . Fr o m t he PO N ,W LAN ,PPPO E t o d a t a
一
定 的增 强 。
由于 传 统 以 太 网 是 所 有 用 户 共 享 全 部 带 宽 ,处 于 同 一 个 冲 突域 , 很 快 基 于 网桥 的技 术 二 层交 换 机 出现 了 。 交 换 式 以 太 网 成 功 解 决 了 共 享 带 宽 的问 题 ,交 换 机 上 2个 用 户 之 间 是 独 享带宽的 , 将 冲 突 域 限 定在 y  ̄ i J , 的 范 围内 。 1 0 0 B a s e — T X( I E E E 8 0 2 . 3 u 1 9 9 5年 ) ,普 及 了 全 双 工 工 作 方 式 ,提 升 了传 输 效 率 ,
有得到广泛应用的 网络技 术都与以太网有 关。文章对 以太网的发展 历史和趋势进行 了综述 , 对重点技 术和新技术进行 了详述 ,
以 太 网与 I P技 术 的相 辅 相 成 、 相 互依 存 和相 互促 进 , 引 领 了 网络 “ I P化 ” 和“ 以太 化 ” 发 展 大趋 势I 1 1 。
1 0 0 0 B a s e — L X ( I E E E 8 0 2 . 3 z 1 9 9 8年 ) ,干 兆 以 太 网 , I E E E于
基 本特 征是 采用 载 波 临 听 多路 访 问 / 冲 突 检 测 CS MA / C D 的
共享 访 问机 制 , 位于 同一 条 总 线上 的 多 个 工 作 站 , 时 刻 监 听 总 线是否空闲 , 只 要 检 测到 总 线 上 有数 据 传输 , 则必须等待传输 结 束后 才 能 发送 自 己 的数 据 ,冲 突 检 测 机 制 保 障 了 同 一 时 刻
以太网技术的现状及应用趋势

以太网技术的现状及应用趋势统计数字表明,目前全球85%的网络采用以太网技术。
以太网技术的优势是成本低、灵活,在接入领域使用以太网技术作为产品开发平台已经成为一个必然的发展趋势,有一统天下之势。
以前用以太网技术开发的相关产品,比如以太网交换机和无线局域网等设备,主要应用于企业环境,不能很好地满足商业应用领域或企业客户业务与网络融合更加紧密的需要,比如管理性不强、对业务的识别控制能力不强,无论是在企业网还是在电信网中,以太网产品都需要加以变革才能真正地适应用户的需求。
一、以太网技术的发展趋势1.端到端QoS是未来的发展方向经过十几年的发展,以太网的新业务和新应用不断涌现,这意味着更多的网络资源耗费,仅仅保证高带宽已经无法满足要求。
如何保证网络应用的端到端QoS已经成为以太网面临的最大挑战。
传统的建网模式无法满足现有业务的QoS要求,网络应用迫切要求设备对QoS的支持向边缘层和接入层发展。
在过去,高QoS意味着高价格,但是ASIC技术的发展使具备强大QoS能力的低端设备成为可能,使网络的QoS从集中保证逐渐向端到端保证过渡。
目前,网络边缘设备已经可以根据端口、MAC地址、VLAN信息、IP地址甚至更高层的信息来识别应用类型,为数据包打上优先级标记(如修改IEEE802.1P、IP DiffServ 域),核心设备不必再对应用进行识别,只需根据IP DiffServ、IEEE802.1P进行交换,提供相应的服务质量即可。
2.可控组播技术基本组播技术,存在以下问题:效率低:二层网络对组播支持不足,网络资源浪费严重。
认证难:组播在协议中没有提供用户认证支持,用户可以随意加入一个组播组,并可以任意离开。
管理难:组播源缺少有效的手段控制组播信息在网络上传送的方向和范围。
计费难:组播协议没有涉及到计费部分。
组播源无法知道用户何时加入,何时退出,无法统计出某个时间网络上共有多少个用户在收看组播节目,难以对用户进行准确计费。
以太网技术发展研究

途 径 , 升 级 更 容 易 。③ 低 成 本 。 以 太 技 术 无 论 在 使 局 域 网 、 人 网 还 是 将 可 能 进 人 的城 域 网 、 域 网 在 接 广 价 格 上 与 其 他 技 术 相 比都 具 有 优 越 性 。 ④ 培 训 成 本 低 。因为不 同版本 以太 网的帧结构 和 网络拓扑结构 是一 致 的 , 准 化 程 度 高 , 此 它 的 培 训 成 本 比 较 标 因 低 。 而 且 几 乎 所 有 的操 作 系 统 和 应 用 协 议 都 与 以太 网兼 容 。 ⑤ 不 断 提 高 的 QD s和 网 管 能 力 。 8 2. p 0 1、 8 2. q和 8 2.w 使 以 太 网 技 术 具 有 优 先 级 控 制 、 0 1 0 1 VL AN 和 类 似 于 S DH 的 快 速 自愈 能 力 , 且 可 利 用 并 MPL S提 供 具 有 QD s的宽 带 服 务 。
维普资讯
第 7 总第 1 7 期 3 期
2 0 年 4月 07
内 蒙 古 科 技 与 经 济
In rMo g l ce c cn lg & Ecn my n e n oi S in eTeh oo y a oo
No 7.t e1 7 his e . h 3 t Su Ap . 0 7 t2 0
I E 0 . a /EEE 0 3 标 准 。 接 着 2 0 EE 8 2 3 b I 8 2. z 0 0年 又 制 订 了 l 0 0 s — X 以 太 网 协 议 草 案 , 即 O 0 Bae I E 0 . a 标 准 草 案 。3 EE 8 2 3 e 0来 年 的 历 史 , 于 技 术 由
以太 网技 术 发展研 究
何 永 成
以太网论文

符合要求的城域以太网设备测试方法一、引言研究城域以太网设备的功能及性能的测试方法,可以更好地评估以太网设备建城域网的优点和存在的不足,可以用来指导城域以太网设备的测试,也可以用以指导一致J险测试软件的开发及自动测试平台的开发。
有了统一的测试方法,就可以对各厂家的城域以太网设备进行评估测试,并使测试结果具有可比性。
测试的结果对于运营商在选择城域以太网技术及选择城域以太网设备具有指导和借鉴作用。
本文主要是结合城域以太网的设备与技术特点,分析测试需求,研究测试方法、划分与整理测试用例,提出适用于城域以太网设备与技术的主要测试方法。
二、城域以太网技术以太网技术发展经历了四个阶段,即以太网阶段、快速以太网阶段、千兆以太网阶段和10G以太网阶段。
l OM以太网和快速以太网已经垄断了LAN领域,有超过95%的用户使用以太网连接其内部网络。
千兆以太网发展起来后,由于它具有简单、灵活、成本低廉、可扩展性强、与IP技术有天然的适应性等特点,已经广泛应用于城域网领域。
随着l OG以太网技术的日趋成熟,以太网正在向广域网迈进。
目前,以太网的应用已经涵盖从桌面、校园网/企业网、接人网、城域网甚至骨干网的各个方面。
随着以太网技术的发展,以太网技术为基础组建的多业务城域以太王和宇中国电信集团北京研究院技术部高级工程师网,具有价格便宜、管理简单、应用普遍等优点。
利用以太网技术或将其同IP, MPLS技术相结合,能较好地解决以太网技术应用于城域网的一些关键问题,包括用户的认证、计费问题,快速的故障保护倒换问题及QOS的保障等。
城域以太网已成为组建城域网的解决方案之一。
1.城域以太网的核心技术城域以太网的核心技术主要有以太网的应用技术和以太网安全技术。
(1)利用以太网组建城域网的应用技术,主要包括Spanning Tree技术、VLAN技术、VLAN 聚和、VLAN堆叠、VLAN的动态管理刀ARP技术、GM RP技术、以太网的QoS/CoS及以太网本身的各种流控机制等。
万兆以太网在数字电视上应用论文

万兆以太网在数字电视上的应用摘要:数字电视从节目制作到信息的传输、接收和显示它与模拟电视不同的是它运用数字技术对信息进行处理、传输、接收和显示。
而以太网又使数字电视与网络很好的链接在一起,这使数字电视又完成了一次伟大的革命。
本文根据万兆以太网的背景、应用以及发展前景来探讨万兆以太网的应用。
关键词:万兆以太网;数字电视;发展背景;应用;展望中图分类号:tp393.11 文献标识码:a文章编号:1007-9599 (2011) 24-0000-01gigabit ethernet using in the digital tvzhu xiaodong(product quality supervision and inspectioninstitute,ningbo 315000,china)abstract:digital tv from program production to transmission of information,receive and display analog tv is the use of digital technology on informationprocessing,transmission,reception and display.ethernet also make a good digital television network link together,which makes digital television also completed a great revolution.to explore the background,applications and prospects for development of the gigabit ethernet gigabit ethernet applications.keywords:gigabit ethernet;digital tv;development background;application;outlook一、万兆以太网技术发展背景当前最为常见的是10m以太网以及1oom以太网,但随之时代的发展1oom以太网作已经满足不了用户的需求。
以太网技术的应用与发展

以太网技术的应用与发展随着信息技术的迅猛发展,网络技术也在不断创新,以满足人们日益增长的需求。
以太网技术作为广泛应用的局域网技术,也在不断地发展与应用。
一、以太网技术的发展历史以太网技术起源于20世纪70年代的Xerox Palo Alto Research Center(PARC),最初的以太网速率为2.94Mbps,使用同轴电缆,主要用于打印机和终端设备的连接。
80年代后期,以太网速率逐渐提升到10Mbps,并开始在企业和学校中广泛使用。
90年代,以太网技术开始快速发展,出现了100Mbps的快速以太网技术和1Gbps的千兆以太网技术。
2000年,出现了10Gbps的万兆以太网技术,并逐渐应用于数据中心和高性能计算等领域。
二、以太网技术的应用领域以太网技术广泛应用于各个领域,包括企业、教育、政府、医疗、金融、通讯等。
在企业领域,以太网技术被广泛应用于局域网和广域网中,用于数据传输和通讯。
在教育领域,以太网技术用于学校的教学和管理系统中,实现校园内的信息化建设。
在政府领域,以太网技术被广泛应用于政务网络和公共服务系统中,为政府的各类机构提供快速、可靠、安全的数据传输和通讯服务。
在医疗领域,以太网技术用于医疗信息系统中,实现医院内各部门之间的数据共享和协作,提高医疗服务的效率和质量。
在金融领域,以太网技术用于银行、证券等金融机构的信息系统中,为金融业的数据传输和通讯提供支持。
在通讯领域,以太网技术用于各类通讯设备中,如路由器、交换机、网卡等,实现不同设备之间的数据传输和通讯。
三、以太网技术的未来发展趋势以太网技术在未来的发展中,将向高速、高效、安全和可靠方向发展。
高速领域,以太网技术将继续提高传输速率,实现更高效的数据传输和通讯。
高效领域,以太网技术将更好地支持数据中心、云计算等高性能应用,实现数据中心网络的高效管理和优化。
安全领域,以太网技术将更好地支持网络安全与隐私保护等方面的需求,为网络安全提供更可靠的支持。
以太网技术的进展与未来

以太网技术的进展与未来在现代社会中,计算机技术的飞速发展已经成为了基础设施建设的核心。
而以太网作为一种广泛应用于计算机网络中的局域网技术,一直在推动着网络技术的不断发展与改进。
本文将从以太网技术的起源入手,讲述其发展和现状,并展望其未来可能的发展方向。
一、起源以太网起源于20世纪60年代,在当时,计算机网络主要采用的是非常贵重的主机间连接装置,这些主机连接装置需要高级技术和极高的成本,因此,并没有广泛应用的市场。
在这种情况下,就需要一种新的技术来使计算机网络能够更加普及和实用。
1973年,美国Xerox公司的Robert Metcalfe提出了以太网技术,并将其命名为“以太(Ethernet)”,这就是以太网技术的起源。
以太网最初的速率只有2.94Mbps,采用细同轴电缆作为传输介质,成本高昂,但是由于它的共享式结构和数据包交换方式得到了广泛的应用,随着技术和市场的发展,以太网技术不断升级和优化,逐渐发展成为了支持高速数据交换的现代化网络技术。
二、发展1.速率的提高随着以太网技术的不断升级和普及,网络应用的需求也不断提高。
因此,以太网的速率也在不断提高,从最初的2.94Mbps,发展到10Mbps,100Mbps,1Gbps,10Gbps,50Gbps,200Gbps等速率级别,无论是在传输速率还是吞吐量方面,以太网技术都得到了长足的进步。
2.传输介质的多样化在以太网的发展过程中,传输介质也经历了从细同轴电缆到双绞线、光纤的演变。
现在以太网技术主要基于双绞线和光纤的传输介质,这些介质具有传输速度快、信号传输质量好、支持长距离传输等特点,能够更好地满足现代网络应用的需求。
3.多种拓扑结构以太网的发展还注重拓扑结构的多样化,从原始的总线结构到环形、星型、树形等多种拓扑结构,以适应不同应用场景和应用要求。
4.协议的优化在以太网技术的发展中,相关的协议也得到了不断的优化,比如:TCP/IP协议、ARP协议、DHCP协议等,这些协议可有效地解决了数据传输过程中出现的一些困难。
以太网的发展历程与前景分析

以太网的发展历程与前景分析董文鑫(99714042)提要:目前,网络主干之间基本上都实现了光纤连接.但是,“最后100米”的问题仍摆在我们面前,而以太网能够合理地利用现有条件来满足目前对网络的需求,其价格又极为底廉,不失为一种组建局域网的好方案。
本文对以太网的发展历程进行了回顾,并分析了它的工作原理,最后,展望了其良好前景。
关键词:以太网城域网应用前景1. 以太网是ETHERNET的中文译名,是一种以10M每秒的速度(Mbps)传输数据的标准,是一种世界上应用最广泛、最为常见的网络技术。
在不涉及到网络的协议细节时,很多人愿意将802.3局域网简称为以太网。
802.3局域网是一种基带总线局域网,最初是美国斯乐(Xerox)公司的Palo Alto研究中心(简称为PARC)于1975年研制成功的,当时的数据率为2.94Mb/s.它以无源的电缆作为总线来传送数据帧,并以曾经在历史上表示传播电磁波的以太(Ether)来命名.1981年斯乐公司与数字装备公司(Digital)以及英特尔公司(Intel)合作,联合提出了以太网的规约[ETHER80].1982年修改为第二版规约,即DIX Ethernet V2,成为世界上第一个局域网产品的规约(DIX是这三个公司名的缩写).这个标准后来就成为IEEE 802.3标准的基础.在20世纪90年代中期,称为快速以太网(100 Mbps)的技术作为一项标准出现在市场上,并迅速被那些看到了市场对于更高性能网络的需求的企业所接受。
数据传输速率为100Mbps的快速以太网是一种高速局域网技术,能够为桌面用户以及服务器或者服务器集群等提供更高的网络带宽。
电气和电子工程师协会(IEEE)专门成立了快速以太网研究组评估以太网传输速率提升到100Mbps的可行性。
该研究组织为快速以太网的发展确立了重要目标,但是在采用哪一种媒体访问方法的问题上却产生了严重的分歧,最终导致研究小组分化为快速以太网联盟和100VG-AnyLAN(也是一种使用集线器的100Mb/s高速局域网,它综合了现有以太网和令牌环的优点.标准802.12.)论坛两个不同的组织。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
以太网技术的发展和应用研究论文
关键词:电信级以太网;以太网技术要求;以太网技术;以太网技术应用
论文摘要:文章首先提出了电信级以太网技术的基本概念,然后介绍了电
信级以太网的基本技术要求和几种典型的电信级以太网技术,并分析了电信级
以太网技术的发展前景。
1、电信级以太网的基本技术要求
1.1业务标准划分
EPL(以太网专线):具有两个UNI接口,每个UNI仅接入一个客户的业务,实现点到点的以太网透明传送,基本特征是传送带宽为专用,在不同用户之间
不共享。
EVPL(以太网虚拟专线):具有两个或多个UNI接口,每个UNI接口接入
一个或多个客户的业务,实现点到点的连接,基本特征是UNI-N接口或传送带
宽在不同用户之间共享。
EPLAN(以太网专用局域网):具有多个UNI接口,每个UNI仅接入一个客户的业务,实现多个客户之间的多点到多点的以太网连接,基本特征是传送带
宽为专用,在不同用户之间不共享。
EVPLAN(以太网虚拟专用局域网):具有多个UNI接口,每个UNI可以接
入多个客户的业务,实现多个客户之间的多点到多点的以太网连接,基本特征
是在EPLAN基础上增加了不同用户共享传送带宽的功能。
1.2服务质量(QoS)
服务质量(QoS)的量化指标主要有两个方面:一方面是由呼叫与连接建立的速度,包括端到端延迟(End-to-endDelay)和延迟变化(Jitter);另一方面是网络数据的吞吐量,吞吐量的主要指标可以表明可用的带宽大小,吞吐量
决定着网络传输的流量,与带宽、出错率、缓冲区容量和处理机的能力等因素
有关。
早期的以太网在局域网内主要承载数据业务,数据业务的特点是对时延不
敏感,TCP的重传机制又可以容忍以太网上少量数据包的丢失,因此不需要差
异化的服务质量保证。
但对于电信级以太网技术,由于其需要承载综合业务,
这种不区分流量类型的Besteffort服务难以保证业务的质量。
电信级以太网实现QoS有IntServ(集成业务体系结构)和Diff-Serv(区分业务体系结构)两种方法,通常使用后者,其具体实现过程包括流分类、映射、拥塞控制和队列
调度。
1.3电信级可靠性
传统的以太网使用链路聚合和生成树协议进行保护,链路聚合耗费大量的
线路和端口资源,不适合城域网,生成树协议/快速生成树协议在链路出现故障时的恢复时间都在秒级,远远大于电信级要求的50ms。
电信级以太网技术可以
采取一定的手段保证业务倒换时间小于50ms,如采用MPLS或弹性分组环(RPR)等技术。
除了网络级保护,节点设备也采用了冗余技术,如双处理器架构的高端交
换设备,提供主备倒换功能,当出现故障时可以很快倒换,倒换时间一般在毫
秒级,不影响用户业务。
1.4网络安全
对于电信级以太网来说,保证设备和网络的安全性是一项十分重要的工作,需要采取一定的措施防止非法进入其系统造成设备和网络无法正常工作,以及
某些恶意的消息影响业务的正常提供。
传统以太网的安全问题已经通过VLAN技术划分虚拟网段得到解决。
但随着互联网的发展,近年来网络经常遭受蠕虫等网络病毒以及黑客的攻击,全网瘫
痪的案例时有发生,合法用户的有效带宽、用户的信息安全难以得到保证。
因
此在建设电信级以太网时,必须考虑如何保证网络的安全性。
比较常见的以太
网安全解决方案是通过ACL(访问控制列表)或者过滤数据库来过滤非法数据;端口镜像技术可以将任一端口的输入输出流量复制到指定端口输出,帮助网络
管理者监控网络的数据内容;一些高端的网络设备具有强大的应用感知和网络
级自动免疫能力,能够一定程度地自动感知并过滤不安全的数据流。
1.5以太网的管理
电信级以太网能够提供完善强大的网管,并能提供端到端的统一网管能力、集群管理能力、堆叠管理以及可视化图形管理。
除了常规的配置、监控、用户
数据采样分析等,完善的网络管理还能自动发现网络故障,并能及时恢复,能
够自动发现新加入的业务节点,能够配置端到端的业务;网管还能够测量端到
端的性能,实时掌控网络的运行情况。
2、电信级以太网技术应用
2.1宽带流量汇聚
低成本、高可靠的二层的以太网汇聚;汇聚DSLAM、FTTH和LAN等宽带接
入流量,以及软交换中AG和3G等接入层流量;统一的以太汇聚网络,减少运
营商投资成本。
在宽带接入网汇聚层,可以采用电信级以太网设备直接提供以太网接口作
为网络边缘的融合节点,优化数据业务传送,提高带宽利用率,增强组网灵活性,提供对业务的保护;同时利用增强型以太网的二层交换/汇聚功能,可以节省汇聚节点的业务端口,有利于降低网络成本。
在宽带接入网接入层,可以采用增强型以太网设备完成对大客户以及软交换中AG和3G等流量的可靠接入。
利用增强型以太网设备,配置灵活,业务接口丰富,低成本,并具有完善的L2交换和汇聚功能的特点,可以考虑替代部分传送网络设备,降低总体网络成本。
2.2大客户专网或接入应用
商业用户或专网用户ARPU值较高,是运营商重点开发的对象。
基于电信级以太网设备可以开展视频、数据、语音等综合业务,并可采用电路仿真方式提供TDM业务的接入。
在解决大客户专线业务的初期,汇聚层可利用电信级以太网设备组成GE环网,从而完成大客户的TDM、以太网专线业务的接入、承载和调度,使网络支持的业务从2M电路到以太网专线可以平滑过渡,保证用户网络和业务的发展。
如图中所标示的,在用户业务量不大时,可通过N×E1、155M、FE/GE等接口将业务直接上联到城域网中已有的MSTP传输网上,或通过FE/GE等接口直接上联到城域网的汇聚层交换机或多业务路由器。
随着业务的不断增长,后期还可通过下放千兆环网、上拉万兆环网等方式将多业务分组承载网络进一步向地市、县和城域延伸,最终形成提供覆盖完善的多业务分组化大客户承载网。
用户末端覆盖和业务接入方面的.实现方式多种多样:既可在业务种类单一时采用光纤连接方案,也可像图中所示的在业务种类复杂时采用N×E1、以太网交换机、路由器、EPON等技术作为末端接入。
大客户接入点的不确定性,决定多种网络拓扑形式并存的现状。
采用电信级以太网设备组建的网络在结构、容量、管理和发展上均以满足大客户业务的开展为基准,提供丰富的业务种类和可定制服务,并构成"业务发展-网络完善-业务发展"的良性循环。
在大客户业务管理方面:可通过基于SNMP的网络级管理系统,负责专线的业务配置、管理以及内部专线业务的监控。
在业务营销上也是非常有利的武器,由于其能提供以太网透传、以太网VLAN、TDM仿真等业务,而且建网成本较低、用户侧设备非常节省,因此对运营商和客户都具有非常大的吸引力。
2.3中小城市的基础数据承载网
随着网络的不断融合和新业务(如Triple-play等)的涌现,现有城域网逐渐向层次化和分组化的方向进行演进。
因此,未来的城域网是业务驱动的网络:业务与控制分离,控制与承载分离,目标是使业务真正独立于网络,灵活有效地实现业务提供。
其中,城域承载网作为运营商提供业务的基础平台,需
要具备新的特性和功能,不断提高用户的体验质量,才能满足日益增加的业务
需求,降低用户离网率,提高ARPU值等增值收益。
在逐步演进的过程中,在中小城市可以考虑将原有的SDH接入层仍然保留,作为A平面,另外新建电信级以太网网络作为B平面。
新建网络主要完成对原
有网络业务分流和新业务承载。
具备灵活的拓朴提供和业务保护及控制能力,
可采用FE、GE、N×GE、10G和N×10G方式平滑升级。
结束语
为了能够满足未来几年NGN和3G网络的大规模应用,国内各大运营商都在不断改造原有城域网络或重新组建新的城域网络,力求做到为新业务提供有充
分质量保证和带宽保证的网络平台。
由于新业务对数据网络的QoS和SLA要求
日益增长,新的数据承载网络需要能够实现电信级保护、服务质量保证和TDM (时分复用)能力支持等新的功能,在这种情况下,电信级以太网技术应运而生,并已成为下一代城域网发展的方向。
然而,还应看到,目前电信级以太网
技术所提出的QoS、可靠性等并不能完全解决以太网所有的问题,为了真正实
现具备电信特征的以太网业务,仍然需要在技术标准化、成熟度方面多做努力,还有很长的路要走。