5g移动网络技术论文范文

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5g移动网络技术论文范文

5G移动通信技术作为后4G时代的衍生产物,它的发展状况备受社会公众的关注。下面是店铺带来的关于5g网络技术论文的内容,欢迎阅读参考!

5g网络技术论文篇一:《试谈5G移动通信技术及发展》

摘要:5G移动通信技术作为后4G时代的衍生产物,成为面向2020年所推崇的新一代智能型移动通信系统,其发展状况备受社会公众的关注。目前,以4G为典型代表的移动通信技术正处于快速建设阶段,5G移动通信发展进入初级探究工序,相关技术要点、性能特征、网络功能还有待进一步探究。因此,明确5G移动通信系统的定位内容成为当下的实践要务,对移动通信网络的持续发展具备积极影响。基于此,本文结合5G移动通信技术,论述基本发展现状及其关键要点,为其提供几点优化意见,以供相关研究参考。

关键词:5G移动通信;5G关键技术;无线网络;云计算;D2D通信

引言

自网络技术正式进入应用阶段后,移动通信成为人们生活中必不可少的构成部分。倡导高性能、高效率的通信系统,早已成为社会公众积极追求的实践要务。4G移动通信最早起源于2000年的中后期,面对无线技术的高数据传输速率,第四代无线通信技术难以全面适应数据速率理论需求,而5G通信系统因2012欧盟所启动的METIS项目备受关注。当前,开展5G移动通信网络研究活动显得尤为关键,便于稳定移动互联网的基础性能[1]。5G移动通信系统整合以往通信机制的便利优势,杜绝单一化的无线接入技术,基本传输速率可达10Gb/s,自身覆盖率相比其他通信系统更具实际效益,成为实际可行的融合网络,值得应用于实践研究。

一、5G移动通信技术的发展现状

在3G/4G通信技术的持续发展背景下,5G移动通信技术因其独特的研发特征,成为通信行业的新一代改革内容,也是后4G时代通信技术高效发展的关键要务。目前,5G需求及其频谱、技术要点研究工

作正在稳定运行。以“2018年完成IMT-2020标准、2020年确定5G 标准”为设定方案,这与“中国863计划”所涵盖的技术研究核心理念不谋而合,为5G通信技术的优化发展提供了一定辅助条件[2]。基于5G初步驱动标准化活动,5G移动网络的初始化定义为“以用户为中心”。相比4G网络的“以服务为中心”概念更具实际效益,5G网络具有更高的移动性能,数据传输速率达到10Gb/s,早已成为社会公众高度关注的移动通信技术。

二、5G移动通信技术的关键要点

2.1无线接入技术

考虑5G移动通信技术的设计特征,无线接入技术作为其关键性要点,以BDMA(射束分割多址技术)、NOMA(非正交多址接入技术)为基本内容,利用更加广泛的信号宽带,为用户提供更加便捷化的应用指标。基于无线接入技术的应用范围,BDMA围绕FDMA(频分多址)、CDMA(码分多址)等内容,利用有限的频谱资源来辅助多址接入系统,为5G技术的无线接口提供频率、时间资源[3];NOMA作为一种新型调制方法,从OFDM信号入手,解决技术正交时间窗口的缺陷问题,达到传输时延、频率补偿建设目的,满足滤波器多载波的同步频率构造需求。为适应5G系统的内在容量、基本构成等技术特征,考虑MS位置的天线波束情况,在维持LOS状态的基础上,智能调整波束情况,具备稳定网络技术可靠性能的技术表征。结合相关表征情况,目前所发明的BDMA技术、NOMA技术,可较快地适应5G的基本要求,如AOA(达角)无线配置、FFT块CP信号参数等,具有较强的适用价值。

2.2超密集异构网络

在5G通信技术的发展过程中,强化低功率节点数量、缩减小区半径成为基本技术指标。超密集异构网络是基于提升数据流量所衍生的构成要点,可保证5G网络的智能终端普及效益。考虑2020年无线网络所设置的无线节点情况,密集部署网络可有效缩减终端设备与各个节点间的实际距离,便于增强网络功率和频谱效率,对不同接入技术的覆盖层次性能也有所帮助。此外,从无线网络站点与节点设置情况来看,依据现有站点的10倍以上范围,并将其维持在10~15m范围

内容(每1km2满足25000用户需求),缓解用户基数与站点数值1:1比例情况。同时,结合网络动态部署技术,准确感知各个相邻节点,完成选择网络、协调节点间距、实现网络业务等工序,为QoS需求所带来的差异性提供优化举措。以5G异构网络超密集场景的跨层干扰协调优化为例,由于小站覆盖范围较小,微小区网络具有能耗效率高、信号质量好等优势。利用ABS站点配置策略,宏观规划节点区域范围与邻区间干扰情况,统计小站区域范围自身所带有的RB资源,为强化CRE扩展效益提供辅助条件,便于吸收区间吸收用户数量,计算各个UE所提供的信息服务数据(跨层干扰协调优化方法),协调用户和业务各自的差异性,为其节能配置、节点协调提供辅助作用[4]。

2.3大规模MIMO

在2016世界电信标准化全会(WTSA16)中,与ITU-T(国际电信联盟电信标准化部门)形成统一共识,我国正式提出推进IMT-2020(5G)标准化研究工作。这相比4G技术所提供的峰值速率增长至数十倍(连接100万用户/平方公里),成为市场标准化竞争的核心技术。其中,大规模MIMO作为5G通信系统的关键技术,经由国际标准审核和检定,正式融入关键技术指标研究工作,成为无线链路频谱效率技术的典型代表,与“多用户MIMO”概念具备相似之处,并与相同频块的用户基站形成同步发展机制(当用户数据达到一定数量时,频谱效率可提升至5~10倍,与小区边缘相关的能量更佳),天线数量同比增加1~2个数量级,有效解决天线信道的容量问题。目前,大规模MIMO 技术依然是移动通信领域容量潜力最为突出的技术之一。针对5G移动通信系统的关键技术问题,仍需有效解决。结合发送端和接收端所匹配的天线设备,稳定传输速率、传输可靠性,实现MIMO技术标准化进程,详情参见表1。以大规模天线阵列方式集中模式为例,利用空间维度的无线资源,与小区用户的平均频谱效率相融合,立足于流量增长需求及10Gbit/s峰值速率、100Mbit/s用户速率体验,利用简单的线形检测(MRC),与基站装备大量天线的小区间干扰形式互成对比,控制无线开放移动平台所构建的天线系统,基本容量可提升至6.7倍(1/16功率),便于同时服务UE平台[5]。

相关文档
最新文档